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Fractional Order Systems in
Industrial Automation—A Survey

Mehmet Önder Efe, Senior Member, IEEE

Abstract—This paper describes an emerging tool for industry:
fractional order systems. Conventional understanding of the no-
tion of derivative and integral uses integer orders and our sense is
mature in their physical interpretations. Derivatives or integrals of
fractional orders are generalizations of the concept containing the
classical cases and solutions based on fractional order operators
utilize the full flexibility offered by the mathematical definitions.
The interest of the industry to fractional order systems lie in the
fact that complicated modules can be simplified significantly and
practical applications can be diverse. This paper describes linear
and nonlinear cases with necessary stability and performance con-
siderations for the benefit of a practicing engineer exploiting infor-
matics in industry.

Index Terms—Fractional order control, industrial automation.

I. INTRODUCTION

T HE BIRTH OF fractional calculus goes back to 1695, with
a letter from Leibniz to L’Hôpital, asking the meaning of

derivative of order 1/2. For a few centuries, the developments in
the calculus of fractional mathematics have remained in theory
yet with the advances in the high-speed computing technology,
the operators of fractional domain has become visible in appli-
cations covering a wide range from all disciplines.

The field of industry is a special application domain for frac-
tional order systems as the demanding performance expecta-
tions with uncertainties make it a challenge to come up with
models that are useful, or control modules that can alleviate the
difficulties in various forms. The blending of the overall perfor-
mance notions with wireless technologies, security issues, net-
worked controls, and communications make the physics of the
problem a distributed one and tackling of which needs versatile
tools that have the highest possible level of flexibility, [1]–[4]. A
common feature in all these resources is the fact that the differ-
entiation and integration, or shortly differintegration, of quan-
tities are performed in integer order, i.e., for the
differentiation with respect to and for integration
over in the traditional sense. A significantly different branch
of mathematics, called fractional calculus, suggests operators

with , [5], and it becomes possible to
write . The operator with the positive
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values of describes differentiation, while negative values indi-
cate integration. Expectedly, Laplace and Fourier transforms in
fractional calculus are available to exploit in the design process,
involved with or generic terms, respectively. Indeed,
a lossy transmission line, heat conduction process, neutron flux
dynamics in a nuclear reaction or telegraph equation are all gov-
erned by fractional differential equations and the motivation of
a systems and control engineer is to exploit these tools in a way
to obtain better performance in industry.

As we know from courses on systems theory, a Bode plot for
a real and rational transfer function has asymptotes of 20 dB/dec
for every real zero and 20 dB/dec for every real pole. The frac-
tional order realizations remove this limitation and high-order
systems can be represented by fractional operators more com-
pactly. For example, dynamics governed by an integer order
transfer function

can be approximated by a fractional order integrator
over the frequency range [0.01, 100] rad/s. This

enables to obtain an arbitrary frequency response by a number
of noninteger order components scheduled appropriately over
the relevant frequency spectrum. Clearly, such a design freedom
can be useful not only in the field of control systems but also in
all areas involving digital signal processing, [6]–[9].

Fractional order control offers more degrees of freedom to
designers to meet a predefined set of performance criteria. Order
selection for differentiation and integration in a proportional,
integral plus derivative (PID) controller is an example to this.
Many successful outcomes have appeared in the literature on
linear control applications. Recently, there has been a dramatic
increase in the number of research outcomes regarding the
theory and applications of fractional order systems and control,
[10]–[12]. PID controllers are considered in [13] and [14],
stability considerations are elaborated in [15]–[18], Kalman
filtering is studied in [19], state-space models and approaches
are handled in [12], [20], and [21], root locus technique is dis-
cussed in [22], applications involved with the partial differential
equations are focused in [23] and [24], discrete time issues are
tackled in [10]–[12] and [19], an introductory work considering
SMC of a double integrator is elaborated in [25] and so on.

