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A control input separation method is proposed for reduced-order modelling in boundary control problems.
The dynamics of flow systems are typically described by partial differential equations where the input affects the
system through boundary conditions. From a control design perspective it is most desirable and natural to
employ finite-dimensional representations in which the input enters the dynamics directly. The method proposed
here to resolve the input from the boundary conditions is based on obtaining a proper orthogonal decomposition
of the unforced flow of the system, and then augmenting this decomposition by optimally computed actuation
modes, built using snapshots of the actuated flow. A reduced-order Galerkin model is then derived for this
expansion, in which the input appears as an explicit term in the system dynamics. The model reduces exactly to
the original baseline case under zero input conditions. The proposed method is then compared to an existing
input separation technique, namely the sub-domain separation method. A boundary control example regarding
the 2D incompressible Navier–Stokes equation is considered to illustrate the proposed method, where a
controller is designed to achieve tracking of a desired 2D spatial profile for the flow velocity.

Keywords: control input separation; flow control; boundary control; proper orthogonal decomposition;
Galerkin projection

1. Introduction

It is a characteristic of flow control problems that the

control input is applied at the physical boundaries of

the system. When the systems are modelled as partial

differential equations, the control input is usually

specified as a boundary condition, hence the terminol-

ogy boundary control. Among the myriad of examples
of boundary control, Smaoui (2005) analysed the

dynamics of the forced Burgers’ equation subject to

both Neumann boundary conditions and periodic

boundary conditions using boundary and distributed

control. Hinze and Kunisch (2004) devised second-
order methods for open loop optimal boundary

control problems governed by the non-stationary

Navier–Stokes system. Non-linear boundary control

of coupled Burgers’ equations was studied by

Kobayashi and Oya (2003). Park and Lee (2000)

studied boundary control of the Navier–Stokes
equation by empirical reduction of modes. Baramov

et al. (2004) considered H1 control of Navier–Stokes

equations governing non-periodic 2D channel flow,

significantly reducing unwanted disturbances. Global

stabilisation of Burgers’ equation by boundary control

was studied by Krstic (1999), where non-linear

boundary control laws were derived to achieve global

asymptotic stability of viscous and inviscid Burgers’

equation, using both Neumann and Dirichlet bound-

ary control. In Aamo et al. (2003), enhancement of

mixing was accomplished by implementing boundary

control for Navier–Stokes equations describing 2D

channel flow.
Typical techniques for model development in flow

control problems are either directly based on flow

physics or rely on system identification techniques

from experimental data. Examples of the latter include

Mongeau et al. (1998) and Kook et al. (2002), where

open-loop transfer functions for low-speed flows at

several different flow velocities are determined by

observing the response to forcing. In Rowley and

Williams (2003), a similar approach was followed, with

the difference that frequency-response experiments

were performed on the system stabilised with a

known controller tuned to suppress cavity oscillations.

A frequency-response identification using a least-

squares method was performed by Cattafesta et al.

(1997) to identify the parameters of a discrete-time

transfer function, and similar techniques were used by
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8 Cabell et al. (2002) to obtain very high-order models.

Cattafesta et al. (1999) proposed an adaptive algorithm
which could be used either for off-line identification, or
to tune the parameters of a feedback controller.
Discrete-time adaptive algorithms have been considered
in Pillarisetti and Cattafesta (2001) and Kegerise et al.
(2002). As to the modelling approaches using governing
equations, Rowley et al. (2000, 2001), Lehmann et al.
(2005), Smith et al. (2002), Glauser et al. (2004a, b) and
Rempfer (2000) can be listed as typical examples sharing
a common core methodology. An optimal set of basis
vectors are built using proper orthogonal decomposi-
tion (POD) methods from snapshots of the flow
collected from experimental data or direct numerical
simulations. Then, the governing equations are pro-
jected onto the subspace spanned by the POD basis, a
procedure known as Galerkin Projection (GP), which
yields a finite-dimensional system that approximates the
original system dynamics in an energy-optimal sense.
The model obtained in this fashion is called a Galerkin
model (GM), while the general methodology used to
obtain finite-dimensional approximations of the origi-
nal governing equations is termed model reduction. A
detailed description of the POD-GP method can be
found in Holmes et al. (1996). Reduced-order models
that are derived using balanced truncation techniques
are also of interest (Lawrence et al. 2005). In addition to
the work listed above, standard references in the fields
of boundary control, control of infinite-dimensional
systems and model reduction techniques include
Bensoussan et al. (1992), Curtain and Zwart (1995)
and Burns and King (1998), Aamo and Krstic (2003),
Antoulas (2005) and King et al. (2005).

When obtaining a reduced-order model, the control
input must be separated from the boundary conditions,
and its presence made explicit in the model. The method
that takes boundary control to this more natural form
for control systems design is referred to as input
separation. Previous work on input separation includes
Efe and Ozbay (2003a, b, 2004) where POD/GPModels
are obtained for Burgers’ equations and heat equations
in which the control input, specified as a free boundary
condition, is made to appear as an additive term in
the differential equation by means of sub-domain
separation. In Samimy et al. (2007), the same metho-
dology has been applied to obtain experimentally-based
reduced-order models of cavity flows, and employed for
controller design. In the work by Camphouse (2005),
reduced-order models are obtained with input
separation performed through weak formulation of
POD-based models.

Although the studies cited above provide a means
of obtaining the input as an explicit term, there are still
associated issues, and room for improvement. Usually
the separation is performed a posteriori with respect to

the generation of a POD basis. This results in the

situation where the model is not reduced to the
unforced baseline case when the input is set to zero.
An additional problem inherent in the current methods

is that POD bases do not capture the effect of the
external forcing, but rather the dynamics of the input
under which they were built. This limits the ability of
the model to represent forcing conditions that are

significantly different from those used for identifica-
tion. A final issue is associated with underestimation of
the control vector field in the reduced-order model,

which creates a mismatch between values obtained in
simulation for the control signal and its actual value to
be used in experiments.

In this paper, a control input separation method
is proposed that aims at addressing some of the
issues mentioned above. The proposed method relies

on an expansion of the flow field in terms of baseline
POD modes and actuation modes, where the latter is
obtained from actuated snapshots a posteriori to the

baseline POD modes. Like the standard POD, the
methodology yields an optimal selection of a finite-
dimensional approximation, in the sense that the
energy of the actuated flow neglected by the

expansion is minimised. The outcome is a finite-
dimensional system in which the input appears
explicitly, and which reduces exactly to the dynamics

obtained from the original POD expansion when the
input vanishes.

