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Abstract. Intelligence in the form of well-organized solutions to the ill-posed
problems has been the primary focus of many engineering applications. The ever-
increasing developments in data fusion, sensor technology and high-speed micro-
processors made the design in digital domain with high performance. A natural
consequence of the progression during the last few decades is the emergence of
computationally intelligent systems. Neural networks and fuzzy inference systems
constitute the core approaches of computational intelligence, whose methods have
extensively been used in the applications extending from image/pattern recogni-
tion to identification and control of nonlinear systems. This chapter is devoted to
the analysis and design of learning strategies in the context of variable structure
systems. Several approaches are discussed in detail with special emphasis on the
sliding mode control of nonlinear systems.

1 Introduction

Twentieth century has witnessed widespread innovations in all disciplines of
engineering sciences. Two snapshots from early 1900s and late 1990s differ
particularly in terms of the active role of humans in performing complicated
tasks. The trend during the last century had the goal of implementing sys-
tems having some degrees of intelligence to cope with the problem specific
difficulties that are likely to arise during the normal operation of the system.
Today, it is apparent that the trend towards the development of autonomous
machinery will maintain its importance as the tasks and the systems are
getting more and more complicated. A natural consequence of the increase
in the complexity of the task and physical hardware is to observe an ever-
widening gap between the mathematical models and the physical reality to
which the models correspond. Having this picture in front of us, what now be-
comes evident is the need for research towards the development of approaches
having the capability of self-organization under the changing conditions of
the task and the environment. Computational Intelligence (CI) is a frame-
work offering various solutions to handle the complexity and the difficulties
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of information-limited operating environments. The diversity in the solution
space is a remarkable advantage that the designer utilizes either in the sense
of algorithm-oriented manner or in the sense of architecture-oriented manner,
hence, the result is an autonomous system exploiting these advantages.

Autonomy is one of the most important characteristics required from a
computationally intelligent system. A basic requirement in this context is
the ability to refresh and to refine the information content of the dynamics of
the system. It therefore requires a careful consideration in the realm of engi-
neering practice. From a systems and control engineering point of view, the
designer is motivated by the time-varying nature of structural and environ-
mental conditions to realize controllers that can accumulate the experience
and improve the mapping precision [1-2]. Methodologies imitating the infer-
ence mechanism of the human brain are good in achieving the former and
those imitating the massively interconnected structure of the human brain
are good in achieving the latter. In the literature, the linguistic aspects of in-
telligence are discussed in the area Fuzzy Logic (FL) while the connectionist
aspects are scrutinized in the area Neural Networks (NN). The integration
of these methodologies that exploit the strength of each collectively and syn-
ergistically is a driving force to synthesize hybrid intelligent systems. Being
not limited to what is mentioned, methods mimicking the process of evolu-
tion, which are discussed under the title Genetic Algorithms (GA), and those
adapted from artificial intelligence constitute other branches of CI and fall
beyond the focus of the approaches presented in this chapter.

NN are well known for their property of representing complex nonlinear
mappings. Earlier works on the mapping properties of these architectures
have shown that NN are universal approximators [3-5]. The mathematical
power of intelligence is commonly attributed to the neural systems because of
their structurally complex interconnections and fault tolerant nature. Various
architectures of neural systems are studied in the literature. Feedforward and
Recurrent Neural Networks (FNN, RNN) [6], Radial Basis Function Neural
Networks (RBFNN) [1,6], dynamic neural networks [7], and Runge-Kutta
neural networks [8] constitute typical topologically different models.

FL is the most popular constituent of the CI area since fuzzy systems are
able to represent human expertise in the form of IF antecedent THEN con-
sequent statements. In this domain, the system behavior is modeled through
the use of linguistic descriptions. Although the earliest work by Prof. Lotfi
Zadeh on fuzzy systems [9] has not been paid as much attention as it deserved
in the early 1960s, since then the methodology has become a well-developed
framework. The typical architectures of Fuzzy Inference Systems (FIS) are
those introduced by Wang [10], Takagi and Sugeno [11] and Jang, Sun and
Mizutani [1]. In [10], a fuzzy system having Gaussian membership functions,
product inference rule and weighted average defuzzifier is constructed and
has become the standard method in most applications. Takagi and Sugeno
[11] change the defuzzification procedure where dynamic systems are used in
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the defuzzification stage. The potential advantage of the method is that un-
der certain constraints, the stability of the system can be studied. Jang et al
[1] propose an adaptive neuro-fuzzy inference system, in which polynomials
are used in the defuzzifier. This structure is commonly referred to as ANFIS
in the related literature.

When the applications of NN and FL are considered the process of learn-
ing gains a vital importance. Although there is not a standard definition, the
process of improving the future performance of the structures of CI by tuning
the parameters can be described as learning. The approaches existing in the
literature employ various techniques in achieving the desired parameter set
(which is unknown), and require an iteratively evolving search mechanism.
It should be noted that the most common technique that can be used in per-
forming a suitable search operation in a multidimensional parameter space is
based on the use of an appropriately defined cost function. Alternatively, the
search procedure can be implemented without using the derivative informa-
tion; such as is done by the use of methods adapted from the evolutionary
computation, e.g. GAs, or random search methods [1].

Error Backpropagation (EBP) technique [12] and Levenberg-Marquardt
(LM) optimization technique [13] are the frequently used techniques used for
parameter adaptation in CI. Both approaches are based on the utilization
of gradient information and necessitate the differentiability of the nonlinear
activation functions existing in the architecture with respect to the parame-
ter to be updated, and frequently utilize some heuristics for improved real-
ization performance. These typically concern the selection of learning rate,
momentum coefficient, and adaptive learning rate strategies in EBP or step-
size considerations in LM technique. However, the problem of convergence
or that of maintaining the bounded parameter evolution is an open problem
associated with these approaches. More explicitly, the learning strategy is
not protected against disturbances, which may excite the undesired internal
modes of EBP or LM approaches. The multidimensionality of the problem is
another difficulty in coming up with a thorough analysis distinguishing the
useful training information and disturbance-related excitation signals. Since
the ultimate goal of the design is to meet the performance specifications,
reducing the adverse effects of the disturbances requires that the adopted
learning dynamics should be robustified. This steers the designer to seek for
methods known in the conventional design framework. From this point of
view, a learning strategy based on Variable Structure Systems (VSS) theory
constitutes a good candidate for eliminating the adverse effects of distur-
bances.

