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This paper presents a simulation based comparison of Multilayer Perceptron (MLP), Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) and Least Squares Support Vector Machines (LS-SVM) in parallel mode
identification of a chemical process displaying several challenges. The paper provides a graphical analysis
of the nonlinear behavior for the system under investigation, a case study of purely parallel identification
scheme, the effects of noise in the training data on the prediction performance and the performance com-
parison of the standard approaches under limited amount of numerical data. The results have shown that
the emulators utilizing the MLP structure are superior to the others in terms of predicting the system tra-
jectories, locating the limit cycle, noise driven response and predicting the steady state conditions given
only 582 pairs of training data. Furthermore, as opposed to others, with the MLP structure, these qualities
disappear smoothly as the noise level is increased gradually.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Networked approximators have become very popular and many
engineering applications have enjoyed their powerful mapping
capabilities. These capabilities are based on the selection of a struc-
ture and an associated optimization routine. Once the structure is
chosen, many alternatives are available to refine its content but,
constructing the structure is certainly a matter of the adopted par-
adigm. For example, machine imitated brain models can be built in
the form of Neural Networks (NNs) if the massively interconnected
structure was adopted, and in the form of Fuzzy Logic (FL) if the
reasoning and inference were aimed, Jang et al. [16]. Not only be-
cause of their highly interconnected and layered structure, but also
MLP structures are very well known for a rich set of applicable
parameter tuning algorithms. The rationale behind utilizing such
approximators is to model the associations and regularities that
are difficult to figure out from the numerical data. This aspect of
MLP makes it a good candidate for nonlinear identification prob-
lems like the one presented in this paper. Initialization of the
MLP parameters, choosing the best number of hidden layers, the
number of neurons in each layer, learning algorithm and its param-
eters stipulate a multivariable trial-and-error based optimization
process and this abundance is a major drawback of MLP based
strategies, Haykin [13]. Recent research studies focusing on the
identification of nonlinear systems with the aid of MLP or its vari-
ll rights reserved.
ants emphasize the importance of the topic. For example, in Yu and
Li [37], the boundedness in the weight update mechanisms with
backpropagation type networks are considered with an example
chosen from Narendra and Parthasarathy [21]. Parallel identifica-
tion with long-and short term memory equipped networks is stud-
ied in Lo and Bassu [20] and that with nonlinear-in-the-parameters
type of a neural network is reported in Abdollahi et al. [1]. An inter-
mediate processing layer is introduced in Patra and Kot [22] and
this has resulted in better approximation performance in system
identification. A recurrent network structure is studied in Wang
and Chen [36] with some examples from Narendra and Parthasar-
athy [21]. Series-parallel identification scheme is utilized for a no-
vel dynamic neural network architecture in Ren et al. [25] and
closed loop control performance is assessed.

When the structural interpretability is taken into consideration,
one prefers methods that admit human expertise in the form of
comprehensible statements, such as IF antecedent THEN consequent
rules, as exploited in fuzzy systems. The representation of knowl-
edge utilizes the linguistic tools with a functionally layered struc-
ture indicating the fuzzifier, inference engine and defuzzifier of a
FL system, Wang [34,35]. A special type of fuzzy systems used
for modeling purposes is proposed by Takagi and Sugeno [29],
where the defuzzification stage is composed of a linear function
of input variables with an offset for the consequent part of each
rule. Today, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) pro-
posed by Jang et al. [16] has a special position in this field. The
merits and effectiveness of it in various applications are reported
many times in the literature (see Jang et al. [16]; Hou et al. [14];
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Refaat and Nahavandi [24] and the references therein) and we con-
sider ANFIS based identification to position among the three fore-
most strategies of learning based approximation theory.

SVM technique introduced in the pioneering work of Vapnik
[32] for classification and regression problems aims at minimizing
a structural risk function, i.e. the upper bound of an appropriately
defined generalization error. Not only are SVMs superior to con-
ventional NNs because of this fact, but also the lack of multiple lo-
cal minima in SVM learning and the lack of best configuration
search effort make SVMs attractive to use instead of conventional
NN structures, the training algorithms of which minimize the
empirical risk over a set of training pairs instead of its bound
(see Gunn [11] and Cristianini and Shawe-Taylor [6]) and as a re-
sult of this, a trained neural network may produce higher errors
for another data set generated by the same process. However,
regarding SVM learning, a significant amount of the computing
power is reserved for the optimization algorithm that yields the
best set of coefficients. The SVM setting displays sparseness prop-
erties leading to few support vectors to describe a desired map. LS-
SVM setting, on the other hand, modifies the inequality constraints
to equality constraints and similar tools of optimization applies to-
gether with the kernel trick. Similar to SVMs, LS-SVMs do not suffer
from the problems caused by local minima and they offer solutions
to convex problems. The major difference is that the SVM setting
determines some support vectors that are generally less than the
number of given data points , whereas the LS-SVM setting can pre-
serve all of the given data as support vectors. In Espinoza et al. [10],
identification of nonlinear ARX systems with partially linear LS-
SVMs are considered and a very good treatment is presented in
Suykens et al. [28]. In Zhang et al. [38], a nonlinear NARMAX model
under series-parallel identification mode is considered with SVMs
with particular emphasis on noise robustness. In Chen et al. [5], a
thorough treatment of SVM use in chemistry is presented with a
number of application examples.

Clearly the advantages peculiar to each one of MLP, ANFIS and
SVM/LS-SVM approaches, make them appealing for identification
purposes and the field of process engineering offers interesting
modeling problems for comparison of these techniques. Chemical
processes often display a complicated behavior due to the strong
interdependencies between the variables involved. Although in
some cases the process is described by a few state variables, the
beauty of nonlinear interactions in the form of limit cycles, attrac-
tors and repellers can be created or destroyed under varying oper-
ating conditions. Ungar [31] defines a Bioreactor Benchmark
Problem that excellently fits in the context. The state of the process
is described by two dimensionless variables named the cell mass
denoted by c1(t) and the amount of nutrients denoted by c2(t)
(see Ungar [31]; Puskorius and Feldkamp [23] and Efe et al. [8]).
The units for both variables are the normalized concentrations,
i.e. grams within the reaction volume. The goal in the original
problem is to maintain the cell mass at desired levels by altering
the inflow rate at a rate equal to outflow rate keeping the reaction
volume constant. Although Ungar [31] emphasizes the challenges
associated with the control problem in detail, the considered plant
is certainly a good candidate for benchmarking identification
methods, the entity of which needs some degrees of intelligence.
For instance, NNs, Fuzzy Inference Systems (FISs) or methods
adapted from machine learning, such as SVMs are fairly in this
class of identification tools to which some degrees of autonomy
and fault tolerance are attributed through an appropriate optimi-
zation process. This process is called learning in the realm of intel-
ligent systems and is the way of refining the information content of
the entity being tuned. The motivation for using these methods is
the fact that they can infer the structure from numerical data and
each one of the considered methods enjoys most of the standard
tuning schemes.
In the past, the process described in the bioreactor benchmark
problem was studied several times. Efe et al. [8] consider this prob-
lem for developing a nonlinear control law forcing the process
states to those of a first order linear one. A MLP structure is used
to build the nonlinear function in the control law and the plant
is forced to follow a reference model. Puskorius and Feldkamp
[23] study this problem in the context of demonstrating the effi-
cacy of a NN learning algorithm and consider the control problem
about a setpoint in the stable region, another setpoint in the unsta-
ble region and a transition between these regions. Brengel and
Seider [4] propose a multi step nonlinear controller based on pre-
dictive control theory and validate the performance of the closed
loop control system on a variant of the model considered here.
The authors emphasize the preferability of operating at highest
possible cell mass solutions, which are desired to be reasonably
away from the region of periodic oscillations. In Anderson and
Miller [2], it is emphasized that the controller design for the biore-
actor benchmark problem is a challenge due to the nonlinearity
and a set of complicated regimes are caused by the nonlinear inter-
actions in between the variables involved. Recent works focusing
on the bioreactor benchmark problem consider the adaptive learn-
ing based identification in Zou et al. [39], ANFIS based identifica-
tion in Savran [26] and hybrid control methods combining fuzzy
systems and SVMs a in Serdar [15]. Sliding mode control based ap-
proaches are also tested on the bioreactor model, such as Efe [7]
considers a multi-input multi-output version of the problem
whereas Tokat [30] elaborates the switching line adaptation to
meet the closed loop performance expectations. Clearly, the works
mentioned above motivate us to position the merit and effective-
ness of identification tools on such a problem displaying a diverse
set of dynamical responses.