The paper is organised as follows: Sections 2
and 3 provide an introduction and a brief review of
classical POD/GP methods, respectively; in Section 4
the derivation of the actuation mode expansion is

presented, and applied in Section 5 to reduced-order
modelling; Section 6 compares the proposed method
to an available technique for input separation,

namely the sub-domain method; Section 7 illustrates
the usefulness of the proposed approach in feedback
control design by means an example regarding
control of 2D incompressible Navier–Stokes equa-

tions; Section 8 provides concluding remarks.

2. Problem description

Consider a planar spatial domain ��R
2, and let H be

a real Hilbert space with inner product h�, �i:
H�H!R and induced norm k�k. Throughout the

paper, we will focus our attention to H ¼ L2ð�,R2
Þ

with the standard inner product hh1, h2i¼
R

� h1(x)
T

h2(x)dx for h1, h2 2 L2, although the results apply to

other Hilbert spaces as well. Let u(x, t) be a flow
velocity field over �, where u: ��Rþ!R

2, u(�, t)2H,
uðx, �Þ 2 Ck, k� 1. Here, t2Rþ is the temporal variable
and x2� is the spatial variable. The evolution of the

1476 C. Kasnakoğlu et al.
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8 flow field is governed by a partial differential equation

(PDE) of the form

_u ¼ XðuÞ, ð1Þ

where the operator X: H!H includes spatial deriva-

tives. Equation (1) is subject to the initial condition

uðx, 0Þ ¼ uinitðxÞ, ð2Þ

where uinit2H, and subject to the boundary conditions

ðBiðu, �ÞÞðx, tÞ ¼ biðx, tÞ, i ¼ 1 . . .Nb, ð3Þ

where x2 @�, t2Rþ, Bi: H� C
k
! H, bi2H, and

Nb2N. A control input � 2R acts through the

boundary conditions. The operator B may include

spatial derivatives.
The problem considered in this work is to develop

an approach to obtaining reduced-order models of

system (1)–(3) in a form that is useful for standard

control system design, that is, a model having the
property that the input � enters the dynamics directly.

This means obtaining an ordinary differential equation

of the form

_a ¼ fða, �Þ, að0Þ ¼ a0, ð4Þ

where f: R
N
�R!R

N and a2RN, in such a way that

(4) approximates the original PDE (1)–(3) in some

optimal sense. The proposed approach builds upon

classical POD/GP techniques (Holmes et al. 1996), of

which a brief review is provided in the following

section.

3. Review of classical POD/GP

Denote by u(x, t) the solution of the PDE (1)–(3). Let

uk(x)¼ u(x, tk) be a snapshot taken at time tk and let

fukg
M
k¼1 � H be an ensemble of M2N snapshots

collected at times ftkg
M
k¼1. Let u0 ¼ E½fujg

M
j¼1� where E

is the linear averaging operation E½fujg
M
j¼1� ¼

M�1�M
j¼1wjuj, for given weights wj2Rþ. As it is clear

that the index for the snapshots ranges from 1 toM, we

will write E[uj] instead of E½fujg
M
j¼1� for ease of notation.

Among all subspaces S�H of a given dimension
N5M, the one that minimises the averaged error

JðSÞ ¼ E kuj � PSujk
2

� �
,

where PS denotes projection onto S, is given by the

subspace spanned by the orthonormal eigenfunctions

�i corresponding to the N largest non-zero eigenvalues
of the linear operator R: H!S given by the

correlation tensor

R ¼ E½uj � u�j �:

Here u�j is the dual vector of uj in H, whereas the tensor

product � is defined as (v � �) w¼ v �(w) for v, w2H

and �2H*; (see Holmes et al. (1996) and Rowley et al.

(2004)). The vectors �i, i¼ 1, . . . ,N, are called the POD

modes of the ensemble. Although the problem as posed

is infinite-dimensional, it can be shown that it suffices

to solve the finite M-dimensional eigenvalue problem

C�i ¼ �i�i,

where �i¼ (�i1, . . . ,�iM), and C2R
M�M is the correla-

tion matrix with entries Cij¼huj, uii. This method is

known as the method of snapshots (Sirovich 1987).

Once the POD modes �i are obtained as described here,

the flow can be represented as a finite dimensional

approximation as

uðx, tÞ 	
XN
i¼1

aiðtÞ�iðxÞ:

It is also customary to remove the mean value u0 from

the snapshots prior to the calculation on the POD

modes. As a result, instead of fukg
M
k¼1, one carries out

the above procedure for fuk � u0g
M
k¼1, obtaining the

expansion

uðx, tÞ 	 u0ðxÞ þ
XN
i¼1

aiðtÞ�iðxÞ:

Whenever convenient, we will adopt Einstein notation,

and write the above expression as u(x, t)	 u0(x)þ ai(t)

�i(x), with the understanding that terms with repeated

indices are summed over their possible values.
Let S :¼ span{�1, . . . ,�N} be the subspace spanned

by the POD basis vectors, and define the linear variety

V :¼ u0þS. A dynamical system

_r ¼ XVðrÞ ð5Þ

on V that approximates (1) can be obtained by

Galerkin projection as

XVðrÞ ¼ PVXðrÞ,

where the projection operator from H to V is defined as

PV w¼ u0þPS(w� u0), for w2H. Since the i-th

component of PVw is {PVw}i¼hw� u0, �iiþ u0i, the

components of the vector field of the Galerkin system

are given by

fPVXðrÞgi ¼ XðrÞ � u0,�i
� �

þ u0i:

Figure 1 provides a graphical illustration of the

projection operator PV. The Galerkin projection is

optimal in the sense that it minimises kXV(r)�X(r)k.

Since XV(r)�X(r) ? S, one can write

hXVðrÞ � XðrÞ,�ii ¼ 0, i ¼ 1 . . .N: ð6Þ

International Journal of Control 1477
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Substituting r¼ u0þ aj �j into (6) above, and using (5)

and orthogonality, one obtains the set of non-linear

ODEs

_ak ¼ hXðrÞ,�ki, k ¼ 1 . . .N: ð7Þ

At this stage, the effect of actuation is still buried in the

boundary conditions (3), and does not appear expli-

citly in (7). In the next section we will investigate the

method proposed to remedy this situation.