VSS with sliding modes were first proposed in early 1950s [14-15]. How-
ever, due to the implementation difficulties of high speed switching, it was
not until 1970s that the approach received the attention it deserved. Sliding
Mode Control (SMC) technique nowadays enjoys a wide variety of applica-
tion areas; such as in general motion control applications and robotics, in
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process control, in aerospace applications, and in power converters [16-19].
The main reason for this popularity is the attractive properties that SMC
have, such as good control performance for nonlinear systems, applicability
to Multi-Input-Multi-Output (MIMO) systems, and well established design
criteria for discrete time systems. The most significant property of a sliding
mode control system is its robustness. Loosely speaking, when a system is in a
sliding mode, it is insensitive to parameter changes or external disturbances.

From a systems and control theoretic point of view, the primary char-
acteristic of variable structure control is that the feedback signal is discon-
tinuous, switching on one or more manifolds in the state space. When the
state crosses each discontinuity surface, the structure of the feedback system
is altered. Under certain circumstances, all motions in the neighborhood of
the manifold are directed towards the manifold and thus a sliding motion
on a predefined subspace of the state-space is established in which the sys-
tem state repeatedly crosses the switching surface [20]. This mode has useful
invariance properties in the face of uncertainties in the plant model and there-
fore is a good candidate for tracking control of uncertain nonlinear systems.
The theory is well developed, especially for single-input systems in controller
canonical form.

The theory of VSS with sliding modes has been studied intensively by
many researchers. A recent comprehensive survey is given in [17] and vari-
ous aspects of latest developments in VSS can be found in the chapters of
this book. Motion control, especially in robotics, has been an area that has
attracted particular attention and numerous reports have appeared in the
literature [21-25]. One of the first experimental investigations that demon-
strates the invariance property of a motion control system under a sliding
mode is due to Kaynak et al [26].

In practical applications, a pure SMC approach suffers from the follow-
ing disadvantages. Firstly, there is the problem of chattering, which is the
high frequency oscillations of the controller output, brought about by the
high speed (ideally at infinite frequency) switching necessary for the estab-
lishment of a sliding mode. In practical implementations, chattering is highly
undesirable because it may excite unmodeled high frequency plant dynamics
and this can result in unforeseen instabilities.

Secondly, a SMC based feedback loop is extremely vulnerable to measure-
ment noise since the control input depends tightly on the sign of a measured
quantity that is very close to zero [27]. Thirdly the SMC may employ unnec-
essarily large control signals to overcome the parametric uncertainties. Last
but not least, there exists appreciable difficulty in the calculation of what
is known as the equivalent control. A complete knowledge of the plant dy-
namics is required for this purpose [28]. To alleviate these difficulties, several
modifications to the original sliding control law have been proposed [29], the
most popular being the boundary layer approach, which is, in essence, the
application of a high gain feedback when the motion of the system reaches
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ε-vicinity of a sliding manifold [22,28]. This approach is based on the idea
of the equivalence of the high gain systems and the systems with sliding
modes [30]. Another variation of the scheme is called provident control that
combines variable structure control and variable structure adaptation and
performs hysteretic switching between the structures so as to avoid a sliding
mode [31-32]. Both approaches are based on the calculation of the equivalent
control, requiring a good mathematical model of the plant.

The essence of the discussion presented in this chapter is to integrate VSS
technique and CI in an appropriate manner such that the difficulties of VSS
approach are alleviated by intelligence and the mathematical intractability of
intelligence is alleviated by VSS technique. Such a hybrid approach, particu-
larly operating as the learning mechanism of CI architectures, is therefore a
good candidate to represent the autonomous behavior of intelligent systems
with a robustified learning performance.

2 A Functional Overview of Computationally
Intelligent Architectures

2.1 Adaptive Linear Elements (ADALINEs)

Being categorized as the basic operation in all architectures of CI, ADALINE
performs an inner product of two vectors, which is The output is a net sum in
the case of NNs, or the response of the system in the cases of RBFNN, SFS,
ANFIS. The vectors of interest are the adjustable parameter vector and the
excitation input denoted by φ and u respectively. The input-output relation
can now be described as τ = φT u, where τ is the scalar output. Clearly, the
applications requiring multiple outputs τ would be a vector while φ would
be a matrix of appropriate dimensions.

2.2 Feedforward Neural Networks (FNNs)

FNNs constitute a class of NN structures in which the data flow is from
input to the output and no feedback connections are allowed. Because of
the structural diversity of neural models, this discussion is devoted to the
architecture and the mathematical representation of FNN structure, which is
discussed from the point of control engineering. The architecture of a typical
FNN is illustrated in Figure 1, in which the neural network has three layers
implying the sufficiency for realizing any continuous mapping to a desired
degree of accuracy as long as the hidden layer contains sufficiently many
neurons [3-5]. The number of neurons in the hidden layer is a design variable
and is mostly determined either by trial and error or by empirical results.

Functionally, o = ψh(Whu) and τ = ψ0(W0o), where ψh and ψ0 stand
for the vectors of nonlinear activation functions for the hidden layer and the
output layer respectively. Adaptation is carried out on the adjustable weights
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Fig. 1. Structure of a FNN

contained in Wh and W0 matrices. In most applications of NNs, hyperbolic
tangent or sigmoid functions are used in ψh whereas the selection of ψ0 is
generally a linear function of its argument, e.g. ψ0(x) = x. The standard
approach for tuning the parameters of FNNs is EBP or LM techniques [12-
13].