From a practitioner’s point of view, a good emulator can help
the process operators to take precautions timely and to manage
the process inputs so that an optimum yield is observed safely.
From this viewpoint, recognition of the process dynamics in detail
becomes a way that can be followed through an optimal use of the
available information, which is typically noisy and limited. Since
the goal in this study is to assess to what extent the considered
methods capture the essential properties of the system, initially
we assume that the available numerical data are noiseless and
no on-line refinement is performed after the model is built. The
models are then studied with the noisy data sets to see how suc-
cessful they are in capturing the essential behavior. The contribu-
tion of this paper is to unfold the mapping performances of well
known three approaches comparatively. One should note that a
common property of these methods is their nonlinear nature. In
spite of the presence of many linear identification techniques
(see Ljung [19]), our goal is to compare those displaying some de-
grees of intelligence and learning capability. The level of Mean
Squared Error (MSE), model complexity measured by the propaga-
tion delay, realization accuracy and the ability of discovering the
dynamics hidden in the numerical data, e.g. the limit cycle and
zero output conditions, are the main categories of the presented
comparison. The paper differentiates from the existing body of lit-
erature from the points of (i) comparing standard approaches with
their standard optimization (learning or training) algorithms, (ii)
making a performance comparison of models generated with noisy
as well as noiseless training data, (iii) elaborating a purely parallel
identification scheme yielding a standalone dynamic model
exploiting few data and (iv) concluding mainly with the outstand-
ing success of the models based on the classical MLP structure. In
the past, mapping performance of NN structures are compared
for series-parallel identification scheme (see for example Efe and
Kaynak [9]; Hou et al. [14]; Zhang et al. [38]), where the plant
states are fed to the model and one step ahead prediction is
performed. Unlike this approach, as discussed in the sequel, in
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the parallel mode identification, the trained approximator provides
the derivatives of the state variables and after the integration of
these values, the outputs are fed to the model itself and due to
the approximation errors, the result is more likely to diverge or
saturate after a while. For this reason, the adopted modeling strat-
egy, i.e the model structure, its tuning scheme and the training
data, contains key points that embody the essence of the contribu-
tion of this paper.

This paper is organized as follows. Section 2 introduces the bio-
reactor benchmark problem and analyzes its behavior. Sections
3–5 present the MLP, ANFIS and LS-SVM approaches in turn.
Operating conditions, results and discussion are presented in
Section 6. The concluding remarks are presented at the end of
the paper (Section 7).

2. Bioreactor benchmark problem

The bioreactor is a tank in which the biological cells are mixed
with nutrients and water as shown in Fig. 1. The cells and nutrients
are in a dynamical interaction modeled by (1) and (2), where c1(t)
denotes the cell mass while c2(t) stands for the nutrient amount.
The process is continuously fed by pure water and the variable
characterizing the inflow rate is denoted by w(t), which is in liters
per second. In order to maintain the reaction volume constant, the
contents of the tank is removed at a rate equal to the inflow rate,
S(t), which is composed of a mixture of cells, nutrients and water,
and its dimension is also liters per second.

_c1ðtÞ ¼ �c1ðtÞwðtÞ þ c1ðtÞð1� c2ðtÞÞe
c2 ðtÞ

c ð1Þ

_c2ðtÞ ¼ �c2ðtÞwðtÞ þ c1ðtÞð1� c2ðtÞÞe
c2 ðtÞ

c
1þ b

1þ b� c2ðtÞ
ð2Þ

The state variables are constrained by X: = 0 6 c1(t), c2(t) 6 1. In
the model of the plant given above, the growth rate is character-
ized by the parameter b = 0.02 and the nutrient inhibition param-
eter is given by c = 0.48.
Fig. 1. Reaction tank with equal inflow and outflow rates.
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Fig. 2. The evolution of the process states for different initial conditio
In Fig. 2, several trajectories are shown for a set of initial condi-
tions denoted by a circle. Each subplot depicts the evolution of the
system at a constant inflow rate indicated on the top. Depending
on the value of the inflow rate, the attractors change their locations
or new attractors emerge. One visible one is a limit cycle which be-
comes apparent when w = 1. Particularly when w = 0.829, the sys-
tem changes its qualitative behavior radically. Computing the
equilibrium values corresponding to this inflow rate, one obtains
c1 = 0.1331 and c2 = 0.8226. The eigenvalues of the linearized sys-
tem of equations at this point stipulate that in the increasing direc-
tion of c2, the system undergoes Hopf bifurcation at this operating
point and turns into an unstable one displaying spontaneous oscil-
lations due to the limit cycle. In this regime, cell mass varies in be-
tween 0.1219 and 0.1466 while the nutrient amount fluctuates in
between 0.8242 and 0.8996. At the points of crossing the imagi-
nary axis, the eigenvalues of the linearized model are approxi-
mately equal to 0 ± j1.7543, from which we infer that the self
sustained oscillations are quite fast.

In the left subplot of Fig. 3, the limit cycle and the convergence
of the neighboring trajectories are illustrated for w = 1.2. In fact,
limit cycles can occur for all values of admissible inflow rates, i.e.
0 6 w 6 2. According to Bendixson theorem (see Slotine and Li
[27] and Khalil [18]), since the quantity

W :¼ @

@c1
�c1wþ c1ð1� c2Þe

c2
c

� �

þ @

@c2
�c2wþ c1ð1� c2Þe

c2
c

1þ b
1þ b� c2

� �

¼ �2wþ wðc1; c2Þ ð3Þ

does not vanish and does not change sign in K # X, no limit cycles
can exist entirely in K. For a given constant w, the curve of sign
change for W is moved to the curve described by w(c1, c2) = 2w.
Therefore, one should run the quantity 2w from 0 to 4 and deter-
mine where the sign change occurs. In the right subplot of Fig. 3,
we illustrate the limit cycle shown on the left once again, and the
regions where the limit cycles cannot lie entirely within are de-
picted as white regions, termed K above, and the value of 2w is con-
toured for 2w equals to 0, 1, 2, 3 and 4. According to this result, we
figure out that it is possible to have other limit cycle trajectories in
the system dynamics and K is a significantly wide subspace of X.
From a systems engineering point of view, this practically tells us
that for a given sequence of inflow rate values, new attractors
and/or repellers can be created or destroyed depending on the value
of w and a good model, which we call emulator, must be able to cap-
ture these properties satisfactorily.

