
Soft Comput (2009) 13:23–29
DOI 10.1007/s00500-008-0289-9

ORIGINAL PAPER

ADALINE based robust control in robotics: a Riemann-Liouville
fractional differintegration based learning scheme

Mehmet Önder Efe

Published online: 13 March 2008
© Springer-Verlag 2008

Abstract This paper presents an approach to improve the
performance of intelligent sliding model control achieved
by the use of a fundamental constituent of soft computing,
named Adaptive Linear Element (ADALINE). The proposed
scheme is based on the fractional calculus. A previously con-
sidered tuning scheme is revised according to the rules of
fractional order differintegration. After a comparison with
the integer order counterpart, it is seen that the control sys-
tem with the proposed adaptation scheme provides (1) better
tracking performance, (2) suppression of undesired drifts in
parameter evolution and (3) a very high degree of robust-
ness and insensitivity to disturbances. The claims are justi-
fied through some simulations utilizing the dynamic model
of a two degrees of freedom (DOF) direct drive robot arm and
overall, the contribution of the paper is to introduce the frac-
tional order calculus into a robust and nonlinear control prob-
lem with some outperforming features that are absent when
the integer order differintegration operators are adopted.

Keywords Fractional adaptation laws · Adaptive sliding
mode control

1 Introduction

The measure of similarity for determining the activation
degree of a neuron in a neural network structure or the crisp
decision in a fuzzy system are all performed by Adaptive Lin-
ear Elements (ADALINE), which are the building blocks of
computationally intelligent systems, as discussed in detail by
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Haykin (1994) and Jang et al. (1997). The research on these
structures dates back to the McCulloch-Pitts neuron in 1940s.
Although the structure was used in a wide scope of applica-
tions in different names, the essence of the problem has been
the design of the learning by ADALINEs. Given a task to be
accomplished, the process describing the best evolution of
the adjustable parameters is the process of learning, which
is sometimes called adaptation, tuning, adjustment or opti-
mization, all referring to the same reality in the context of soft
computing. Many approaches have been proposed, percep-
tron learning, gradient descent, Levenberg-Marquardt tech-
nique, Lyapunov based techniques are just to name a few, a
good treatment can be found in Jang et al. (1997). A common
feature of all these methods is the fact that the differentiation
and integration, or shortly differintegration, of quantities are
performed in integer order, i.e. D := d

dt for the differentiation
with respect to t and I = D−1 for integration over t in the
usual sense. A significantly different branch of mathematics,
called fractional calculus, suggests operators Dβ with β ∈ �,
(Oldham and Spanier 1974; Podlubny 1998), and it becomes

possible to write D f = D
1
2 (D

1
2 f ). Expectedly, Laplace

and Fourier transforms in fractional calculus are available to
exploit in closed loop control system design, involved with
sβ or ( jω)β generic terms, respectively (Das 2008).

Fractional calculus and dynamics described by Fractional
Differential Equations (FDEs) are becoming more and more
popular as the underlying facts about the differentiation and
integration is significantly different from the integer order
counterparts and beyond this, many real life systems are
described better by FDEs, e.g. heat equation, telegraph equa-
tion and a lossy electric transmission line are all involved
with fractional order differintegration operators. A majority
of works published so far has concentrated on the fractional
variants of the PID controller, which has fractional order dif-
ferentiation and fractional order integration, implemented for
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the control of linear dynamic systems, for which the issues
of parameter selection, tuning, stability and performance are
rather mature concepts utilizing the results from complex
analysis and frequency domain methods of control theory
(See Matignon 1998) than those involving the nonlinear mod-
els (See Momani and Hadid 2004) and parameter changes in
the approaches.

Parameter tuning in adaptive control systems is a cen-
tral part of the overall mechanism alleviating the difficulties
associated with the changes in the parameters that influence
the closed loop performance. Many remarkable studies are
reported in the past and the field of adaptation has become a
blend of techniques of dynamical systems theory, optimiza-
tion, heuristics (intelligence) and soft computing. Today, the
advent of very high speed computers and networked com-
puting facilities, even within microprocessor based systems,
tuning of system parameters based upon some set of obser-
vations and decisions has greatly been facilitated. In Åström
and Wittenmark (1995), an in depth discussion for parameter
tuning in continuous and discrete time is presented. Particu-
larly for gradient descent rule for model reference adaptive
control, which is considered in the integer order in Åström
and Wittenmark (1995), has been implemented in fractional
order by Vinagre et al. (2002), where the integer order inte-
gration is replaced with an integration of fractional order
1.25 and by Ladaci and Charef (2006) where the good per-
formance in noise rejection is emphasized.