4. Actuation mode

Let S ¼ spanf�ig
N
i¼1 be a set of N POD modes obtained

from unforced snapshots (that is, for �¼ 0) using the

POD procedure described in x 3. These modes will be

called baseline POD modes. Let fðuk, �kÞg
M
k¼1 � R

2
�R

be an ensemble of actuated flow snapshots and

corresponding control signals, uk¼ u(x, tk), �k¼ �(tk).
As noted above, u0, the mean value of the baseline

case, is assumed to have been removed from {uk}.

Define the innovation as

~uk ¼ uk � PSuk:

An optimisation problem on the Hilbert space H can

be defined as finding

 ? ¼ argmin
 2H

Efk ~uk � �k k
2g: ð8Þ

The element  *2H will be called the actuation mode.

Since the squared norm of the velocity represents the

energy contained in the flow, among all augmented

POD expansions in the form

uðx, tÞ 	 u0ðxÞ þ
XN
i¼1

aiðtÞ�iðxÞ þ �ðtÞ ðxÞ ð9Þ

where the input � directly appears as the coefficient of
 , the choice  ¼ * is optimal, in the sense that the
energy not captured by this expansion achieves its
minimum for  ¼ *. The theorem below summarises
the main result of this section, which is the solution to
the problem posed in (8).

Theorem 1: Let J( ) :¼E [kũk� �k k
2] . Then:

(i) The minimum value of the function J is achieved
at  � ¼ E½�k ~uk�=E½ð�kÞ

2
�;

(ii)  *2H;
(iii)  *?�i for i¼ 1, . . . ,N.

Proof:

(i) Note that

Jð Þ ¼ E k ~uk � �k k
2

� �
¼ E k ~ukk

2 � 2�kh ~uk, i þ ð�kÞ
2
k k2

� �
:

Since J is quadratic in  with positive leading
coefficient E½�2k �, it has a unique minimum.
Computing the first variation of J with respect
to �2H

d

d�

����
�¼0

Jð þ ��Þ

¼
d

d�

����
�¼0

E k ~ukk
2 � 2�kh ~uk, þ ��i þ �

2
kk þ ��k

2
� �

¼ E �2�kh ~uk, �i þ �
2
kh þ ��, �i þ �

2
kh�, þ ��i

� ���
�¼0

¼ E �2�kh ~uk, �i þ ð�kÞ
2
h , �i þ �2kh�, i

� �
¼ E �2�kh ~uk, �i þ 2�2kh , �i

� �
¼ E h�2�k ~uk þ 2ð�kÞ

2 , �i
� �

¼ hE �2�k ~uk þ 2�2k 
� �

, �i:

For  to be an extremum of J its first variation
must vanish 8�2H. Therefore, E½�2�k ~ukþ
2�2k 

�� ¼ 0 and thus, by linearity of E,
 � ¼ E �k ~uk½ �=E �2k

� �
.

(ii) The fact that  *2H follows from the fact that
E is linear, �k ũk2H and E [(�k)

2]2R.
(iii) To show that  * ? �i for i¼ 1 . . . N, first note

that ũk ? S for all k¼ 1 . . . N. For any choice
of i, k

h ~uk,�ii ¼ hu� PSu,�ii ¼ hu�
Xn
j¼1

hu,�ji�j,�ii

¼ hu,�ii �
Xn
j¼1

hu,�jih�j,�ii ¼ 0:

S

V=u0+S

u0

r

X(r)

−u0

u0

XV(r)

Figure 1. Illustration of Galerkin projection from H to V.

1478 C. Kasnakoğlu et al.
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8 Then, for any i, using linearity of E and the

inner product, it follows that

h �,�ii ¼
E �k ~qk½ �

E �2k
� � ,�i

* +
¼

E �k ~qk,�i
� �� �

E �2k
� � ¼

E 0½ �

E �2k
� � ¼ 0

that is,  *?S. œ

Remark 1: In the above derivations, it is implicity
assumed that the subspace S ¼ spanf�ig

N
i¼1 captures a

significant portion of the baseline energy, so that the
innovation ũk can be attributed almost completely to
the effect of the input.

Remark 2: One might notice similarities between the
cost function in (8) and the cost function used to
compute POD modes in x 3. While in both cases the
goal is to minimise the energy neglected by the
expansion, the major difference of the proposed
method lies in the fact that in (12) the system input �
appears directly as a coefficient of the actuation
mode  . This differs from other approaches found in
the literature that rely on obtaining the actuation
modes from a classical POD expansion on the
innovations. For those cases, the modal coefficients
have no direct relationship to the system input �, and
additional methods such as stochastic estimation or
weak formulation must be applied to relate � to the
modal coefficients.

4.1. Extension to multiple modes

It is possible to extend the above procedure to obtain
actuation modes for additional inputs or for deriva-
tives of the input. For instance, assume the derivative
of the input _�ðtÞ is available. Let us be given an
ensemble of actuated flows fukg

m
1 � R

2 and an ensem-
ble of actuation values f�kg

m
1 � R together with their

derivatives f _�kgm1 � R. As in the previous section we
assume that the baseline mean value u0 has been
removed from fukg

m
1 . The actuation mode  1 for the

input � is first obtained using the procedure outlined in
the previous section, that is,  1¼ arg min 2H E
(kũk� �k  k) Define

�u :¼ uk � PS1
uk,

where S1 :¼ span{�1, . . . ,�n,  1}. Note that, since in
general k 1k 6¼ 1, one needs to use the projection
operator in the form

P 1
uk ¼ k 1k

�1huk, 1i 1:

The procedure as described in x 4 can be applied with ŭ
replacing u to obtain an actuation mode for _� as

 2 ¼ argmin
 2H

E k �uk � _�k k
� �

with  2 ? S1. This yields an actuated POD expansion

of the form

uðx, tÞ 	 u0ðxÞ þ
XN
i¼1

aiðtÞ�iðxÞ þ �ðtÞ 1ðxÞ þ _�ðtÞ 2ðtÞ:

Obviously, the procedure can be repeated as needed to

incorporate Nin� 1 derivatives of the input signal to

obtain the expansion

uðx, tÞ 	 u0ðxÞ þ
XN
i¼1

aiðtÞ�iðxÞ þ
XNin

i¼1

�ði�1ÞðtÞ iðxÞ:

Remark 3: The computational cost of adding actua-

tion modes to the POD expansion is of interest. Given

M snapshots and N baseline modes, computing a single

innovation vector ũk¼ uk�PSuk requires N inner

products. Computing M innovations is then of

complexity OðNMÞ. The complexity of computing the

actuation mode from (14) is clearly OðMÞ. Therefore,

the complexity of computing one actuation mode is

OðNMÞ þ OðMÞ ¼ OðNMÞ. It is easy to see that this is

also the cost of each additional mode to be added

following the procedure described above.