Consider the process at the steady state, i.e. ċ1 = 0 and ċ2 = 0.

This yields the steady state inflow rate wss ¼ ð1� c2Þe
c2
c and with

this feed stream we obtain _c2 ¼ ð1� c2Þe
c2
c ð�c2 þ c1gÞ, i.e. when
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0 0.25 0.51 0.75 1
0

0.05

0.15

0.255

c2

c 1

0 0.25 0.51 0.75 1
0

0.255

0.5

0.75

1

1.25

1.5

c2

c1

wss

Fig. 4. Left: Equilibrium points. Right: The behavior with steady state inflow rate wss.

M. Önder Efe / Advances in Engineering Software 41 (2010) 1132–1147 1135
the steady state is reached c2 is either 1 or a value that satisfies
g = c2/c1 where gðc2ðtÞÞ :¼ 1þb

1þb�c2ðtÞ
. In the left subplot of Fig. 4, the

parabolic (lower) curve depicts the solution obtained from
�c2 + c1g = 0. The same subplot also depicts the value of steady
state inflow rate wss along with the c2-axis. This figure stipulates
that when the steady state is reached, the cell mass cannot assume
values larger than 1þb

4 ¼ 0:255. This practical constraint was also
highlighted in Puskorius and Feldkamp [23] and Efe et al. [8]. The
right subplot of Fig. 4 depicts how an arbitrary value of
(c1(t0), c2(t0)) moves under the inflow rate wss. Few comments
can be made for the motion for t > t0 with wss. If c1ðt0Þ > 1þb

4 then
the final value of the state vector is (c1(1), c2(1)) = (c1(t0),1). If
c1ðt0Þ < 1þb

4 , then any initial condition that is below the curve de-
fined by �c2 + c1g = 0 moves in the horizontal direction and stops
on the left segment of the curve �c2 + c1g = 0, which is shown in
the bottom right of Fig. 4. Alternatively, the initial conditions that
are above the curve defined by �c2 + c1g = 0 move right until an
equilibrium is reached, i.e. those satisfying c2ðt0Þ < 1þb

2 converge
the left segment of the curve �c2 + c1g = 0, however, those with
c2ðt0Þ > 1þb

2 stop at (c1(1), c2(1)) = (c1(t0), 1). At the point

ðc1ðt0Þ; c2ðt0ÞÞ ¼ ð1þb
4 ; 1þb

2 Þ, the eigenvalues of the linearized system
are both equal to zero. According to the behavior indicated by the
vector field (flow), we conclude that this point is a half stable point,
i.e. the trajectories close to this point but below �c2 + c1g = 0 be-
have different from those above �c2 + c1g = 0. This discussion with
the flow illustrated in Fig. 4 clarifies the stability of the equilibrium
states thoroughly.

Ungar [31] points out that although this system is not a com-
pletely realistic model of any bioreactor, as seen from the pre-
sented discussion, the system considered in this paper displays
several challenges, which can be available in real time applications,
highlighted also by Anderson and Miller [2] with a similar motiva-
tion. Due to the presented properties of the system, the model con-
stitutes a good test bed for scrutinizing the capabilities of
networked modeling techniques revealing a set of flexible nonlin-
earities in various forms.
3. Multilayer perceptron network

The history of MLP goes back to the works devoted to the under-
standing of brain activity based on neurons (nodes). An ordered
structure of a set of neurons form a layer, and building layers in
an organized fashion constitutes a MLP structure as shown in



Fig. 5. Structure of a MLP.
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Fig. 5. The figure depicts an input layer containing m nodes, an out-
put layer composed of n nodes and two hidden layers, in which the
number of nodes are to be determined by the designer.

As seen from the figure, the structure of MLP has many internal
connections, called synaptic connections, which possess synaptic
strengths. In other words, biologically resistive nature of such con-
nections with a saturating response of a neuron is simply modeled
as h = U(s), where s denotes the weighted sum of incoming signals
and U(s) stands for the neuronal activation function that is respon-
sible for the saturated response arises when the argument s is large
in magnitude. Clearly, the number of terms involved in computing
the value of s for each neuron indicates the possible architectural
redundancy in the representation of knowledge within a NN
structure.

For learning with the MLP structure, consider the regression
problem over the pairs

T ¼ fðu1;d1Þ; . . . ; ðuNT
;dNT

Þg; ui 2 Rm; di 2 Rn ð4Þ

Compactly, denote the number of layers excluding the input
layer by H and the ith layer output vector by hi, where hi = U(si)
and si is the vector of net sums computed as

si ¼Wihi�1 þ Bi; i ¼ 1;2; . . . ;H ð5Þ

where Wi and Bi correspond to the weight and bias terms of the ith
layer. It is clear that for a NN structure with two hidden layers con-
taining hyperbolic tangent type activation functions, and a linear
output layer, the successive computations through the network
(one forward pass to compute the output) would be

h0 ¼ u ð6aÞ
s1 ¼W1h0 þ B1 and h1 ¼ tanhðs1Þ ð6bÞ
s2 ¼W2h1 þ B2 and h2 ¼ tanhðs2Þ ð6cÞ
s3 ¼W3h2 þ B3 and f ¼ s3 ð6dÞ

where the weight and bias terms seen above have appropriate
dimensions and the input–output relation would simply be
f = W3 tanh(W2 tanh(W1u + B1) + B2) + B3. Once a structure is built,
the next issue is to adopt a suitable learning strategy. Although
Fig. 6. Structure of a Fuz
there are numerous alternatives for tuning the MLP weights and
biases, Levenberg–Marquardt (LM) optimization technique is the
one that is frequently used for its rapid convergence. The LM algo-
rithm is an approximation to the Newton’s method, and both of
these methods have been designed to solve the nonlinear least
squares problem (see Battiti [3] and Hagan and Menhaj [12]). Since
the problem considered here is involved with offline training of a
MLP structure, LM algorithm best fits in our problem settings.
Briefly, vectorize the set of all adjustable parameters and denote
this vector by x, which is a P � 1 vector. At time k, a cost function,
which is an empirical risk function, qualifying the performance of
the interpolation can be given as in (7) and the LM update is formu-
lated as in (8)

EðxkÞ ¼
1
2

XNT

i¼1

kdi � fðui;xkÞk2 ð7Þ

xkþ1 ¼ xk � aIþr2
xk

EðxkÞ
� ��1

rxk
EðxkÞ ð8Þ

where rxk
EðxkÞ corresponds to the transpose of the Jacobian de-

noted by J and the Hessian r2
xk

EðxkÞ is approximated by JTJ � a > 0
is a user-defined scalar design parameter and I is an identity matrix
of appropriate dimensions. It is important to note that, for small a,
(8) becomes the standard Gauss–Newton method, and for large a,
the tuning law becomes the standard Error Backpropagation (EBP)
algorithm. Therefore, LM method establishes a good balance be-
tween EBP and Gauss–Newton strategies.