In the related literature, the absence of methods designed
and implemented via fractional differintegration in robust
and nonlinear control are visible. The purpose of this paper
is to fill this gap to the extent that covers (1) better robustness
and noise rejection capabilities than those utilizing traditional
integer order operators, (2) non drifting parametric evolution
when the essential factor driving the adaptation scheme is
noise and (3) better tracking capability and better system
response. The three features mentioned above constitute the
major results and contributions of the paper.

This paper is organized as follows: In the next section, we
give the Riemann-Liouville definitions of fractional opera-
tors used throughout the paper, then we introduce the dynam-
ical description of the 2 DOF direct drive robot. In the fourth
section, the sliding mode control via fractional order adapta-
tion is given. Simulation results and the concluding remarks
constitute the last part of the paper.

2 Fractional order derivative and integral

Given 0 < β < 1, Riemann-Liouville definition of the β-th
order fractional derivative operator 0Dβ

t is given by

f (β)(t) = 0Dβ
t f (t)

= 1

�(1 − β)

d

dt

t∫

0

(t − ξ)−β f (ξ)dξ (1)

where �(·) is the Gamma function1 generalizing the factorial
for noninteger arguments. According to this definition, the
derivative of a time function f (t) = tα with α > −1, t ≥ 0
is evaluated as

0Dβ
t tα = �(α + 1)

�(α + 1 − β)
tα−β (2)

Likewise, Riemann-Liouville definition of the β-th order
fractional integration operator 0Iβ

t is given by

0Iβ
t f (t) = 1

�(β)

t∫

0

(t − ξ)β−1 f (ξ)dξ (3)

The material presented in the sequel is based on the above
definitions of fractional differentiation and integration as well
as the following integration rules describing the integral of a
derivative f (β) and a constant c.

0Iβ
t f (β) = f (t) − f (β−1)(0)

tβ−1

�(β)
(4)

0Iβ
t c = c

tβ

�(1 + β)
(5)

This paper adopts Riemann-Liouville definition of the
fractional differintegration operators among the four funda-
mental definitions by Riemann-Liouville, Caputo, Grünwald-
Letnikov and Kolwankar and Gangal, (See Das 2008). The
rationale behind our choice is to approach the stability issues
from a more comprehensible viewpoint. In the next section,
the control problem is described with a thorough description
of the robot dynamics.

3 Plant dynamics and the control problem

In this paper, we consider the following system to visualize
the contributions of this paper. The motivation for choosing
this system is the nonlinear and coupled nature of differential
equations describing the behavior. Furthermore, the adverse
effects of noise, large initial conditions and varying payload
conditions make the control problem a challenge for conven-
tional approaches.

The dynamics of the robot is given by

M(θ)θ̈ + V (θ, θ̇ ) = τ − η (6)

where θ = (θ1 θ2)
T vector of angular positions in radians and

θ̇ = (θ̇1 θ̇2)
T is the vector of angular velocities in rad/sec.

In (6), τ = (τ1 τ2)
T is the vector of control inputs (torques)

1 The Gamma function is defined as �(β) = ∫ ∞
0 e−t tβ−1dt
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and η = (η1 η2)
T is the vector of friction forces. The terms

in (6) are given below:

M(θ) =
(

p1 + 2p3 cos(θ2) p2 + p3 cos(θ2)

p2 + p3 cos(θ2) p2

)
(7)

V (θ, θ̇ ) =
(−θ̇2(2θ̇1 + θ̇2)p3 sin θ2

θ̇2
1 p3 sin θ2

)
(8)

where p1 = 3.31655 + 0.18648Mp , p2 = 0.1168 +
0.0576Mp and p3 = 0.16295 + 0.08616Mp . Here, Mp

denotes the payload mass. The details of the plant model can
be found in Direct Drive Manipulator R&D Package (1992)
and Efe and Kaynak (2000). The constraints regarding the
plant dynamics are |τ1| ≤ 245N, |τ2| ≤ 39.2N, and the fric-
tion terms are η1 = 4.9sgn(θ̇1) and η2 = 1.67sgn(θ̇2).