5. Obtaining the reduced-order model

Consider again the dynamical system (1), and let

V1¼ u0þ span{�1, . . . ,�n,  1}. A dynamical system

_r ¼ XV1
ðrÞ ð10Þ

on V1 that approximates (1) can be obtained by

Galerkin projection as

XV1
ðrÞ ¼ PV1

XðrÞ:

The Galerkin projection is optimal in the sense that it

minimises kXV1
(r)�X(r)k. Since XV1

(r)�X(r) ? V1,

one can write

hXV1
ðrÞ � XðrÞ,�ii ¼ 0, i ¼ 1 . . .N ð11Þ

Substituting r¼ u0þ aj�jþ � into (11) yields

_aj�j þ _� � XðrÞ,�k
� �

¼ 0

_aj �j,�k
� �

þ _�  ,�k
� �

� XðrÞ,�k
� �

¼ 0

_ak �k,�kh i � XðrÞ,�k
� �

¼ 0

and thus

_ak ¼ hXðrÞ,�ki: ð12Þ

5.1. Special case: quadratic dynamics

Quadratic dynamics

XðqÞ :¼ Cþ LðqÞ þQðq, qÞ, ð13Þ

International Journal of Control 1479



D
ow

nl
oa

de
d 

B
y:

 [T
Ü

B
İT

A
K

 E
K

U
A

L]
 A

t: 
08

:5
3 

1 
Ju

ly
 2

00
8 where C is a constant term, L(q) a linear term and

Q(q, q) a quadratic term in q, are of interest since many
flow systems such as Burger’s and Navier–Stokes
equations can be represented in this form. Following
the procedure outlined in the previous section, we
derive the reduced order system for (13), as this will be
useful for the examples presented the following section.
Substituting X from (13) into (12) yields

_ak ¼ hXðrÞ,�ki

¼ hCþ Lðu0 þ ai�i þ � Þ þQðu0 þ ai�i þ � , u0

þ aj�j þ � Þ,�ki

¼ hC,�ki þ hLðu0Þ,�ki þ hLð�iÞ,�kiai þ hLð Þ,�ki�

þ hQðu0, u0Þ,�ki þ hQðu0,�jÞ,�kiaj

þ hQðu0, Þ,�ki� þ hQð�i, u0Þ,�kiai

þ hQð�i,�jÞ,�kiaiaj þ hQð�i, i,�kiai�

þ hQð , u0Þ,�ki� þ hQð ,�iÞ, iai�

þ hQð , Þ,�ki�
2

¼ Fk þ G1ikai þ g2k� þH1ijkaiaj þH2ikai� þ h3k�
2,

ð14Þ

where

Fk ¼ hC,�ki þ hLðu0Þ,�ki þ hQðu0, u0Þ,�ki

G1ik ¼ hLð�iÞ,�ki þ hQðu0,�jÞ,�ki þ hQð�i, u0Þ,�ki

g2k ¼ hLð Þ,�ki þ hQðu0, Þ,�ki þ hQð , u0Þ,�ki

H1ijk ¼ hQð�i,�jÞ,�ki

H3ik ¼ hQð�i, Þ,�ki þ hQð ,�iÞ,�ki

h3k ¼ hQð , Þ,�ki:

System (14) can be represented in compact form as

_a ¼ Fþ G1aþ g2� þH1ða, aÞ þH2ða, �Þ þ h3�
2: ð15Þ

In case an input mode  2 for the derivative of the input
_� is present, one obtains the reduced-order model

_a ¼ Fþ G1aþ g2� þ g3 _� þH1ða, aÞ þH2ða, �Þ

þ h3�
2 þH4ða, _�Þ þ h5 _�2 þ h6� _�: ð16Þ

The structure of the model for higher-order derivatives
of the input is obvious, and thus not given explicitly.

6. Illustrative example for comparison with another

method

In this section, we consider a simple illustrative
example of the 2-dimensional heat equation to
present a comparison with a previously proposed
input separation method. Although the heat equa-
tion belongs to the realm of flow control problems,

as it describes conduction, it is considered here to

provide the simplest (yet meaningful) comparison

with the sub-domain method. A more advanced

flow problem will be presented in x 7. The method

that we will use for comparison is the sub-domain

separation method described in Efe and Ozbay

(2003a, b, 2004). The main reason behind this

choice lies in the initial motivation of this study,

which has been guided by a research effort on

cavity flow control (Samimy et al. 2007), where the

subdomain separation method was applied in the

development of reduced-order modelling for feed-

back control design. Here, the comparison on the

heat equation will be performed in open-loop, as

the presence of feedback control tends to reduce the

effect of the modelling uncertainties.
Consider the 2D heat equation

@u

@t
¼ �

@2u

@x2
þ
@2u

@y2

� 	
ð17Þ

defined on a square domain �¼ [0, 1]� [0, 1], where

�¼ 4. The initial condition is given as

uðx, y, 0Þ ¼ 16xðx� 1Þyðy� 1Þ

while the boundary conditions are specified as in Efe

and Ozbay (2003a, b, 2004)

uð0,0, tÞ ¼ �ðtÞ, uð1,y, tÞ ¼ 0, uðx, 1, tÞ ¼ 0,

@u

@t
ð0,y, tÞ ¼�

@2u

@y2
ð0,y, tÞ,

@u

@t
ðx, 0, tÞ ¼�

@2u

@x2
ðx, 0, tÞ:

9>=
>;
ð18Þ

Note that (17) is in the same form _u ¼ XðuÞ used in x 5,

with the operator X ¼ �ðð@2=@x2Þ þ ð@2=@y2ÞÞ.