The pioneering work of Narendra and Parthasarathy [21] con-
siders the MLP structure with the EBP algorithm for identification
and control purposes through some abstract yet descriptive exam-
ples with an emphasis on slow convergence of the EBP technique
which has later been resolved by the use of LM technique.
4. Learning and generalization with ANFIS

Fuzzy logic offers one natural way for representing knowledge
that is similar to human reasoning. Partitioning the input space
by the use of fuzzy membership functions, determining the local
conclusions through rules and utilizing a flexible method of com-
bining the localized information result in a highly interpretable
and useful model that acts globally. ANFIS, in this respect, is one
of the widely known architectures exploiting the power of connec-
tionist structures while maintaining the verbal nature through
membership functions and inference mechanisms, Hou et al.
[14]; Refaat and Nahavandi [24]. In Fig. 6, general structure of a
FIS is illustrated. The crisp inputs are fuzzified through the compu-
tation of membership functions. This practically maps the input
space to a feature space characterized by fuzzy sets. In the
zy inference system.
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inference mechanism, computed membership values for each rule
are converted into a firing strength that indicates the activation
level of the rule. The parameters of the membership functions
and auxiliary parameters are stored in the knowledge base, and a
defuzzifier maps the output of the inference engine to a scalar
output value, which is crisp.

In Fig. 7, the structure of ANFIS is depicted. As shown also on the
figure, defining hi; ~hi as the firing strength and normalized firing
strength of ith rule, respectively, the input output relation of the
ANFIS structure with the rulebase structure containing R rules as
below, product inference and first order Sugeno type defuzzifier
is as given in (9a)–(9d) (see Takagi and Sugeno [29]). Note that
Ui; Vi and Wi stand for the fuzzy sets characterized by the mem-
bership functions, yi in the ith rule is the local conclusion suggested
by the rule and, n1, n2 and nm correspond to the number of linguis-
tic labels for the first, second and mth input variables, respectively

IF u1 is U1 AND u2 is V1 AND . . . AND um is W1 THEN y1 ¼ z1

IF u1 is U1 AND u2 is V1 AND . . . AND um is W2 THEN y2 ¼ z2

..

. ..
.

IF u1 is Un1 AND u2 is Vn2 AND . . . AND um is Wnm THEN yR ¼ zR

hi ¼
Ym
j¼1

lijðujÞ ð9aÞ

~hi ¼
hiPR

k¼1hk

ð9bÞ

zi ¼ fi þ
Xm

j¼1

/ijuj ð9cÞ

f ¼
XR

i¼1

~hizi ð9dÞ

In (9a) and (9c), uj corresponds to the jth entry of the input vec-
tor u. According to (9d), it is seen that the ANFIS structure has sin-
gle output. The training is achieved by adopting a hybrid tuning
mechanism. Specifically, fi and /ij are adjusted by Least Mean
Squares (LMS) algorithm, while the other parameters are tuned
by EBP method. It is emphasized in Jang [17]; Jang et al [16]; Refaat
and Nahavandi [24] that such a tuning scheme reduces the dimen-
sionality of the search space of EBP algorithm and speeds up the
convergence.
5. Least Squares Support Vector Machines for approximation

Due to powerful regression and classification capabilities based
on numerical observations, the use of LS-SVMs can be considered
as a remedy among other alternatives such as FL, NNs or genetic
algorithms, which generally suffer from the presence of multiple
local minima, structure selection (hidden layer number or node/
rule number, population size) problem and overfitting, Wang and
Ye [33]. Similar to MLP and ANFIS, LS-SVMs map the input vector
to a feature space, where the regression is performed much effi-
ciently. Yet the major difference in LS-SVM learning is the minimi-
zation of an upper bound on a quantity instead of minimizing the
quantity itself. The goal of the former is to minimize the structural
risk function whereas the latter minimizes the empirical risk func-
tion. This practically makes it possible to generalize the informa-
tion contained implicitly in the training set in some sense of
optimality, Gunn [11]; Suykens et al. [28]. In this section, we sum-
marize the LS-SVM structure utilized in the paper.

Consider the regression problem over the pairs

T ¼ fðu1; d1Þ; . . . ; ðuNT
;dNT

Þg; ui 2 Rm; di 2 R ð10Þ

with a function

f ðuÞ ¼ wTuðuÞ þ b ð11Þ

where w and b denote the weight vector and the bias value, respec-
tively. u(�) stands for an implicitly defined, possibly a nonlinear
map allowing the application of kernel trick wherever necessary.
We define a quadratic loss function as in (12) to quantify the perfor-
mance for the ith data pair,

Lðdi; f ðuiÞÞ ¼
1
2

e2
i ð12Þ

where ei: = di � f(ui). Minimizing the structural risk given by (13)
lets us obtain the best values of wis causing least complexity repre-
sented by kwk2



Fig. 8. Block diagram for obtaining the networked emulator.
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R ¼ 1
2
kwk2 þ C

XNT

i¼1

Lðdi; f ðuiÞÞ ð13Þ

where C is the regularization constant determining the relative
importance of the terms contributing to R, Gunn [11]. According
to (13), large C results in better fit to the given data. The primal form
of the optimization problem can be expressed compactly as

min
w;b;e

1
2
kwk2 þ 1

2
C
XNT

i¼1

e2
i

such that di ¼ wTuðuiÞ þ bþ ei; i ¼ 1;2; . . . ;NT ð14Þ

The above described optimization problem can be converted
into a linear system equations by exploiting the dual representa-
tion. Denoting the Lagrange multipliers by k, the Lagrangian can
be constructed as in (15), and the solution to this optimization
problem is obtained at the saddle point of the Lagrangian, i.e.
maxk minw;b;eLðw; b; e; kÞ. The conditions of optimality are given
in (16–19).

Lðw; b; e; kÞ ¼ 1
2
kwk2 þ 1

2
C
XNT

i¼1

e2
i �

XNT

i¼1

ki wTuðuiÞ þ bþ ei � dið Þ

ð15Þ

@L

@w
¼ 0) w ¼

XNT

i¼1

kiuðuiÞ ð16Þ

@L

@b
¼ 0)

XNT

i¼1

ki ¼ 0 ð17Þ

@L

@ei
¼ 0) ki ¼ Cei; i ¼ 1;2; . . . ;NT ð18Þ

@L

@ki
¼ 0) wTuðuiÞ þ bþ ei � di ¼ 0; i ¼ 1;2; . . . ;NT ð19Þ

The solution can be obtained by solving the NT þ 1 equations
simultaneously. These equations are

bþ kk

C
� dk þ

XNT

i¼1

kiuðuiÞTuðukÞ ¼ 0; k ¼ 1;2; . . . ;NT ð20Þ

and the condition in (17), where k and b are the unknowns. The
optimization problem can now enjoy the kernel trick letting us to
write K(ui, uk): = u(ui)Tu(uk), with K(�,�) being an appropriately de-
fined kernel satisfying the Mercer conditions, Cristianini and
Shawe-Taylor [6] and Suykens et al. [28].