Information contained in such a nonlinear map is distributed over its ar-
chitectural constituents, i.e. neurons, such that a local failure in the structure
can be tolerated because of the parametric redundancy existing in the struc-
ture, which is an analogue of the fault tolerance in biological systems. More
explicitly, the task can be redistributed upon death of neurons forming a local
infrastructure of a massive network.

2.3 Radial Basis Function Neural Networks (RBFNNs)

In the literature, RBFNNs are generally considered as a smooth transition
between FL and NNs. Structurally, a RBFNN is composed of receptive units
(neurons) which act as the operators providing the information about the
class to which the input signal belongs. If the aggregation method, number
of receptive units in the hidden layer and the constant terms are equal to
those of a FIS, then there exists a functional equivalence between RBFNN
and FIS [1]. Although the architectural view of a RBFNN is very similar
to that of a FNN illustrated in Figure 1, the hidden neurons of a RBFNN
possess basis functions to characterize the partitions of the input space. Each
neuron in the hidden layer provides a degree of membership value for the
input pattern with respect to the basis vector of the receptive unit itself.
The output layer is comprised of linear neurons. NN interpretation makes
RBFNN useful in incorporating the mathematical tractability, especially in
the sense of propagating the error back through the network, while the FIS
interpretation enables the incorporation of the expert knowledge into the
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training procedure. The latter is of particular importance in assigning the
initial value of the network’s adjustable parameter vector to a vector that
is to be sought iteratively. Expectedly, this results in faster convergence in
parameter space.

Mathematically, oi =
∏m

j=1 ψij(uj) and a common choice for the hid-
den layer activation function is the Gaussian curve described as ψij(u) =
exp{−(uj − cij)2/σ2

ij}, where cij and σij stand for the center and the vari-
ance of the ith neuron’s activation function qualifying the jth input variable.
The output of the network is evaluated through the inner product of the ad-
justable weight vector denoted by Φ and the vector of hidden layer outputs,
i.e. τ = φT o, which is just as in the case of output evaluation in ADALINEs.
Clearly the adjustable parameter set of the structure is composed of {c,σ,φ}
triplet.

2.4 Standard Fuzzy Systems (SFSs)

Contrary to what is postulated in the realm of predicate logic, representation
of knowledge by fuzzy quantities can provide extensive degrees of freedom if
the task to be achieved can better be expressed in words than in numbers. The
concept of fuzzy logic in this sense can be viewed as a generalization of binary
logic and refers to the manipulation of knowledge with sets, whose boundaries
are unsharp [33]. Therefore the paradigm offers a possibility of designing
intelligent controllers operating in an environment, in which the conditions
are inextricably intertwined, subject to uncertainties and impreciseness.

Understanding the information content of fuzzy logic systems is based on
the subjective judgements, intuitions and the experience of an expert. From
this point of view, a suitable way of expressing the expert knowledge is the
use of IF antecedent THEN consequent rules, which can easily evaluate the
necessary action to be executed for the current state of the system under
investigation.

Structurally, a fuzzy controller is comprised of five building blocks, namely,
fuzzification, inference engine, knowledge base, rule base, and defuzzification.
Since the philosophy of the fuzzy models is based on the representation of
knowledge in fuzzy domain, the variables of interest are graded first. This
grading is performed through the evaluation of membership values of each
input variable in terms of several class definitions. According to the defini-
tion of a membership function, how the degree of confidence changes over the
domain of interest is characterized. This grading procedure is called fuzzifi-
cation. In the knowledge base, the parameters of membership functions are
stored. Rule base contains the cases likely to happen, and the correspond-
ing actions for those cases through linguistic descriptions, i.e. the IF-THEN
statements. The inference engine emulates the expert’s decision making in
interpreting and applying knowledge about how the best fulfillment of the
task is achieved. Finally, the defuzzifier converts the fuzzy decisions back onto
the crisp domain [34].
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SFS architecture that has been proposed by Wang [35] uses algebraic
product operator for the aggregation of the rule premises and bell-shaped
membership functions denoted by µ. The overall representation of SFS struc-
ture is given in (1), in which R and m stand for the number of rules contained
in the rule base and the number of inputs of the structure.

τ =
R∑

i=1

fi

( ∏m
j=1 µij (uj)∑R

i=1

∏m
j=1 µij (uj)

)
(1)

with ith rule as: IF u1 is U1i AND u2 is U2i AND . . . AND um is Umi THEN
fi = φi. In the IF part of this representation, the lowercase variables denote
the inputs and the uppercase variables stand for the fuzzy sets corresponding
to the domain of each linguistic label. The THEN part is comprised of the
prescribed decision in the form of a scalar number denoted by φi. Clearly, the
adjustable parameters of the structure are comprised of the parameters of the
membership functions together with the defuzzifier parameters φi. Another
common feature of the representation in (1) is the linearity of the output in
the defuzzifier parameters.

2.5 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Adaptive neuro-fuzzy inference systems are synthesized by an appropriately
integrating the neural and fuzzy system interpretations. The resulting hybrid
combination therefore inherits the numeric power of NN as well as the verbal
power of FL [1,36]. An ANFIS structure having m-inputs and single output
with product inference rule and first order Sugeno model can be described
as in (1) with fi being described as in the rule consequent. The structural
view of such a system is illustrated in Figure 2, in which Ñ stands for the
normalization operator seen as the last term of (1).