6.1. Reduced order model for the proposed method

As described in x 4, we first obtained an actuated POD

expansion of the form (9). Using N¼ 5 in the

expansion (9) is shown to preserve more than 99% of

the energy. Snapshots were taken from MATLAB

simulations with the following parameters: spatial grid

size was selected as 25� 25 points, the time between

adjacent snapshots was chosen as 1 millisecond, the

total number of snapshots was taken as 1001,

whereas the total simulation time was selected as 1

second. A chirp signal actuation of the form

�(t)¼ sin(2�10t3) was used to build the input mode  
from snapshots of the innovation process. The

reduced-order model was then obtained, as described

in x 5, in the form

_ai tð Þ ¼ Cþ LaiðtÞ þ Lin�ðtÞ, ð19Þ

1480 C. Kasnakoğlu et al.
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8 where Ci ¼ h� ð@

2=@x2Þu0 þ ð@
2=@y2Þu0Þ,�ii, and

Lij ¼ �
@2

@x2
�i þ

@2

@y2
�i

� 	
,�j


 �
,

Lin, i ¼ �
@2

@x2
 þ

@2

@y2
 

� 	
,�i


 �
:

6.2. Reduced order model for sub-domain method

Another approach proposed in the literature for
input separation in model reduction is based on a
special treatment of the boundary elements of
spatiotemporally discretised PDEs. As proposed
herein, the method in question, referred to as
sub-domain separation, relies upon the ideas that
the finite element representation accurately recon-
structs the dynamics of the flow, and second, the
process under investigation is composed of coherent
modes that are achievable after a suitable decom-
position scheme like POD. Here, we give only a brief
overview of the methodology, as applied to the
2-dimensional heat equation, and refer the reader
interested in the technical details to Efe and Ozbay
(2003a, b, 2004).

Consider the 2D heat equation given by (17) and
assume the sole excitation is of Dirichlét type at the
corner (x, y)¼ (0, 0). Let

uðx, y, tÞ 	 u0ðx, yÞ þ
XN
i¼1

aiðtÞ�iðx, yÞ ð20Þ

be the POD approximation of the solution to the given
PDE. Naturally, the prescribed solution given above is
also valid at the boundaries and this leads to the
following observation

XN
i¼1

_aiðtÞ�iðx, yÞ ¼ �
XN
i¼1

aiðtÞ	iðx, yÞ

where 	iðx, yÞ ¼ ð@
2�i=@x

2Þðx, yÞ þ ð@2�i=@y
2Þðx, yÞ.

Taking the inner product of both sides with �k(x, y)
yields

_ak ¼ �
XN
i¼1

aiðtÞh�kðx, yÞ, 	iðx, yÞi,

where k¼ 1, 2, . . . ,N. The representation above con-
tains the effect of the boundary excitations implicitly.
To remedy this situation, a subdomain �2 in which the
boundary excitation directly affects the flow is
identified, where �2 is small enough so that 	k(x, y)
remains essentially constant for (x, y)2�2. Then, the

domain is partitioned as �¼�2[�\�2 and the

inner product is computed separately over the two

domains as

h�kðx, yÞ, 	iðx, yÞi� ¼ h�kðx, yÞ, 	iðx, yÞi�2

þ h�kðx, yÞ, 	iðx, yÞi�n�2
: ð21Þ

This basically corresponds to repartitioning the

domain by changing the limits of a Riemann integral

computed over non-overlapping subdomains embody-
ing the domain of the original integral when they are

united. For the 2D heat equation, this approach yields

the following model:

_akðtÞ ¼ AaðtÞ þ B�ðtÞ,

where a(t)¼ (a1(t), a2(t), . . . , aN(t))
T and the matrices A

and B are computed as

Aki ¼ � h�kðx, yÞ, 	iðx, yÞi� � h�iðx, yÞ, 	kðx, yÞi�2

� �
,

Bk ¼ �	kðx, yÞjðx, yÞ¼ð0, 0Þ:

6.3. Simulation results

Numerical simulations for both reduced-order models
were carried out using MATLAB PDE Toolbox, with

a uniform spatial grid of 50� 50 points and a time

step of 0.01 seconds, for a total of 1 second. The

purpose of the simulations is to validate and compare
both reduced-order models (19) and (22) in their

ability to reconstruct unforced and forces solutions of

system (17). Snapshots obtained from the solutions of

the unforced system are shown in Figure 2(a),

whereas Figure 2(b) shows the trajectories of the
system under a ramp actuation in the interval [�2, 2].

The mean value of the solution, u0(x, y) and the

baseline modes are shown in Figure 3(a), and the

actuation mode derived using the chirp signal, as

described in Section 6.1, is given in Figure 3(b). Note
that the excitation used to build the model is different

from the one used in the reconstruction of the forced

solution. Finally, the POD modes used to construct

the sub-domain based reduced-order model are shown
in Figure 4. In this case, the data set used to

compute the POD basis is given by the snapshots in

Figure 2(b).
Let us first present a comparison of the modal

coefficients ai(t)¼hu(x, y, t), �i(x, y)i obtained by
projecting directly the snapshots onto each of the

two POD bases under consideration (that is, the one

derived from baseline and the one derived from

actuated solution) to those obtained by solving the

corresponding Galerkin system, denoted by aG(t).
The result of the comparison is shown in Figure 5.
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The norm of the error ka(t)� aG(t)k for the

reconstruction of the unforced solution is shown in

Figure 5(a) and (b) for both methods, whereas the

remaining plots in the figure concern the reconstruc-

tion of the forced solution. It can be seen that for

the proposed method the time histories of the error

assume reasonably small values, which suggests good

agreement between the full-order and the reduced-

order model. For the sub-domain method the error is

much larger compared to the proposed method, but

the difference for the baseline case is much more

pronounced. This can be explained as a result of the

fact that a set of snapshots of the actuated solution

has been used to build the POD basis, and this

Figure 2. Snapshots of solutions of the 2D heat equation: (a) unforced solution; (b) forced solution.

Figure 3. Averaged solution u0(x, y), baseline POD modes �i(x, y) and actuation mode  (x, y) derived using the proposed
method: (a) averaged solution u0 and baseline modes �i; (b) actuation mode  .