It should be noted that the support vectors are the uis for which
the corresponding ki is nonzero. However, in Suykens et al. [28], it
is emphasized that the model obtained utilizing the method above
suffers from the lack of sparseness. More explicitly, due to the con-
dition in (18), a significant part of the Lagrange multipliers will not
be exactly zero and as a natural consequence of this, most of the
training data pairs will be contained as support vectors leading
to a possible increase in the memory storage capacity.

6. Operating conditions, results and discussion

In this section, the three approaches discussed so far will be
utilized to predict the derivatives of the state variables. Clearly,
the training data will be provided through the use of (1) and
(2), and the major difficulty of utilizing a predictor in the form
of aforementioned structures is the integration of the approxima-
tion error together with the true values. Although one’s expecta-
tion could be to observe a saturation in the long run, some
models are seen to be able to recover and yield good predictions
for the state variables. Towards this goal, in Fig. 8, the training
structure for the aforementioned models is illustrated. In what
follows, we summarize the procedure followed during the train-
ing data generation, the results of the simulations with a thor-
ough discussion.

6.1. Training, checking and validation data sets

In the presented comparison work, three sets of data are gener-
ated randomly from the interval (w, c1, c2) 2 [0, 2] � [0, 1] � [0, 1]
and the target values (ċ1, ċ2) are computed using (1) and (2).

� Training data (T): The numerical information available in the
training data set is used when the parameters of the considered
emulator are modified. The number of pairs contained in T is
denoted by NT.
� Checking data (C): This data set is used whenever the training

algorithm enables terminating the training procedure at an
optimal level of generalization. The number of pairs contained
in C is denoted by NC. The pairs in this set are generated ran-
domly and are not necessarily in temporal order.
� Validation data (V): The information used to measure the rep-

resentational capabilities of the trained emulator. The number
of pairs contained in V is denoted by NV and the pairs in this
set are consecutive samples in time.

The emulators are constructed utilizing the noiseless (clean)
data first and then the noisy observations are dwelt on to figure
out the generalization performance under imprecise observations.

The emulator, which is based on one of the MLP, ANFIS or
LS-SVM structures, aims to learn the function fw(w, c) described in
(1) and (2), but in reality, it learns a function denoted by f(w, x).
The vector of approximation errors, which is 2 � 1, is denoted by
e(w, c, x) that is defined as e(w, c, x): = fw(w, c) � f(w, x). The output
of the emulator is computed as

xðtÞ ¼ xð0Þ þ
Z t

0
fðuðsÞÞds ð21Þ

where u(t): = (w(t)x(t)T)T. Clearly the system is in a parallel mode
identification scheme and the approximation error contained in
f(w, x) will be highly effective as it is integrated, this can be seen
in the error equation given in (22)

eðtÞ ¼ eð0Þ þ
Z t

0
eðwðsÞ; cðsÞ;xðsÞÞds ð22Þ

Without loss of generality, in our tests, we assume that the
initial error (e(0)) is zero. According to (22), the trajectories are
expected to diverge from each other in a manner determined
by the approximation error e. This enables us to determine
the best performing approximator and to assess the effect of
different noise levels on the overall performance for each
approach.
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6.2. Noise free case: numerical data provides ċ1 and ċ2 perfectly

Initial work to assess the performance under noiseless training
data is comprised of a comparison of the propagation delay, MSE
level achieved when the training is stopped, the value of checking
MSE level and the MSE level for a given trajectory. The results of
the performed experiments are summarized in Table 1, the propa-
gation delay in milliseconds is denoted by TD, training MSE level
achieved with the samples in T is denoted by TMSE; CMSE corre-
sponds to checking MSE level. Since the approximators predict
the derivatives of the state variables, the quantities TMSE and
CMSE are computed as given below

TMSE :¼ 1
NT

XNT

i¼1

keik2 ð23aÞ

CMSE :¼ 1
NC

XNC

i¼1

keik2 ð23bÞ

where ei corresponds to the approximation error vector computed
with the values of the ith data pair. VMSE, which is based on the
emulator responses, stands for the performance index (validation
MSE level) given by

VMSE :¼ 1
Tf

X2

i¼1

Z Tf

0
ðciðtÞ � xiðtÞÞ2dt ð24Þ

where Tf denotes the final time of the simulation for a single trial.
We set Tf = 100 s indicating NV ¼ 10;000 pairs in the validation
data set as the discretization interval is 0.01 s.

In the simulations, we have used a MLP structure with two hid-
den layers having six neurons in the first and 24 neurons in the
second hidden layer. Although using two hidden layers is not com-
mon and the theory stipulates that a MLP with enough number of
hidden neurons is a universal approximator, cascaded nonlinear
layers provide feature spaces through which a desired input output
map can be established with neurons less in number than a single
hidden layer MLP needs. The output layer is chosen as a linear one
containing two neurons that provide the value of f(w, x). The tests
carried out with MLP structure are repeated for ANFIS and LS-SVM
based emulators with the settings summarized below. We have
generated NC ¼ 500 pairs for the checking data set and used this
set wherever applicable.

Two ANFIS structures having the same structure are considered
for the modeling goal. The output of the first structure is a predic-
tion for ċ1(t) while that of the second is a prediction for ċ2(t). Two
linguistic labels are utilized for the variables w(t) and c1(t), and five
labels are utilized for the variable c2(t). In total, 20 rules are built in
the rule base of each ANFIS architecture and these numbers are set
by an extensive trial-and-error process. Generalized bell shaped
membership functions are utilized and two ANFIS structures hav-
ing a total of 107 adjustable parameters in each is constructed.
The adjustable parameters of the defuzzifier (fis and /ijs), are zero
initially and the membership functions cover the input space
uniformly.

Regarding the LS-SVM approach, which is a single output struc-
ture, two LS-SVMs are considered for derivative predictions. In this
paper, we utilize the spline kernel defined as
Table 1
Comparison of the results with perfect observations.

MLP ANFIS LS-SVM

TD (ms) 0.1860 21.6062 369.4844
TMSE 1.1352e�12 6.1312e�4 4.3303e�5
CMSE 4.9249e�12 7.4743e�4 n/a
VMSE 4.6976e�9 23.4826e�4 155.8974e�4
Kðl;vÞ :¼
Ym
i¼1

ki ð25Þ

where l = (l1, l2, . . . , lm)T, v = (v1,v2, . . . ,vm)T, k = (k1,k2, . . . ,km)T and ki

is computed as

ki ¼ 1þ liv i þ
1
2

liv i minðli;v iÞ �
1
6

minðli; v iÞ3 ð26Þ

where m = 3 in our application. The optimization process for both
LS-SVM structures corresponds to obtaining the solution of the ob-
tained system of equations. As emphasized earlier, in the resulting
LS-SVM based predictors, almost every member of the training data
set is kept as a support vector.