The rule structure for an ANFIS utilizing first order Sugeno model has
the following representation: IF u1 is U1i AND u2 is U2i AND . . . AND um

is Umi THEN fi = φi,1u1 + . . .+φi,mum +φi,m+1. When the consequent part
of the rule structure is compared with that of rules in SFS architecture, it
is seen that the polynomial representation of the decision introduces higher
parametric flexibility extending the realization capability. Being not confined
to what is discussed above, depending on the requirements of the problem
in hand, the designer can choose higher order polynomials to improve the
realization accuracy. When the issue of parameter tuning in ANFIS is con-
sidered the well-known gradient approaches as well as the method of least
mean squares or VSS based approaches can easily be utilized.

ANFIS structure has been utilized with gradient based training strate-
gies for identification of nonlinear systems [37] and with VSS based training
strategies for variable structure control of motion control systems. In [1], an
in-depth discussion is given with numerous examples on the use of ANFIS
structure.
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Fig. 2. Structure of an ANFIS

3 VSS Based Parameter Tuning in Intelligent Control
Systems

The studies reporting the use of VSS for parameter tuning in CI by San-
ner and Slotine [38], and Sira-Ramirez and Colina-Morles [39] have been the
stimulants, which proved that the robustness feature of VSS could be ex-
ploited in the training of the architectures of CI. These studies pioneered
a vast majority of researchers working on VSS and CI. Sanner and Slotine
considered the training of GRBFNN which has certain degrees of analytical
tractability in explaining the stability issues, and Sira-Ramirez et al have
shown the use of ADALINEs with a VSS based learning strategy. As an illus-
trative example, the inverse dynamics identification of a Kapitsa pendulum
has been demonstrated together with a thorough analysis towards the han-
dling of disturbances. Hsu and Real [40-41] demonstrate the use of VSS with
Gaussian NNs, Yu et al [42] introduces the dynamic uncertainty adaptation
of what is proposed in [39], and demonstrate the performance of the scheme
on the Kapitsa pendulum. Parma et al [43] use the VSS technique in pa-
rameter tuning process of multilayer perceptron. Latest studies towards the
integration of VSS and CI have shown that the tuning can be implemented
in dynamic weight filter neurons [44], in parameters of a controller [45]. A
different viewpoint towards this integration is due to Efe et al [46-47], which
has the goal of reducing the adverse effects of noise driven parameter tuning
activity in gradient techniques. The key idea in these works is to mix the
two training signals in a weighted average sense. A good deal of review is
provided in the recent survey of Kaynak et al [48]. The survey illustrates how
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VSS can be used for training in CI as well as how CI can be utilized for the
tuning of parameters in conventional VSS.

In what follows, the use of VSS approach for intelligent control of non-
linear systems is presented together with the analytical details wherever re-
quired. The emphasis is mainly on the works presented in [44-45] with the
authors’ latest research outcomes towards the direction of control engineer-
ing.

3.1 Control System Structure

Consider the feedback loop illustrated in Figure 3, in which a subscript d
denotes the desired value of the relevant quantity. Furthermore, it is shown
in the figure that if a supervisor provides the desired controller outputs, one
might evaluate the error on the control signal denoted by sc.

INTELLIGENT
CONTROLLER PLANT

Σ

Σ

sc τd

θ
d

+

_

+
_ τ

θ

Fig. 3. Block diagram of the control system

The plant shown in Figure 3 is assumed to have the structure described
in (2), in which θ and τ are (r1 + r2 + . . . + rn)×1−dimensional state vector
and n × 1−dimensional input vector. The system of (2) with these vectors
can be restated as θ̇ = fp (θ) + Dτ .

θ
(ri)
i = fpi

(θ) +
n∑

j=1

dijτj i = 1, 2, . . . , n (2)

The design problem is to enforce the behavior of the system towards the
desired response, which is known but the control signal (τ d) resulting in
which is unavailable. Therefore, the solution to this problem is a search to-
wards the synthesis of such a signal iteratively by an intelligent controller.
Assuming that the intelligent controller in Figure 3 is composed of n individ-
ual controllers, the ith one of which is to construct the ith component of input
vector τ , the jth entry of the error vector driving this sub-controller can be
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given as e
(j)
i = θ

(j)
i − θ

(j)
di . Apparently, this component is the jth derivative

of the relevant state component.

3.2 Conventional VSS Design - An Overview

Consider the vector of sliding surfaces for the system in (2): sp(e) = Ge =
G(θ − θd). The widespread selection of the matrix G is such that the ith

sliding surface function has the form

spi
(ei) =

(
d

dt
+ λi

)ri−1

ei (3)

in which, λi is a strictly positive constant. Let Vp be a candidate Lyapunov
function given as

Vp (sp) =
1
2
sT

p sp (4)

If the prescribed control signal satisfies V̇p (sp) = −sT
p Ξ sgn(sp), the neg-

ative definiteness of the time derivative of the Lyapunov function in (4) is
ensured. In above, Ξ is a positive definite diagonal matrix of dimension
n × n. More explicitly, sT

p ṡp = −sT
p Ξ sgn(sp) must hold true to drive the

error vector towards the sliding hypersurface. On the other hand, the use of
ṡp = −Gθ̇d + G

(
fp (θ) + Dτ

)
leads to the following control signal:

τ = − (GD)−1
(
Gfp (θ) − Gθ̇d

)
− (GD)−1

Ξ sgn(sp) (5)

in which, the first term is the equivalent control term and the second term is
the corrective control term. For the existence of the mentioned components,
the matrix GD must not be rank deficient. In the literature, equivalent control
is considered as the low frequency (average) component of the control signal.
Because of the discontinuity on the sliding surface, the corrective term brings
a high rate component [20,25]. If e(0) = 0, the tracking problem can be
considered as keeping e on the sliding surface, however, for nonzero initial
conditions, the strategy must enforce the state trajectories towards the sliding
surface, which is ensured by the negative definiteness of the time derivative
of the Lyapunov function as in (4). For the case of nonzero initial conditions,
the phase until the error vector hits the sliding surface is called the reaching
mode, the dynamic characteristics of the system during which is determined
by the control strategy adopted. Application of the control input formulated
in (5) imposes the dynamics described as ṡp = −Ξ sgn(sp), which clearly
enforce the error vector towards the sliding surface. Once the sliding surface
is reached, the value of (3) becomes zero; and this enforces the error vector
to move towards the origin.