Figure 4. POD modes �i obtained using the sub-domain
method.

1482 C. Kasnakoğlu et al.
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compromizes the capability of the model to described
the baseline case. A symmetric result (not shown
here) would be obtained if one uses the baseline
snapshots as a data set for the construction of model
(22). The reconstruction of the actuated flow is
computed by solving (19) and (22) with the given
input, and then using the expansions (9) and (20).
The results are shown in Figures 6(a) and (b). It can
be seen that the proposed method does a much
better job in reconstructing the flow during the
transient behaviour as compared to the sub-domain
method. Also, the reconstruction error reaches a
steady state in about 0.03 seconds for the proposed
method, whereas it takes about 0.364 seconds for the
error obtained from the sub-domain model to
decrease to a comparable value.

7. Example: boundary control of 2D incompressible

Navier–Stokes equation

To illustrate the usefulness and effectiveness of the

input separation technique proposed for control

design, we consider an example of boundary control

of the 2-dimensional Navier–Stokes equation

@U

@t
þ ðU � rÞU ¼ rpþ 
�U ð23Þ

subject to the incompressibility condition r �U¼ 0,

where the parameter 
 is the viscosity, often expressed

as 
¼Re�1, where Re is the Reynolds number. Let

U(x, y, t)¼ (u(x, y, t) v(u, x, t))2R
2 denote the flow

variable, where u and v are the components in the

longitudinal and latitudinal directions, respectively.
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Figure 5. Norm of the error between the actual modal coefficients and those obtained solving
the Galerkin model for each method: (a) proposed, unactuated; (b) sub-domain, unactuated; (c) proposed, actuated;
(d) sub-domain, actuated.
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In the given coordinates, equation (23) reads as

@u

@t
þ
@u

@x
uþ

@u

@y
v ¼

@p

@x
þ 


@2u

@x2
þ
@2u

@y2

� 	

@v

@t
þ
@v

@x
uþ

@v

@y
v ¼

@p

@y
þ 


@2v

@x2
þ
@2v

@y2

� 	
:

9>>>>=
>>>>;

ð24Þ

In the considered example, the viscosity is set to

¼ 0.1, and the spatial domain is defined as
�¼ [0, 1]� [0, 1]. The initial conditions u(x, y, 0)¼
v(x, y, 0)¼ 0 and the boundary conditions

uðx, 0, tÞ ¼ 1

vðx, 0, tÞ ¼ 0

uðx, 1, tÞ ¼ 1

vðx, 1, tÞ ¼ 0

uð0, y, tÞ ¼ 0

@v

@x
ð0, y, tÞ ¼ 0

uð1, y, tÞ ¼

0, y 2 ½0, 0:42Þ;

�ðtÞ, y 2 ½0:42, 0:58�;

0, y 2 ð0:58, 1�:

vð1, y, tÞ ¼ 0

8>><
>>:

are applied, where � is the control input. The
solution of the system originating from the given
initial condition and subject to the boundary
conditions given above, where no � is set to
zero, are shown in Figures 7(a) and (b). It can be
noted that the trajectories of the unforced system
converge to a steady state. Snapshots of the

unforced solution were used to derive the baseline

POD expansion, where the number of baseline

modes selected as N¼ 3 can be shown to preserve

about 99% of the energy. The baseline POD modes

are shown in Figures 8(a) and (b). The actuation

mode  was obtained using snapshots of the

solution of the forced system, obtained using a

chirp signal, that is, an oscillatory excitation of

increasing frequency. The solution of (24) under the

given forcing is shown in Figure 9, while the

actuation mode computed from these snapshots is

given in Figure 10. It was observed that different

kinds of input excitation produced results for the

actuation modes which are very similar to the one

shown in the figure.
Following the procedure outline in x 5, one obtains

the Galerking system for system (24) as

_a ¼ Cþ Laþ Lin� þQða, aÞ þQin�
2 þQaina�,

where the constant term is given by

Ci¼

�u0
@

@x
u0þ


@2

@x2
u0þ

@2

@y2
u0

� 	
� v0

@

@y
u0

�u0
@

@x
v0þ


@2

@x2
v0þ

@2

@y2
v0

� 	
� v0

@

@y
v0

2
66664

3
77775,�i

* +

Figure 6. Snapshots of the error between the solution of the heat equation and its reconstruction using reduced-order models:
(a) model with proposed input separation method; (b) model with sub-domain separation method.
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D
ow

nl
oa

de
d 

B
y:

 [T
Ü

B
İT

A
K

 E
K

U
A

L]
 A

t: 
08

:5
3 

1 
Ju

ly
 2

00
8 

and the linear and quadratic terms read

respectively as

Remark 4: In the above derivations, the pressure

term has been neglected, which is standard practice

Lij ¼

� �u, j
� � @

@x
u0 þ 


@2

@x2
�u, j
� �

þ
@2

@y2
�u, j
� �� 	

� �v, j
� � @

@y
u0

� �u, j
� � @

@x
v0 þ 


@2

@x2
�v, j
� �

þ
@2

@y2
�v, j
� �� 	

� �v, j
� � @

@y
v0

2
6664

3
7775,�i

* +

Lin, i ¼

� u0
@

@x
 u �  v

@

@y
u0 þ 


@2

@x2
 u þ

@2

@y2
 u

� 	
�  u

@

@x
u0 � v0

@

@y
 u

� u0
@

@x
 v �  v

@

@y
v0 þ 


@2

@x2
 v þ

@2

@y2
 v

� 	
�  u

@

@x
v0 � v0

@

@y
 v

2
6664

3
7775,�i

* +

Qijk ¼

� �u, k
� � @

@x
�u, j
� �

� �v, k
� � @

@y
�u, j
� �

� �u, k
� � @

@x
�v, j
� �

� �v, k
� � @

@y
�v, j
� �

2
6664

3
7775,�i

* +

Qin, i ¼

�  v
@

@y
 u �  u

@

@x
 u

�  v
@

@y
 v �  u

@

@x
 v

2
6664

3
7775,�i

* +

Qain, ij ¼

� �v, j
� � @

@y
 u � �u, j

� � @
@x
 u �  u

@

@x
�u, j
� �

�  v
@

@y
�u, j
� �

� �v, j
� � @

@y
 v � �u, j

� � @
@x
 v �  u

@

@x
�v, j
� �

�  v
@

@y
�v, j
� �

2
6664

3
7775,�i

* +

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð25Þ

Figure 7. Snapshots of the solution of the unforced Navier-Stokes equation: (a) Snapshots of u(x; y; t); (b) Snapshots of
v(x; y; t).
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when obtaining Galerkin models for Navier–Stokes

equations. This is either justified theoretically from the

boundary conditions or numerically from the CFD

simulations. We have applied the latter method by
confirming that the effect of the projected pressure

terms are indeed negligible. If this is not the case, it

is still possible to include the pressure term

without changing the model structure (see Noack

et al. (2005)).