During the training phase, ciðtÞ 2 C, and we obtain the results
tabulated in Table 1, where it is clear that the smallest TMSE value
and the smallest TD values are obtained with the MLP structure. It
is useful to note that MLP structure utilized in this study has 242
adjustable parameters whereas ANFIS structures have a total of
214 adjustable parameters. In terms of the number of adjustable
parameters, MLP structure seems to be more complicated yet the
computation time required for one forward pass through it is much
smaller than that for ANFIS and this information is a highly useful
evidence for those aiming at practicing these structures with real
time hardware. Similarly, the MLP structure is structurally much
simpler than the LS-SVM based emulators having 582 support vec-
tors, which correspond to the entire training data set, in each.
Although the data are the same for all experiments, the architec-
tures are different and the hypergeometric features of the corre-
sponding cost hypersurface for each approach is naturally
different from each other. The results in Table 1 emphasizes that
we encounter the best cost hypersurface, over which a convinc-
ingly small cost value, presumably the global minimum, can be de-
tected very precisely with the MLP structure.

For the LS-SVM based emulators, the training procedure corre-
sponds to the solution of a linear system of equations. Since this is
not an iterative scheme, in Table 1, the checking error cell contains
the term not applicable (n/a). Regarding the ANFIS and MLP struc-
tures, the training is stopped if the checking error denoted by CMSE

increases for five successive epoches. If no increase is observed, the
training is continued approximately for 60 hours corresponding
1.5e+6 epochs. Since the approximators are tuned offline and the
training is implemented only once, the training times are not con-
sidered as metrics of comparison. Having a different stopping cri-
terion for each approach is another reason for omitting the
training times, which continue almost 60 h particularly for ANFIS
based models of noiseless or lightly noisy training data.

In order to see the performance of all three approaches in an
ideal (noiseless) environment, we have chosen the trajectories
shown in Fig. 9. The rationale behind this choice is to consider
the full range of applicable inflow rates to see highest possible vari-
ations in the cell mass and the nutrient amount so that the predic-
tion accuracies at different levels become visible. The validation
error denoted by VMSE (see (24)) is computed for each approach
and the results are tabulated in Table 1. According to the obtained
numerical values, the most promising predictions are obtained
with the MLP approach, the state predictions (x(t)) with which
are almost indistinguishable from the desired process states de-
noted by c(t). Note that the number of patterns used during the
training is NT ¼ 582, which clearly indicate that the available
information about the system is highly limited and the perfor-
mance obtained under such a restriction is decent. According to
Table 1, LS-SVM architectures have yielded the worst performance
values in providing the derivatives of the state variables, and when
integrated to obtain the model response, large errors are observed
as can also be seen from the trajectories in Fig. 9.
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Fig. 9. The evolution of the process states for c1(0) = 0.92, c2(0) = 0.76, Tf = 100 s and w(t) = 1 + 0.43cos(2p0.07t) + 0.23sin(2p0.17t) + 0.33sin(2p0.56t) and the predictions
provided by each approach. The same legend for the top subplot is adopted for the second state variable (c2(t) and x2(t)) in the bottom subplot.
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One might ask whether the obtained results could be improved
with alternative settings and selections, e.g. number of hidden lay-
ers, number of neurons in MLP, number of rules, type of member-
ship functions in ANFIS, and the type of kernel and the type of cost
function in LS-SVM. Based on the numerous tests towards the best
performing approximator, the selections presented in the paper are
the best ones observed throughout this research. The comparison
considering the other qualities such as limit cycle prediction, ef-
fects of fast changing inputs and zero output conditions are elabo-
rated in the next subsection.

6.3. Numerical data is noisy

In this part, we compare the three approaches in the following
categories, and discuss the results including emulators obtained
with noisy as well as the noiseless training data.

� Trajectory prediction, which is important in the cases where the
process operator needs predictions of future performance if a
preselected operating conditions are to be maintained.
� Limit cycle prediction, which is substantial as limit cycles can

have dangerous consequences and precise positioning of them
can let the process operator take precautions against getting
trapped to an oscillatory regime.
� Prediction under high frequency excitations is the third cate-

gory that has the goal of explaining the system behavior when
fast changes in the system inputs are required. Particularly, a
model giving reliable predictions would be a good guide for
the process operator to command safely.
� Prediction of the zero output (steady state) conditions is the last

category we focus on. A model predicting the steady state
behavior accurately enables the process operator monitor any
drifts safely before a possible instability arises.

6.3.1. Trajectory prediction
Despite the superior performance of MLP structure with noise-

less data (see the VMSE values in Table 1), the results seen in Fig. 9
stipulate that ANFIS based emulators have shown no visible devi-
ation from the target values. For this reason, in the rest of the
study, we eliminate the LS-SVM structure as the performance fig-
ures peculiar to it were poor compared to the others under both
noiseless and noisy data, and present the comparison results focus-
ing on MLP and ANFIS based structures for the remaining experi-
ments. For this purpose, we have generated a set of noise
sequences and additively corrupted the input and output patterns
in the training data. In performing this, we have scaled the noise
sequence to several percentages before corrupting the clean data
in order to maintain the consistency of the experiments and to un-
fold how the performance is affected as the noise percentage is var-
ied. First set of results are tabulated in Table 2, where we can
compare VMSE values for the trajectories shown in Fig. 9 with
the noiseless case, which is given in the first row of the table.



Table 2
Comparison of the results eith MLP and ANFIS structures operated under noisy data
and noiseless data.

Noise level (%) VMSE for MLP VMSE for ANFIS

0 4.6976e�9 23.4826e�4
0.0001 0.0234e�4 23.4666e�4
0.001 0.1891e�4 23.3248e�4
0.01 0.9983e�4 22.0818e�4
0.1 33.0502e�4 36.2924e�4
1 333.6820e�4 59.9943e�4
10 836.8080e�4 1.4422e+12
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Expectedly, VMSE value increases as the noise level increases. This
result practically stipulates that for each approach the global min-
imum of the noiseless case is perfectly hidden due to the addition
of the noise signals. According to Table 2, we see that the perfor-
mance of the MLP based emulator is smoothly degraded as the
noise percentage increases, nevertheless, the values with small
noise percentages are found to be tolerable. Regarding the ANFIS
structures, except the results with 1% noisy data, the VMSE values
are higher than those for the MLP structure, which convincingly
performs better than ANFIS. At 10% noise level, ANFIS approach
does not yield a meaningful model whereas the MLP approach
yields a model which performs poorly. The observations letting
us build the results in Table 2 are illustrated in Figs. 10,11, where
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Fig. 10. The evolution of the process states for MLP, c1(0) = 0.92, c2(0) = 0.76, Tf = 10
predictions provided by each emulator trained with noisy data. The same legend for the
subplot.
it is seen that the emulator responses are acceptable up to a certain
level of noise and the performance of the emulators providing the
derivatives is highly vulnerable to noise corrupting the training
data.