Aside from the practical difficulties of conventional VSS schemes, the
control signal in (5) is applicable if a nominal representation of the system
under control is available. In the next subsection, a method for obtaining the
error on the control signal is presented for unknown systems of structure (2).
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3.3 Calculation of the Control Error

Remark 3.1: The VSS task is achievable if the dynamics of the system in
(2) is totally known or if the nominal system is known with the bounds of
the uncertainties. It must be noted that to satisfy the matching conditions,
the disturbances and uncertainties are always assumed to enter the system
through the control channels [17]. When the conventional VSS strategy is
applied to the system of (2), we call the resulting behavior as the target VSS
and the input vector leading to it as the target control sequence (τ ), which is
described in (5). If the functional form of the vector function fp is not known,
it should be obvious that the target control sequence cannot be constructed
by following the traditional VSS design approaches.

Definition 3.2: Given an uncertain plant, which has the structure described
as in (2), and a command trajectory vector θd(t) for t ≥ 0, the input sequence
satisfying the following vector differential equation is defined to be the ide-
alized control sequence denoted by τ d, and the vector differential equation
itself is defined to be the reference SMC model.

θ̇d = fp (θd) + Dτ d (6)

Mathematically, the existence of such a model and the sequence means
that the system of (2) perfectly follows the command trajectory vector if
both the idealized control sequence is known and the initial conditions are
set as θ(t = 0) = θd(t = 0), more explicitly e(t) ≡ 0 for t ≥ 0. Undoubtedly,
such an idealized control sequence will not be a norm-bounded signal when
there are step-like changes in the vector of command trajectories or when the
initial errors are nonzero. It is therefore that the reference SMC model is an
abstraction due to the limitations of the physical reality, but the concept of
idealized control sequence should be viewed as the synthesis of the command
signal θd from the time solution of the differential equation set in (6).

Fact 3.3: Based on the Lyapunov stability results of the previous subsection,
if the target control sequence formulated in (5) were applied to the system
of (2), the idealized control sequence would be the steady state solution of
the control signal, i.e. limt→∞ τ = τ d. However, under the assumption of the
achievability of the VSS task, the difficulty here is again the unavailability
of the functional form of the vector function fp. Therefore, the aim in this
subsection is to discover an equivalent form of the discrepancy between the
control applied to the system and its target value by utilizing the idealized
control viewpoint. This discrepancy measure is denoted by sc = τ − τ d and
is of n × 1 dimension.

If the target control sequence of (5) is rewritten by using (6), one gets

τ = − (GD)−1
(
Gfp (θ) − G

(
fp (θd) + Dτ d

)
+ Ξ sgn(sp)

)
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= − (GD)−1
(
Gfp (θ) − Gfp (θd) + Ξ sgn(sp)

)
+ τ d (7)

= − (GD)−1
(
G∆fp (θ) + Ξ sgn(sp)

)
+ τ d

The target control sequence becomes identical to the idealized control se-
quence, i.e. τ ≡ τ d, as long as G∆fp (θ)+Ξ sgn(sp) = 0 holds true. However,
this condition is of no practical importance as we do not have the analytic
form of the vector function fp. Therefore, one should consider this equality
as an equality to be enforced instead of an equality that holds true all the
time, because its implication is sc = 0 and is the aim of the design. It is ob-
vious that to enforce this to hold true will let us synthesize the target control
sequence, which will ultimately converge to the idealized control sequence by
the adaptation algorithm yet to be discussed. Consider the time derivative of
the vector of sliding surfaces

ṡp (e) = Gė

= G(θ̇ − θ̇d)

= G
(
fp (θ) + Dτ − fp (θ)d − Dτ d

)
(8)

= G
(
∆fp + D (τ − τ d)

)
= G

(
∆fp + Dsc

)
Utilizing G∆fp +Ξ sgn(sp) = 0 in (8) and solving for sc yields the following
relation:

sc = (GD)−1
(
ṡp + Ξ sgn(sp)

)
= τ − τ d (9)

Remark 3.4: The reader must here notice that the application of τ d to the
system of (2) with zero initial errors will lead to e(t) ≡ 0 for ∀t ≥ 0, on
the other hand, the application of τ to the system of (2) will lead to sp = 0
for ∀t ≥ th, where th is the hitting time, and the origin will be reached
according to the dynamics of the sliding surface. Therefore, the adoption of
(9) as the equivalent measure of the control error loosens e(t) ≡ 0 for ∀t ≥ 0
requirement and introduces all trajectories in the error space to tend to the
sliding hypersurface, i.e. G∆fp+Ξ sgn(sp) = 0 is enforced. Consequently, the
tendency of the control scheme will be to generate the target VSS sequence
of (5) without requiring the analytical details of the plant.

Now consider the ordinary feedback control loop illustrated in Figure 3,
and define the following Lyapunov function, which is a measure of how well
the controller performs:

Vc (sc) =
1
2
sT

c sc (10)
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Remark 3.5: An adaptation algorithm ensuring V̇c (sc) < 0 when sc �= 0
enforces G∆fp + Ξ sgn(sp) = 0 and creates the predefined sliding regime
after a reaching mode lasting until the hitting time denoted by th, beyond
which sc = 0 as the system is in the sliding regime. If V̇c (sc) < 0 when
sc �= 0, then limt→th

Vc = 0 ⇐⇒ limt→th
‖ sc ‖= 0 ⇐⇒ limt→th

‖
ṡp + Ξ sgn(sp) ‖= 0. Note that the meaning of sc = 0 is now equivalent to
sp = 0 by Remark 3.4, therefore the limits above are evaluated as t → th.