The control objective selected for this study consists

of regulating the trajectories of the systems to a desired
2D flow velocity profile Ud(x, y)¼ (ud(x, y) vd(x, y)).

Since the trajectories generated by the Galerkin system

always lie in the set S¼ span{�i,  }, the objective is

only feasible if Ud2S.
1 Keeping this in mind, we select

a desired profile as shown in Figure 11. Note that this

Figure 9. Snapshots of the solution of the actuated Navier–Stokes equation: (a) snapshots of u(x; y; t): (b) snapshots of v(x; y; t).

Figure 8. Baseline POD modes for the Navier-Stokes equation: (a) POD modes of u(x; y; t): (b) POD modes of v(x; y; t).

Figure 10. Actuation mode  (x, y) for the Navier–Stokes
equation. Left plot: u-component. Right plot: v-component.

1486 C. Kasnakoğlu et al.
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8 is a non-equilibrium state of the system in absence of

an appropriate control action.
From the desired profile Ud one obtains the

corresponding vector of desired modal coefficients

ad ¼ ðadi Þ
N
i¼1 as adi¼hUd, �ii by projection. Assuming

there exists �d such that

Cþ Lad þ Lin�d þQðad, adÞ þQin�
2
d þQainad�d ¼ 0

one can define the change of coordinates ã¼ a� ad,
~� ¼ � � �d which yields the error system

_~a ¼ ~L ~aþQð ~a, ~aÞ þ ~Lin ~� þQin�
2 þQain ~a ~�, ð26Þ

where

~L ¼ LþQð�, adÞ þQðad, �Þ þQain�d

~Lin ¼ Lin þ 2Qin�d þQainad:

For ~� ¼ 0 system (26) has an equilibrium at ã¼ 0,
corresponding to the desired reference state.
Therefore, all that is left to be done is to stabilise the
equilibrium at the origin. For this study, this has been
accomplished by employing a standard LQR control
on the linearised system

_~a ¼ ~L ~aþ ~Lin ~�

obtained by minimising the objective function

Jð ~�Þ ¼

Z 1
0

~aTQ ~aþ ~�TR ~�
� �

dt

with Q¼ IN, and R¼ 0.1. This yields a feedback
controller ~� ¼ K ~a with K¼ [�0.7972 �0.0133 0.0914]
which places the closed-loop eigenvalues at [�174.93
�8.85 �33.46], thereby achieving the desired stabilisa-
tion. The gains were computed using the lqr command
in MATLAB. The controller expressed in the original
coordinates is given by �¼ �dþK a�K ad.

Remark 5: Note that control design is based on the
Jacobian linearisation of the Galerkin system, and uses
feedback from the modal coefficients ai¼hU,�ii.
While it is possible to consider more sophisticated
control design methodologies, including observer-
based design, here a choice has been made to keep
the development of the controller as simple as
possible and concentrate the attention on the proposed
separation method.

Figures 12(a) and (b) show the result of the
implementation of the control law in the original
Navier–Stokes CFD simulation, while Figure 13
compares the steady-state of the closed-loop system
with the desired profile. It can be seen that the

Figure 12. Snapshots of the solution of the controlled Navier–Stokes equation: (a) snapshots of u(x, y, t); (b) snapshots
of v(x, y, t).

Figure 11. Reference profile for flow velocity.
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majority of the error is concentrated in the region
where the input is applied. This is to be expected
since the desired profile selected was a non-equili-
brium state under no forcing input. However, in
order to render this profile an equilibrium and
stabilise it, a feedforward control effort �d must be
applied. Apart from the regions where the external
excitation is generated, it can be seen that the steady-
state is very close to the desired profile and presents
a small residual error.

7.1. Control design using a two input mode POD

based model

Next, a control design based on a reduced order model

obtained from a POD expansion with two actuation

modes is investigated. For this purpose, one first needs

to compute the actuation mode  2 for the derivative of

the input, _�. This is again accomplished using the

actuated snapshots in Figure 9, based on the innova-

tions computed as differences from span{�i,  }, as

described in x 4.1. The result of the computation is

shown in Figure 14.
The corresponding Galerkin system is of the

form

_a ¼ Cþ Laþ Lin� þ L2in� þQða, aÞ þQin�
2 þQ2in _�2

þQaina� þQ2aina _� þQinin2� _�,

where C, Lin, Q, Qin, Qain are given in (25) and

As described in x 5, with a shift of coordinates the

above can be transformed into

_~a ¼ ~L ~aþQð ~a, ~aÞ þ ~Lin ~� þ ~L2in
_~� þQin ~�2

þQ2in
_~�2 þQain ~a ~� þþQain2 ~a _~� þQinin2 ~� _~�

and then linearised into the state-space form

_~a ¼ ~L ~aþ ~Lin ~� þ ~L2in
_~�:

L2in, i ¼

� u0
@

@x
 2u �  2v

@

@y
u0 þ 


@2

@x2
 2u þ

@2

@y2
 2u

� 	
�  2u

@

@x
u0 � v0

@

@y
 2u

� u0
@

@x
 2v �  2v

@

@y
v0 þ 


@2

@x2
 2v þ

@2

@y2
 2v

� 	
�  2u

@

@x
v0 � v0

@

@y
 2v

2
66664

3
77775,�i

* +

Q2in, i ¼

�  2v
@

@y
 2u �  2u

@

@x
 2u

�  2v
@

@y
 2v �  2u

@

@x
 2v

2
6664

3
7775,�i

* +

Q2ain, ij ¼

� �v, j
� � @

@y
 2u � �u, j

� � @
@x
 2u �  2u

@

@x
�u, j
� �

�  2v
@

@y
�u, j
� �

� �v, j
� � @

@y
 2v � �u, j

� � @
@x
 2v �  2u

@

@x
�v, j
� �

�  2v
@

@y
�v, j
� �

2
6664

3
7775,�i

* +

Qinin2, i ¼

�  2, u

� � @
@x

 1, u

� �
�  1, u

� � @
@x

 2, u

� �
�  2, v

� �
x, yð Þ

@
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Figure 13. Steady state of controlled flow vs. reference
profile.
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8 The above can be written in the following standard

state space form

_~a
_~�

" #
¼

~L ~Lin

0 0

" #
~a

~�

� 
þ

~L2in

1

" #
�2

where �2 :¼ _~� is the overall input. An LQR design on

this system yields a control of the form �2 ¼ K colf ~a, ~�g
where K¼ [�0.1237 0.0303 0.0061 1.1650].