The control problem is to force the system states to a pre-
defined and differentiable trajectories within the workspace
of the robot. More explicitly e1 = θ1 − r1, e2 = θ2 − r2 and
the (integer order) time derivatives of these error terms are
desired to converge the origin of the phase space.

4 Sliding mode control through a fractional order
adaptation scheme

Theorem 4.1 Let r1 and r2 be continuous and differentiable
reference trajectories. Let the switching function for each
link be defined by

sp,i = ėi + λi ei , i = 1, 2, λi > 0 (9)

Let

τi = φTi ui , i = 1, 2 (10)

be the ADALINE based controller of the i-th link with φi =
(φi,1 φi,2 φi,3)

T being the adjustable parameter set for the
i-th controller and ui = (ei ėi 1)T being the vector signal
exciting the i-th controller. Define τd,i as a control signal
resulting in the desired system response at i-th link, and ∀i ∈
{1, 2} let∣∣∣∣∣

∞∑
k=1

�(1 + β)

�(1 + k)�(1 − k + β)
(φ

(β−k)
i )Tu(k)

i

∣∣∣∣∣ ≤ B1,i (11)

|τ (β)
d,i | ≤ B2,i , ∀i ∈ {1, 2} (12)

|τi | ≤ B3,i , ∀i ∈ {1, 2} (13)

The adaptation law

φ
(β)
i = − ui

uTi ui
Ki sgn(σi ) (14)

with σi := τi − τd,i drives the parameters of the i-th con-
troller to values such that the plant under control enters the
sliding mode, hitting in finite time satisfying
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Fig. 1 Block diagram of the control system

Ki −B1,i

�(1 + β)
tβh,i ≤ |σ (β−1)

i (0)| + |τ (β−1)
d,i (0)|

�(β)
tβ−1
h,i + |τd,i (th,i )|

(15)

is observed if Ki > B1,i + B2,i is satisfied.

Proof Consider the block diagram of the control system
depicted in Fig. 1, where the plant states are assumed to be
observable.

The original tuning approach is proposed in Sira-Ramirez
and Colina-Morles (1995), where the desired output is avail-
able. The integer order version of the problem addressed here
is studied in Efe (2002), where the crux of the approach is to
extract a quantified error on the applied control signal utiliz-
ing the available measurements. In Efe (2002) and Topalov
et al. (2007), the map �(·) is a monotonically increasing
function of its argument and a common choice for it is a
unit function, i.e. σi = sp,i . The practical interpretation of
this choice is the adoption of the distance from the switching
line as a measure to penalize the control action. That is to
say, set of all control signals driving the error vector toward
the sliding hypersurface is denoted by τd,i and the error on
the control signal2 described by τi − τd,i is a monotonically
increasing function along the sp,i axis. Such a selection with
a tuning mechanism minimizing the value of sp,i naturally
forces the emergence of the sliding mode in the conventional
sense. ��

Define ϒi := ∑∞
k=1

�(1+β)
�(1+k)�(1−k+β)

(φ
(β−k)
i )Tu(k)

i and

check whether the quantity σ
(β)
i σi for every i is negative

2 Error on the control signal is naturally not a computable quantity,
however, such a quantity can be extracted based on the behavioral prop-
erties as considered here and in Efe (2002) and Topalov et al. (2007)
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or not. With these expressions, we have

σ
(β)
i σi =

(
τ

(β)
i − τ

(β)
d,i

)
σi

=
(
(φ

(β)
i )Tui

)
σi +

(
ϒi − τ

(β)
d,i

)
σi

= −Ki sgn(σi )σi +
(
ϒi − τ

(β)
d,i

)
σi

≤ −Ki |σi | + |ϒi | |σi | + |τ (β)
d,i | |σi |

≤ (−Ki + B1,i + B2,i )|σi |
≤ 0 Since Ki > B1,i + B2,i (16)

This proves that the trajectories in the phase space are
attracted by the subspace described by σi = 0. Due to the
definition in (1), claiming σ

(β)
i σi < 0 for stability is equiva-

lent to the following

σ
(β)
i (t)σi (t) = σi (t)

�(1 − β)

d

dt

t∫

0

σi (ξ)

(t − ξ)β
dξ (17)

Obtaining σ
(β)
i (t)σi (t) < 0 can arise in the following

cases. In the first case, σi (t) > 0 and the integral
∫ t

0
σi (ξ)

(t−ξ)β
dξ

is monotonically decreasing. In the second case σi (t) < 0
and the integral

∫ t
0

σi (ξ)

(t−ξ)β
dξ is monotonically increasing. In

both cases, the signal |σi (t)| is forced to converge the origin
faster than t−β . A natural consequence of this is to observe
a very fast reaching phase as the signal t−β is a very steep
function around t ≈ 0.