3.4 Parameter Tuning based on a Single-Term Lyapunov
Function

If the architectures introduced in the second section are utilized for the pur-
pose of control, without loss of generality, the output of the ith controller
can be restated as τi = φT

i Ωi, where Ωi is the vector of signals exciting the
adjustable parameters denoted by φi. Therefore the algorithm discussed here
is applicable to ADALINE, GRBFNN, SFS and ANFIS architectures. Fur-
thermore, the Lyapunov function in (10) constitutes the basis of the design.

In order not to be in conflict with the physical reality, the designer must
impose ‖ φi ‖≤ Bφi

, ‖ Ωi ‖≤ BΩi
, ‖ Ω̇i ‖≤ BΩ̇i

, and ‖ τ̇id ‖≤ Bτ̇id
the

truth of which state that the adjustable parameters of the controller, the
time derivative of the signal exciting the adjustable parameter set and the
time derivative of the idealized output of the controller remain bounded.
Note that in Definition 3.2, we stated that there may not be a finite Bτ̇id

∈
� even in some realistic situations like nonzero initial errors, however, the
practical meaning of imposing ‖ τ̇id ‖≤ Bτ̇id

will lead us to the construction
of an approximation of the idealized control sequence and the requirement of
e(t) ≡ 0 for ∀t ≥ 0 must therefore be loosened.

Theorem 3.6: For the ith subsystem of the system described in (2), adopt-
ing the controller of structure τi = φT

i Ωi, the adaptation of the controller
parameters as described in (11) enforces the value of the ith component of
control discrepancy vector (sci

) to zero.

φ̇i = − Ωi

ΩT
i Ωi

ki sgn(sci
) (11)

where, ki is a sufficiently large positive constant satisfying ki > Bφi
BΩ̇i

+
Bτ̇id

. The adaptation mechanism in (11) drives an arbitrary initial value of
sci to zero in finite time denoted by thi satisfying the inequality in (12).

thi ≤ | sci
(0) |

ki −
(
Bφi

BΩ̇i
+ Bτ̇id

) (12)

Proof: See Sira-Ramirez et al [39] and Efe et al [45].

An important feature of this approach is the fact that the controller pa-
rameters evolve bounded as assumed initially. The details of the bounded
parametric evolution analysis can be found in [42,45].
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3.5 Parameter Tuning based on a Two-Term Lyapunov Function

Similar to what is initially designated in the previous subsection, the output
of the ith controller is described as τi = φT

i Ωi. In addition to the stated
boundedness conditions the truth of ‖ Ωi ‖≤ BΩi

is imposed. Consider the
Lyapunov function given in (13), in which µ and ρ are the weights to be
selected by the designer.

V = µVci
+ ρ

1
2

∥∥∥∥∂Vci

∂φi

∥∥∥∥
2

with Vci
=

1
2
s2

ci
(13)

Theorem 3.7: If the adaptation strategy for the adjustable parameters of
the ith controller is chosen as

φ̇i = −ki

(
µI + ρ

∂2Vci

∂φi∂φT
i

)−1

sgn
(

∂Vci

∂φi

)
(14)

with ki is a sufficiently large constant satisfying ki > (µBφi
+ ρBΩi

) BΩ̇i
,

then the negative definiteness of the time derivative of the Lyapunov function
in (13) is ensured.

Proof: See Efe [49].

3.6 A Generalization of EBP and LM Techniques in the Context
of VSS

A recent contribution towards the generalization of EBP and LM techniques
is due to Yu et al [50]. The approach postulated is applicable to all architec-
tures discussed in the second section and is based on the Lyapunov function
given in (15).

V (Ji,φi) = µJi + ρ
1
2

∥∥∥∥ ∂Ji

∂φi

∥∥∥∥
2

(15)

where Ji = γ−1
∫ t

t−γ
sci

(σ) dσ with γ being the length of a time window to
evaluate the training efficiency [51-52].

Theorem 3.8: For a computationally intelligent structure whose input-
output relationship is τi(t) = �(φi(t),ui(t)), if

(a) ∂Ji

∂t < 0 and

(b) The parameter adaptation rule is
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φ̇i =




−
(
µI + ρ ∂2Ji

∂φi∂φT
i

)−1
(

∂Ji
∂φT∥∥ ∂Ji
∂φi

∥∥2

)
∗

(
µ∂Ji

∂t + ρ ∂Ji

∂φi

∂2Ji

∂t∂φT
i

+ ζ
∥∥∥ ∂Ji

∂φi

∥∥∥2

+ ηJi

)
if

∥∥∥ ∂Ji

∂φi

∥∥∥ �= 0

0 otherwise

(16)

Then ∂Ji

∂φi
tends to zero asymptotically.

Proof: See Yu et al [50].

The formulation of Ji is particularly useful for on line training and contin-
uous time learning. However, for discrete data, since the evaluation of errors
can only be done at discrete instants of time, Ji at time tk can be defined as
Ji(t = tk) = limγ→0 γ−1

∫ t

t−γ
sci

(σ) dσ = sci
(tk). The conventional gradient

descent learning algorithm can be now obtained by setting ρ = 0 and η = 0.
Since ∂2Ji(t=tk)

∂t∂φT
i

= 0 one obtains the law in (17), whose learning rate in the

conventional sense is η−1ζ.

φ̇ = −η−1ζ
∂Ji(t = tk)

∂φT
(17)

The Gauss-Newton algorithm can be obtained by setting µ = 0 and η = 0.
Since ∂Ji(t=tk)

∂t = 0 and ∂2Ji(t=tk)

∂t∂φT
i

= 0, from (16) one gets the law in (18).