6.3.2. Limit cycle prediction
Aside from the trajectories seen in Figs. 9–11 and Table 3, we

compare the performance of the obtained emulators in predicting
the limit cycle arising when c1 = 0.1331 and c2 = 0.8226 and
w = 0.829 (see Section 2). The top row indicates the values ob-
tained with the true system given in (1) and (2). Following three
data rows present the results obtained with noiseless data set.
Among the three emulators, closest values to the true ones are ob-
tained with the MLP based structure. The third and fourth parts of
the table list the values recorded through the use of noisy data sets.
According to the table, MLP structures trained under varying levels
of noise predict the limit cycle appropriately till the noise level
reaches 0.01%. Beyond this value, the emulator still predicts a limit
cycle yet the predicted locus is considerably away from the true
one. This can be seen from the last three rows of the table. Regard-
ing the ANFIS based structures, the predicted limit cycles are either
visibly inside the true one or outside of it for all noise levels con-
sidered. The ANFIS model obtained with the 10% noisy training
data, the emulator states converge a point (0.1082, 0.8498) indicat-
ing no limit cycle (No LC). On the other hand, the ANFIS models
trained with very lightly corrupted training data, e.g. 0.001% and
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0 s and w(t) = 1 + 0.43cos(2p 0.07t) + 0.23sin(2p0.17t) + 0.33sin(2p0.56t) and the
top subplot is adopted for the second state variable (c2(t) and x2(t)) in the bottom
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Fig. 11. The evolution of the process states for ANFIS, c1(0) = 0.92, c2(0) = 0.76, Tf = 100 s and w(t) = 1 + 0.43cos(2p0.07t) + 0.23sin(2p0.17t) + 0.33sin(2p0.56t) and the
predictions provided by each emulator trained with noisy data. The same legend for the top subplot is adopted for the second state variable (c2(t) and x2(t)) in the bottom
subplot.

Table 3
Performances in limit cycle prediction.

Model Period (s) minc1 maxc1 minc2 maxc2 Noise (%) VMSE

True system 3.59 0.1219 0.1466 0.8242 0.8996 0 n/a

minx1 maxx1 minx2 maxx2

MLP 3.59 0.1215 0.1473 0.8225 0.9012 0 9.0844e�11
ANFIS 3.58 0.1297 0.1367 0.8517 0.8732 0 6.1624e�4
LS�SVM 3.68 0.1307 0.1334 0.8684 0.8665 0 6.3679e�4

MLP 3.59 0.1215 0.1473 0.8225 0.9012 0.0001 3.6694e�7
MLP 3.60 0.1215 0.1473 0.8225 0.9011 0.001 1.6038e�5
MLP 3.60 0.1209 0.1481 0.8206 0.9033 0.01 6.8842e�5
MLP 3.59 0.1135 0.1661 0.7667 0.9325 0.1 43.4600e�4
MLP 3.97 0.1117 0.1835 0.7085 0.9560 1 70.3571e�4
MLP 4.70 0.0929 0.1679 0.7606 0.9412 10 37.4625e�4

ANFIS 3.58 0.1331288 0.1331291 0.8625447 0.8625455 0.0001 7.8957e�4
ANFIS 3.58 0.1331265 0.1331268 0.8625407 0.8625415 0.001 7.9067e�4
ANFIS 3.58 0.1298 0.1366 0.8520 0.8728 0.01 6.9397e�4
ANFIS 3.57 0.1294 0.1365 0.8512 0.8727 0.1 11.8912e�4
ANFIS 3.57 0.1170 0.1477 0.8137 0.9033 1 37.5421e�4
ANFIS No L.C. 0.1082 0.1082 0.8498 0.8498 10 n/a
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0.0001% cases, the trajectory converges a limit cycle which is so
small that it can hardly be distinguished from a point in the state
space, and these points are tabulated with higher numerical preci-
sion. In conjunction with the facts presented in Table 3 and Fig. 12,
we illustrate the true limit cycle and the limit cycles predicted by
MLP and ANFIS based structures trained under five different noise
levels to visualize the degradation in the prediction performances.
Clearly, the results tabulated in Table 3 and the trajectories seen in
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Fig. 13. Noise driven process response for c1(0) = 0.01 and c2(0) = 0.06. The training data used in generating the MLP, ANFIS and LS-SVM emulators are noiseless.
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Fig. 12 emphasize that the emulator utilizing MLP has the capabil-
ity of developing an almost true limit cycle at least in of the consid-
ered conditions and in another, a very close locus is detected.
6.3.3. Prediction under high frequency excitations
In this part, we compare the performance of the emulators

when the inflow rate has high frequency components. In Fig. 13,
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Fig. 14. Response of the MLP emulators driven by a noise sequence. The initial conditions are c1(0) = 0.01 and c2(0) = 0.06 and the training data used in generating the
emulators are noisy.
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we demonstrate the results with the noiseless data. The input, w(t),
to the emulator and to the true system is a noise sequence with
mean and variance equal to unity.

Clearly, such a test is supposed to excite the high frequency
components of the emulator dynamics in hand. According to the
results shown in Fig. 13, LS-SVM fails totally whereas ANFIS pre-
dicts the increasing state values followed by an oscillatory trajec-
tory to some extent. It is visible that the best predictions are
provided again by the emulator built using MLP structure, whose
predictions are accurately on the response of the true system.

In Figs. 14 and 15, we illustrate the results obtained with the
MLP and ANFIS based emulators, whose predictors are trained with
the noisy training data. For the clarity of the discussion, we con-
sider the trajectories with three different noise levels. Looking at
the two figures simultaneously, together with the VMSE values pro-
vided in Table 4, one sees that emulators utilizing MLP structure
perform better than the ANFIS based ones in general. As the noise
level is increased, the emulators start predicting the oscillatory re-
gime earlier. Although for the 10% case, the tabulated value for the
MLP seems to decrease, the response of the emulator is unaccept-
ably away from the true response and no prediction of oscillations
is observed in the later phases of the experiment. In brief, accord-
ing to the tabulated results and the presented figures, this category
also emphasizes the usefulness of emulators utilizing MLP struc-
ture in predicting the derivatives of the state variables.
6.3.4. Prediction of the zero output (steady state) conditions
Finally, we compare the reconstruction performance of the

three approaches in predicting the steady state behavior. For this
purpose, we apply the following input vector to each one of these
emulators and concatenate the obtained results in Table 5

uðx2Þ ¼
ð1� x2Þe

x2
c

x2ð1þb�x2Þ
1þb

x2

0
B@

1
CA ð27Þ

More explicitly, referring to the equilibrium plots in Fig. 4, when
the states are on the parabolic curve shown in the figure, and when
the steady state control input depicted in the left subplot together
with the corresponding state values are applied, the emulator
states should remain motionless. This situation can be simulated
by applying the input vector in (27) to each one of the predictors.
Practically, computing this input vector for a set obtained by run-
ning x2 from zero to unity and evaluating the response of each ap-
proach would yield _x1 and _x2, which should remain close to zero.
We have considered NP ¼ 10;000 linearly distributed samples of
x2 2 [0, 1], computed f(u(x2)). Since fw(u(c2)) = 0, we can evaluate
a cost given by (28), where the squared approximation error value
keik2 is summed over the NP samples lying on the parabola de-
picted in Fig. 4. The results of this computation are summarized
in Table 5