Now we must prove that first hitting to the switching func-
tion occurs in finite time, denoted by th,i . Evaluate σ

(β)
i uti-

lizing (14) as given below.

σ
(β)
i = −Ki sgn(σi ) + ϒi − τ

(β)
d,i (18)

Applying the fractional integration operator described in
(3) with final time t = th,i to both sides of (18) one gets

σi (th,i ) − σ
(β−1)
i (0)

tβ−1
h,i

�(β)
= −Ki sgn(σi (0))

�(1 + β)
tβh,i

+0Iβ
th,i

(
ϒi − τ

(β)
d,i

)
(19)

Noting that σi (t) = 0 when t = th,i , multiplying both
sides of (19) by sgn(σi (0)), we have

−σ
(β−1)
i (0)sgn(σi (0))

tβ−1
h,i

�(β)

= −Ki

�(1 + β)
tβh,i + 0Iβ

th,i
(sgn(σi (0))ϒi )

−0Iβ
th,i

(sgn(σi (0))τ
(β)
d,i ) (20)

Due to the definition given in (3), we have

0Iβ
th,i

(sgn(σi (0))ϒi ) ≤ 0Iβ
th,i

|ϒi |
≤ 0Iβ

th,i
B1,i

= B1,i
tβh,i

�(1 + β)
(21)

Similarly

0Iβ
th,i

(
sgn(σi (0))τ

(β)
d,i

)

= sgn(σi (0))0Iβ
th,i

τ
(β)
d,i

= sgn(σi (0))

(
τd,i (th,i )−τ

(β−1)
d,i (0)

tβ−1
h,i

�(β)

)
(22)

Substituting the results in (21) and (22) into (20), we obtain
an inequality given as

−σ
(β−1)
i (0)sgn(σi (0))

tβ−1
h,i

�(β)
≤ −Ki

�(1 + β)
tβh,i

+B1,i
tβh,i

�(1 + β)
− sgn(σi (0))τd,i (th,i )

+τ
(β−1)
d,i (0)sgn(σi (0))

tβ−1
h,i

�(β)
(23)

Straightforward manipulations will lead to the inequality
in (15). Clearly, the left hand side of the inequality in (15)
is a monotonically increasing function of th,i . On the other
hand, the right hand side of the inequality is a monotonically
decreasing function of th,i . With these facts, the inequality
is satisfied on the interval th,i ∈ (0, α], where α is the point
of intersection of the two expressions lying on the left and
right hand sides of (15). According to this discussion, one
can see that th,i ≤ α and particularly for β = 0.5, we have
the following value.

α =⎛
⎜⎜⎜⎜⎝

|τd,i (th,i )| +
√

|τd,i (th,i )|2 + 4
Ki −B1,i
�(1+β)

|σ (β−1)
i (0)|+|τ (β−1)

d,i (0)|
�(β)

2
Ki −B1,i
�(1+β)

⎞
⎟⎟⎟⎟⎠

2

(24)

Now we turn our attention to the assumptions we made
in (11) through (13). Obviously, the assumptions are rather
demanding and stringent. The control system presented here
would be globally stable if these conditions hold true for the
entire course of operation, however, imposing such bounds
make the presented design valid only within a local region.
Practically, the conditions in (11)–(13) emphasize that the
desired sliding regime is achievable after a reaching phase.
In other words, the achievability of the task with boundedly
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Fig. 2 The approximation to fractional integration operator s−0.5 with
s being the Laplace variable

evolving signals and their derivatives is assumed in (11)–
(13).

In the next section, we present an example to demon-
strate that the local region mentioned above is indeed large
enough to observe highly satisfactory performance. Never-
theless, since one example is not enough to generalize, in the
end, we emphasize the usefulness of the presented method.