φ̇i =
(

σ
∂2Ji(t = tk)

∂φi∂φT
i

)−1 (
ζ
∂Ji(t = tk)

∂φT
i

)

= −σ−1ζ

(
∂2Ji(t = tk)

∂φi∂φT
i

)−1 (
∂Ji(t = tk)

∂φT
i

)
(18)

Similarly, the LM algorithm can be easily obtained by setting η = 0. Since
∂Ji(t=tk)

∂t = 0 and ∂2Ji(t=tk)

∂t∂φT
i

= 0, from (16) the law in (19) is obtained.

φ̇i = −
(

µI + σ
∂2Ji(t = tk)

∂φi∂φT
i

)−1 (
ζ
∂Ji(t = tk)

∂φT
i

)
(19)

3.7 Practical Issues

The analysis and the design approach presented so far have tried to illumi-
nate the VSS based training problem from a theoretical perspective. In this
subsection, we discuss several issues related to the practical applications of
the discussed methodologies.
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Chattering Since the control decision during the sliding mode is tightly
dependent to the sign of a measured quantity being noisy and very close to
zero, the decision along the sliding manifold exhibits sensitivity to noise on
the observations. Among many alternatives available [17,28,53], a common
approach to eliminate the chattering is to smooth the sign function, which
corresponds to introduce a boundary layer [28]. A widespread choice is the
following approximation for the sgn(.) function.

sgn(x) ∼= x

|x| + δ
(20)

where δ determines the sharpness around the origin. Since the function in
(20) is not discontinuous at the origin, the decision mechanism softly switches
inside the boundary layer.

Actuation Speed Another important issue is the actuation speed of the
system under control, i.e. the ability to respond to what is imposed timely.
Since the details concerning the dynamic model of the plant under control
are assumed to be unavailable, what causes a difficulty from a practical point
of view is the selection of the matrix Ξ, which characterizes the behavior
during the reaching mode. The values of this quantity can only be set by
trial-and-error due to the lack of system-specific details.

Obtaining the Equivalent Error from the Observed Data Lastly in
this subsection, we focus on the construction of the sc of (9), which requires
the differentiation of sp. A suitable approach is to filter the measured values
of sp and differentiate afterwards. Denote S as the Laplace variable, and use
the linear dynamic system given as

H(S) =
αS

Q(S)
(21)

where Q(0) = α > 0 and Real{roots(Q(S))} < 0. The order of the de-
nominator polynomial and the locations of the roots are left to the designer,
because these issues require several trials to refine the selections and are sub-
ject to the application together with its operating environment. It should
be noted that the cost of the information loss by using such a filter, whose
input is sp and output is an estimate of ṡp, is a matter of how robust the
devised control algorithm is. More explicitly, the separation of the noise and
the actual value of sp leads to a corruption on sp, and when differentiated
afterwards, some valuable information is lost together with the elimination
of the noise component. Here it is assumed that the mentioned loss causes
an uncertainty, which enters the system through the control channels, and
which is particularly effective during the sliding mode; and this uncertainty
can be alleviated if it falls within the limits allowing the maintenance of the
invariance during the sliding mode [17].
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Computational Burden One of the factors qualifying the physical imple-
mentability of control schemes is the number of computations to be performed
by the controller. In this part, a discussion of the computational burden of
the tuning mechanisms is presented. It should be noted that the structure
of the controller adopted strictly influences the required number of float-
ing point operations (flops) between the two consecutive sampling instants.
Therefore, the discussion given here focuses on the ADALINE controller, as it
constitutes a basis of all structures. If an ANFIS structure is to be used, the
designer must consider the extra calculations to generate the vector signal
exciting the adjustable parameter set of the defuzzifier.

Another point to clarify is the computational complexity due to the ap-
proach postulated in Theorem 3.8, whose practical applications generally
subject to the following: the cost function Ji is evaluated at the discrete in-
stants of time and it does not depend explicitly on time, i.e. ∂Ji(t=tk)

∂t = 0

and ∂2Ji(t=tk)

∂t∂φT
i

= 0,.
Figure 4 illustrates a bar graph composed of triplets. The leftmost com-

ponent represents the flops required to evaluate the ADALINE output and to
adjust its parameters once by utilizing the method discussed in the subsection
3.4. The middle and the rightmost components stand for the required number
of flops for the methods presented in subsections 3.5 and 3.6 respectively. It is
clear from the figure that the complexity due to the first approach is consid-
erably smaller than the other two as the order of the subsystem under control
increases. This fact is primarily because of the matrix inversion to be per-
formed at each step. However, the set of criteria qualifying the performance
of an intelligent control system is strictly dependent upon the application
specific details, which does not give a clue in choosing a tuning mechanism.
Therefore, the designer is encouraged to try the alternatives in discovering
the one performing the best.

3.8 Summary

What we have discussed so far have illuminated the design considerations at
microscopic levels forming the whole picture. When implementing the control
system with a VSS based tuning mechanism updating the parameters of an
intelligent controller, one has to remember that the plant is in an ordinary
feedback loop as illustrated in Figure 3. Having decided on the controller
structure, the error vector is processed until the control to be applied is
obtained. Since the desired control inputs are unavailable, using the error
measure given in (9), the similarity between the applied control and the
target control sequence is qualified, then the parameter tuning is performed
according to the chosen tuning strategy.