0 50 100 150 200
−0.1

0

0.1

0.2

0.3

0.4

Time (sec)

c 1(t)
 a

nd
 x

1(t)

Cell mass predictions of ANFIS models based on noisy data

c1(t) (Target)
x1(t) (10.00% Noisy)

x1(t) (0.100% Noisy)
x1(t) (0.001% Noisy)

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Time (sec)

c 2(t)
 a

nd
 x

2(t)

Nutrient amount predictions of ANFIS models based on noisy data

c2(t) (Target)
x2(t) (10.00% Noisy)

x2(t) (0.100% Noisy)
x2(t) (0.001% Noisy)

Fig. 15. Response of the ANFIS emulators driven by a noise sequence. The initial conditions are c1(0) = 0.01 and c2(0) = 0.06 and the training data used in generating the
emulators are noisy.
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PMSE ¼
1

NP

XNP

i¼1

kfHðuiðc2ÞÞ � fðuiðx2ÞÞk2

¼ 1
NP

XNP

i¼1

kfðuðx2ÞÞk2

¼ 1
NP

XNP

i¼1

keik2 ð28Þ

The value of PMSE for LS-SVM trained with the noiseless training
data is 135284.3061e�4, which is found unacceptably large, and
because of this, we arrange the table for a comparison of MLP
and ANFIS based emulators.
Table 4
Comparison of the results with MLP and ANFIS based emulators driven by noisy
inflow rate, w(t).

Noise level (%) VMSE for MLP VMSE for ANFIS

0 13.5214 1504.6656
0.0001 356.2774 1504.8376
0.001 508.0423 1505.3025
0.01 1501.9921 1583.2775
0.1 6583.5232 1894.8841
1 6154.2249 6859.5187
10 3303.1744 2.4494e+84
According to the numerical results presented in Table 5, we in-
fer that the MLP structure gives better predictions for the cases
with lightly noisy training data experiments. A rough comparison
of the results related to more noisy training data cases given in
the last three rows of Table 5 may mislead the reader as they indi-
cate ANFIS as better performing approach. However, the PMSE val-
ues in those rows are so high that an emulator yielding such values
of PMSE is very likely to diverge from the steady state conditions
quickly. At 0.01% noise level, ANFIS seems to perform better yet
the PMSE values are reasonably close to each other. Therefore, the
results associated to the MLP based emulator are more coherently
those staying close to the steady state conditions.

It is important to point out that processing time or the propaga-
tion delay for every approach is a good indicator when considered
Table 5
Performances in reconstructing the steady state (zero output) conditions.

Noise level (%) PMSE for MLP PMSE for ANFIS

0 3.9197e�8 3.9875e�4
0.0001 0.1498e�4 3.9807e�4
0.001 1.0960e�4 3.9346e�4
0.01 25.2373e�4 4.8484e�4
0.1 3329.2052e�4 143.7285e�4
1 59581.0290e�4 16367.2135e�4
10 1098345.9237e�4 1628358.9758e�4
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as a candidate for a real time application. For the methods studied
here, presented MLP configuration has the processing time of
0.29 ms. The value for ANFIS is equal to 12.6 ms and that for LS-
SVM is equal to 220.7 ms. The values have been obtained under
Matlab/Simulink environment that runs on a Pentium IV platform.
According to the observations, MLP structure outperforms the
other alternatives also in terms of the processing time. LS-SVM dis-
plays a long processing time making it a candidate only for appli-
cations having costly hardware.
6.4. An overall assessment of the obtained results

In this section, several features and responses of the bioreactor
benchmark problem are studied. These features include the predic-
tion of a given trajectory spanning the whole range of the state and
the input variables, the prediction of a limit cycle and the match of
the responses under high frequency excitations and the capturing
of the steady state conditions. Each one of these items have care-
fully been studied and the performance obtained in each one of
them is quantified for comparison considering the clean and noisy
training data.

Since the modeling process is subject to very limited number of
training data pairs, and the desired form of the model is an emula-
tor identifying the plant in parallel mode, approximation error in
the learning stage gains a crucial importance as it determines the
temporal accuracy of the mapping.

Three well known architectures are chosen for comparison,
namely, MLP, ANFIS and LS-SVM are considered. This is deliberate
as the standing point in the emergence of each one of these ap-
proaches gives reference to the others with an emphasis of the
advantage introduced by each specific approach. Historically, since
MLP architecture is the one discovered first, the fuzzy information
processing and support vector optimization have been postulated
as alternatives. However, the findings in this paper stipulate the
outstanding capabilities of the MLP structure. That is to say, the
operational simplicity, accuracy and robustness against noise in
the training data are the most prominent features that could not
be observed with its rivals originated from different philosophic
viewpoints. The MLP structure successfully predicts the system
behavior with noiseless training data and retains its merits to a
certain amount of noise corruption in the training data set. Show-
ing such good figures of performance under the presence of very
limited number of training data is a remarkable feature that is per-
sistently maintained by MLP structure.
7. Concluding remarks

Chronologically, the research on intelligent systems has started
with neural models of brain activity and the approaches like fuzzy
logic and support vector machines have come into the picture with
the possibilities of processing linguistic descriptions for the former
and optimization theory for the latter. This paper unfolds the out-
standing performance of MLP structure, which is the oldest one of
these approaches, in parallel mode identification of a nonlinear
benchmark system. This aspect of the current paper is its major
contribution standing on a comparison of modeling a biochemical
process.

Due to a rich set of responses emerging under different operat-
ing conditions, the bioreactor benchmark problem is a prime
example to study the effectiveness of identification tools exploiting
numerical data and displaying some degrees of autonomy and
intelligence. This paper considers three approaches and their stan-
dard tuning schemes to develop an emulator for the process. The
parallel mode identification is considered with noiseless and noisy
training data. The results have shown that the emulators based on
the MLP structure are able to provide accurate predictions for a di-
verse set of operating conditions. Although we make no claim that
the deduced results will necessarily extend to other problems, it is
seen that the studied problem is a good test bed for distinguishing
the learning and generalization performances of the considered
MLP, ANFIS and LS-SVM structures, and MLP approach is found
to be the most powerful alternative among its rivals.

Despite the numerous different configurations and parameter
settings tested for each approach, it is observed that the MLP struc-
ture with the given configuration is able to achieve the global min-
imum of the cost function within the limits permitted by the raw -
and possibly noisy-information. When the issues of noise and the
limited training data are taken into consideration, it becomes clear
that the MLP structure displays the most desired characteristics. As
opposed to the results from the experiments exploiting the ANFIS
structures, another remarkable property that is inferred from the
experiments carried out is that the performance is degraded
smoothly in MLP based emulators as the noise percentage is in-
creased smoothly.

In brief, this paper compares three widely used approaches with
associated tuning or optimization schemes. According to the re-
sults obtained, the MLP structure is found to be the most successful
one in representing the dynamic properties available in the system
under investigation, e.g. predicting the limit cycle, predicting tra-
jectories, predicting the behavior at the steady state and predicting
the behavior with inputs having fast fluctuations. All such experi-
ments with noiseless and noisy training data sets point the use of
the MLP structure for the benchmark problem considered here.
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