5 Simulation results

During the simulations, the numerical implementation of the
tuning law in (14) is achieved through the use of well known
Crone approximation, which prescribes a series of poles and
zeros to build a transfer function k

∏N
i=1

1+s/zi
1+s/pi

approximat-
ing the desired operator spectrally. In Fig. 2, we demonstrate
the approximation used in this paper, i.e. for β = 0.5, we
choose N = 25 poles and zeros and set the relevant fre-
quency range as w ∈ [10−2, 103] rad/s. The gain k is adjusted
so that the magnitude is 0 dB at w = 1 rad/s, the logarithmic
deployment of the poles and zeros are also shown along the
horizontal axis of the magnitude plot where the solid line
approximates the dashed line having −10 dB/decade slope.
Similarly, the phase is around 45 degrees for a significantly
wide subband of the chosen frequency region. Expectedly,
the quality of the approximation is deteriorated near the lim-
its of the interval, yet one can choose larger frequency bands
with higher N at the cost of increasing computational burden.

The presented approach is implemented for the plant intro-
duced in the second section. The system runs for 20 s of time
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Fig. 3 Reference trajectories and the response of the robot

and the reference trajectories shown in Fig. 3 are used. The
solid curves represent the reference trajectories while the
dashed ones stand for the response of the robot. During
the operation, a 5 kgs. of payload is grasped when t = 2 s.
and released when t = 5 s and this is repeated when the robot
is motionless at t = 9 and 12 s. The manipulator is desired
to stay motionless after t = 15 s.

It should be noted that the payload scenario is a significant
disturbance changing the dynamics of the plant suddenly.
Another difficulty is the initial conditions that the ADALINE
controllers are supposed to alleviate. Initially, r1 = r2 = 0,
the system is motionless and θ1(0) = π

3 and θ2(0) = −π
2 ,

which are large enough to test the performance of a control
scheme. The simulations are carried out with a time step of
2.5 ms and K1 = 1, 000 and K2 = 100 values are chosen
after just a few trials. The sliding lines for both links are set
by choosing λi = 1. Beside these, in order to avoid excit-
ing any undesired chattering phenomenon associated tightly
with the discontinuous nature of the sign function, we choose
sgn(σi ) ≈ σi|σi |+δ

with δ being the parameter determining the
slope around the origin. This paper considers δ = 0.01 intro-
ducing a very thin boundary layer.

The discrepancies between the reference trajectories and
the system response are depicted in Fig. 4, where an expo-
nential convergence is apparent even in the presence of noise
corrupting the observed system states and the changes in the
system dynamics due to the payload variations.

The behavior in the phase space illustrated in Fig. 5 is
another evidence of robustness of the control system and
insensitivity to variations in the plant dynamics.

In Fig. 6, the applied control signals are given with the
window graphs for better visualizing the initial transient. As
expected, the control efforts during the first ten milliseconds
have higher magnitudes than what comes later. The effect of
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Fig. 10 For the integer case, i.e. β = 1, the time evolution of the
controller parameters for base link (left column) and elbow link (right
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β = 1 and β = 0.5 suggests using fractional order form of
the tuning law as it creates a more attractive sliding manifold
than the integer order one. Looking at the parameter evolu-
tions, although in the fractional order case the parameters
excited by +1 (bottom subplots in Figs. 7, 10) are seem to be
influenced slightly, the drift in the middle subplots of Fig. 10
indicate that the overall system will experience instability in
the long run. Since the sampling period is long enough, the
variations in the fractional order case are within the tolerable
range.

6 Conclusions

In this paper, we propose a fractional order parameter tuning
scheme, which was utilized with integer order operators in
the past literature. A two degrees of freedom (DOF) planar
robot is utilized to justify the claims and a comparison with
the integer order version is presented. The presented form of
the adaptation law provides

• Better parametric evolution that displays no drifts
• Better tracking capabilities
• Better robustness and disturbance rejection capabilities

than its integer order counterpart, which is only computa-
tionally simple.

Briefly, according to the considered application, the frac-
tional order tuning law outperforms the tuning mechanisms
exploiting integer order operators.

Future work of the author is to provide a rigorous proof
for bounded evolution of the adjustable parameters.
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