This control places the system poles at

[�174.7179 �31.2961 �6.7433 �1.1953], thus

achieving the desired regulation. Note that the control

law can be interpreted as a dynamic controller, since

letting �2 ¼ ½K1k2�colf ~a, ~�g one obtains

_~� ¼ k2 ~� þ K1 ~a:

Figures 15(a) and (b) show the result of the imple-

mentation of this control in the original Navier–Stokes

CFD simulation. Figure 16 compares the final state

reached, to the desired profiles. As it was the case for

the single actuation mode based control of the previous

section, the region of the spatial domain in proximity

to the actuation contains the largest portion of the

regulation error in steady state. Overall, the results are

almost identical to those provided by a reduced-order

model with a single actuation mode. As a matter of

fact, if one is to compare the results obtained from the

two actuation mode based implementation to the one

actuation mode based implementation, it is difficult to

claim that, for the considered example, the two-modes

approach provides a noticeable improvement over the

other. This could be expected, since the actuation mode

 2, as seen in Figure 14, is smaller in magnitude

compared to the actuation mode for � (see Figure 10).

The reason for this behaviour could be traced to the

fact that the trend of the input signal may not be as

important as its actual value for the dynamics of the

system given in this problem. It could also be explained

as the property of the input mode  to capture and

reconstruct most of the effect of the actuation.

Consequently, when the new innovations are built as

differences from span{�i, }, the contribution of  2 is

minimal. Comparing the tracking errors in steady-state

for the two models (see Figures 13 and 16), it can be

noted that the one-mode approach actually yields a

somewhat smaller error in the actuation region, which

prompts the question whether the inclusion of an

additional model is necessary. At present, this is left to

be evaluated, on a case-by-case basis in view of the fact

that the two-mode approach obviously requires

Figure 15. Snapshots of the solution of the controlled Navier–Stokes equation. Model with two actuation modes: (a) snapshots
of u(x, y, t); (b) snapshots of v(x, y, t).

Figure 14. Actuation mode  2(x, y).
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a higher computational cost, quantifiable in the

computation of a second set of innovations, a second

optimisation procedure, and the implementation of a

dynamic controller in place of a static one. While, for

the given example, the augmentation with an addi-

tional mode does not yield an improvement, the

situation could be different for more complex

dynamics with more intricate interaction with the

actuation. Thus, it could still be beneficial to have a

systematic methodology for an extension beyond the

basic one-mode approach, if needed.

8. Concluding remarks

In this paper, an input separation method for the

boundary control of flow problems was proposed.

First a POD expansion of the unforced baseline case

was given. This was then augmented with an optimally

chosen actuation mode, which minimises the energy

not captured by the augmented set of modes. Then, a

reduced-order Galerkin model was derived for this

expansion, in which the control input enters the

dynamics directly. This reduced-order model was

then compared with the one obtained using a sub-

domain separation method, which is a previously

developed technique for input separation. The useful-

ness of the proposed method was illustrated by a flow

control example regarding the boundary control of 2D

incompressible Navier–Stokes equations. A controller

was designed to achieve a desired spatial profile, using

both a model comprising a single actuation mode and

one using two actuation modes. It was seen that, in

both cases, the reduced-order model-based control

laws achieve the desired reference profile in steady-

state with small residual error in most of the domain.
The main goal of the study is to obtain a reduced-

order model in which the input enters the dynamics

explicitly. It is known that the POD modes are

optimal, in the sense that the energy neglected by

projection onto the subspace spanned by the modes is

minimised on average. This notion of optimality,

however, does not enforce the boundary conditions

per se, and the approximation of the flow field at the

boundaries will be as good as it is elsewhere in the

spatial domain, regardless of the fact that POD modes

are computed using snapshots of the actuated flow of

the baseline unforced flow. In the approach presented

here, the effect of the input is added a posteriori via an

actuation mode, for which the chosen optimality

condition requires the input to appear as the modal

coefficient. Unlike the standard POD expansion,

whose coefficients are computed through projections,

the contribution of the actuation term is zero under no

forcing, thus the augmented POD expansion reduces

exactly to the baseline case. Also, the considered

expansion forces all the baseline modes to vanish at

any point on the boundary directly influenced by the

input where the actuation mode assumes the value one.

Hence the augmented expansion at that point will be

exactly equal to the value of the input.
It is also worth noting that, although the actuation

mode has been obtained from an unconstrained

optimisation, one might have reason to impose certain

constraints on the problem. For instance, constraints

including inner products can be imposed on the

actuation mode to make the coefficient computation

process similar for both the baseline and actuation

modes. We plan on investigating such approaches as

part of our future work.
Perhaps the significance and value of the study can

be appreciated further if we state that the motivation

for this study has arisen from an experimental cavity

flow control problem (Samimy et al. 2007). The

technique described here was used to develop

reduced-order models and feedback controller which

achieved comparable or better results than their

predecessors in suppressing cavity tone oscillations

(Caraballo et al. 2007). For the same problem,

methods for further simplification of Galerkin

models have been investigated to reveal structural

properties to be exploited in more advanced control

design (Kasnakoglu and Serrani 2007).
Future directions of this work include extending

the proposed method by including actuation modes for

multiple inputs, enforcing different constraints on the

optimisation problem and applying the methodology

to other flow control problems of interest.

Figure 16. Steady state of controlled flow vs. reference
profile for the model with two actuation modes.
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Note

1. If Ud =2S, one can attempt to drive the system to
PSUd2S.
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