A particular difference in applying the ADALINE structure as the con-
troller with (11) and (14) is that the controller input vector is formed by
augmenting the error vector, which is of dimension ri × 1, with a constant



Variable Structure Systems Theory in Computational Intelligence 383

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Order of the subsystem under control (ri )

R
eq

ui
re

d 
nu

m
be

r 
of

 f
lo

ps
1st Method

2nd Method

3rd Method

Fig. 4. Computational burden of the discussed schemes

bias of value unity yielding a (ri + 1) × 1-dimensional excitation to the con-
troller. The reason for such an augmentation is twofold:

i) If the denominator of (11) were considered, without such an augmentation
the derivative would tend to infinity as the error vector moves towards the
origin. However, having such a tendency in the adjustable controller param-
eters cannot result in convergence. When (14) is considered from the same
point of view, together with the open form of matrix inversion, one sees that
a convergent behavior enforces the tuning mechanism to behave like gradient
descent. Although gradient descent can appropriately be used for controller
training purposes, the structural simplicity of ADALINE will not allow the
observation of a convergent behavior. This particular structure corresponds to
linear time varying state feedback, which is well developed especially for sys-
tems whose dynamic representations are known totally or partly with known
uncertainty bounds.

ii) When the sliding mode starts, the error vector rapidly converges to ori-
gin and the system starts tracking the desired trajectory precisely. However,
since the magnitudes of the entries of the error vector are very close to zero,
the corresponding controller parameters do not receive sufficient excitation to
maintain the synthesis of target control sequence. In implementing RBFNN,
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SFS and ANFIS architectures, the designer will not need such an augmenta-
tion since the parameter vector is persistently excited by the hidden neuron
outputs of RBFNN or rule outputs of FL based structures.

A last remark here is on the applicability of FNN structure, to which solely
the method in subsection 3.6 is applicable among what we have discussed.

4 An Illustrative Example

This section demonstrates the performance of the algorithm discussed in
subsection 3.4 for a third order system studied previously by Roy et al [54]
and Yilmaz et al [55]. The dynamic equation describing the system is given
in (22).

θ(3) = −0.5θ − 0.5θ̇3 − 0.5θ̈
∣∣∣θ̈∣∣∣ +

(
1 + 0.1 sin

(
πt

3

))
τ + κ1(t) + κ2(t) +

(−0.05 + 0.25 sin (5πt)) θ + (−0.03 + 0.3 cos (5πt)) θ̇3 + (22)

(−0.05 + 0.25 sin (7πt)) θ̈
∣∣∣θ̈∣∣∣

where κ1(t) = 0.2 sin(4πt) is the disturbance used in [54-55], and κ2(t) is
the zero mean Gaussian noise corrupting the state information to be used
by the controller additively. The work presented by Roy et al assume that
the nominal system dynamics is known and the uncertain part is comprised
of what we give as the last three terms in (22). The primary difference be-
tween what has been discussed so far and what is assumed in [54] should be
stressed as the approaches we discuss only assume the achievability of the
VSS task, hence the uncertainties are represented in the system dynamics,
whose form is known but the details are not. As the controller, a three input
single output ANFIS structure is used and the tuning is performed only on
the defuzzifier parameters, which are initially set to zero. The rule base has
27 rules quantifying the relevant input variable as Negative, Zero or Positive.
Once the rule outputs are evaluated, the crisp decision of the controller is
computed as described in (1).

Parallel to [54], the reference state trajectory, which is described as θd =
0.5 cos(πt/5) is used in the simulations. Initially, the states of the system have
the following values, θ(0) = 1, θ̇(0) = 1 and θ̈(0) = 1. One important note
here should be on the selection of λ. The value is taken as 5 in [54]; however
we use λ = 1, because the behavior with this value results in a better system
response. Figure 5 illustrates the trajectory followed in the phase space. The
error vector hits the sliding surface several times and starts moving on it as
enforced by the algorithm.
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5 Computational Intelligence in Variable Structure
Control

What we have focused on so far mainly contemplates the use of VSS theory
for parameter adaptation in CI. However, the integration of VSS technique
with the architectural and algorithmic methods of CI can also be utilized in

• Chattering elimination through filtering [48,56]
• Design of the parameters of a conventional sliding mode controller [48,57-

58]
• Modeling of the uncertainties [48,59-61]
• Generating a complementary control action [48,62-63]
• Generating the equivalent control and corrective control actions sepa-

rately [48,64].

The use of CI in VSS may be a remedy in the situations where the avail-
able knowledge is insufficient to produce a safe control action. The selection
of the uncertainty bound in this respect constitutes an apparent example.
As the value of the uncertainty bound increases, the produced control action
is more likely to have high frequency components having high magnitude,
which arise through the sign measurement during the sliding mode. In such
a situation, CI supported schemes can offer smoothed control signals with a
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reasonable uncertainty bound selection. Furthermore, the conventional frame-
work may underestimate the actuation speed of the system under control and
may lead to unnecessarily large control inputs. In these cases, the tuning of
VSS parameters, e.g. the slope of the sliding line, can be designed using the
methods of CI. Being not limited to these, the methods of CI can be used as
auxiliary subsystems for improving the control signal, i.e. a complementary
control signal is produced so that the undesired effects of conventional sliding
mode controller can be reduced. Last but not the least, the components of the
control signal driving the system behavior to a predefined sliding regime can
separately be realized by a learning system. This can eventually result in a
comprehensible way of formulating the equivalent control and the corrective
control.

6 Conclusion

This study discusses the design of a VSS theory based training strategies for
CI, when the traditional gradient based training approaches are utilized for
which, some handicaps arise due to the imperfect modeling, noisy observa-
tions or time varying parameters. If the effects of these factors are trans-
formed to the cost hypersurface, whose dimensionality is determined by the
adjustable design parameters, it becomes evident that the surface may have
directions along which the sensitivity derivatives assume large values. In these
cases, gradient based optimization procedures tend to evaluate large paramet-
ric displacements, which can eventually lead to a locally divergent behavior.
In control engineering practice, such a behavior constitutes a potential dan-
ger from a safety point of view. The approaches presented in this work take
care of the mentioned difficulties. Since the VSS theory is well known with its
robustness property, a training strategy equipped with which retains a high
degree of robustness against disturbances and uncertainties. When these ap-
proaches are considered for the training of intelligent controllers, under the
assumption that the VSS task is achievable, the task is fulfilled without know-
ing the analytic details describing the plant dynamics. In order to corroborate
the performance claims, tracking control of a third order nonlinear system is
presented. The behavior in the phase space clearly demonstrates the superior
performance despite the unavailability of system-specific details.
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