In this paper, after describing the industrial perspective and
the needs, we first present the preliminaries of fractional order
systems and control by defining the structural properties such
as controllability and observability, and dynamic qualities such
as stability. Next, we consider the PID control methods in non-
integer order domain. Nonlinear cases are elaborated in the ti-
tles of sliding mode control in Section V, backstepping control
in Section VI and adaptive control in Section VII. The links in
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between the logic, heuristics, experience, and intelligence are
discussed in Section VIII and an application example is given
before the concluding words.

II. AN INDUSTRIAL PERSPECTIVE AND THE NEEDS

The industrial applications exploiting the expertise of sys-
tems and control engineering has a significantly wide spectrum
covering the open-loop characterization of processes to develop
high-performance feedback mechanisms, tuning of controllers
via expert knowledge and computer tools, adaptive and self-
tuning mechanisms taking care of the changes in the process dy-
namics, nonlinear, robust and optimal control policies to meet
a predefined set of performance criteria, fault tolerant schemes,
and safety critical applications. Some of the sectors benefiting
from these are information technologies covering networking,
security and industrial buses, sensor and transducer manufac-
turing processes, chemical process industries, robot manufac-
turing industries, energy industries processing all forms of re-
sources and energy transmission industries, marine and auto-
motive sectors, metal forming industries and so on.

The ultimate expectation in all such branches of industry is
to maintain the production, while keeping the cost at minimum
possible level. In essence, the production process is also subject
to manufacture a product that can compete with its rivals and
such a production process can only be developed via compo-
nents that are versatile and that offer more than necessary de-
grees of freedom. The needs in this respect are to have modules
that have low cost in terms of money or time, low-computa-
tional complexity, high manufacturability (i.e., no extraordinary
requirements), high reliability, low-mean time between failures,
adaptability with low cost for similar applications, understand-
ability, and small distance from standard practice.

Looking at the sectors and their needs, in the sequel, we pro-
pose fractional order systems to those experimenting with real-
time data to build systems that respond quickly and that offer
more degrees of freedom to exploit.

III. FUNDAMENTALS OF FRACTIONAL ORDER SYSTEMS AND

CONTROL

The two popular definitions of fractional order differintegra-
tion are by Riemann–Liouville and Caputo. Though both of
them produce the same results, Caputo’s definition is more suit-
able for the control systems engineering.

Caputo’s definition of the fractional order differentiation is
given in (1), where is the order of the differentia-
tion. According to the definition in (1), let be an integer and

is satisfied. With such a value of , th order
derivative of a function of time, say has the Laplace trans-
form given in (2)

(1)

(2)

where is the Gamma function and
.

From a control engineer’s perspective, if a system is at rest
initially, i.e., all initial conditions are zero, the operator
acting in time domain has a counterpart in -domain and the
transfer function of a system described by a fractional order dif-
ferential equation as given in (3) can be obtained as given by
(4), where and

(3)

(4)

Similarly, one could define the affine nonlinear systems of frac-
tional order in state space, as in (5)

(5)

where is the control input, and are the vector functions
of the system-state . When the system under interest is a linear
one, as in (6) and (7)

(6)

(7)

the transfer function characterizing the relation between
and , the Laplace transforms of the output and

input respectively, is as given in (8). The solution of the
homogeneous case is obtained as given in (9), in
which is the Mittag–Leffler function defined as

and denoted by ,
[10]–[12]

(8)

(9)

The full solution of the fractional state equation in (6) and the
output equation in (7) is as given by (10)

(10)
Controllability and observability conditions are similar to the in-
teger order case and these are given in (11) and (12), respectively

(11)

...
(12)

Finally, in this section, it is useful to define the stability con-
ditions for fractional order dynamic system representations. De-
noting as an eigenvalue of the matrix , the system in (6) and
(7) is said to be stable if the condition in (13) is satisfied by all
eigenvalues of . For the transfer function representation in (8),
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Fig. 1. Left subplots: Crone approximation to the operator � , � � ���, � � �� �����, � � �� �����, and � � �. Right subplots: Crone
approximation to the operator� , � � ���, � � �� �����, � � �� �����, and � � 	
.

s correspond to the poles and the same condition applies for
stability

(13)

It is straightforward to see that in the integer order case ,
the stability condition above describes the open left half -plane
for the stability. An in depth discussion on these issues can be
found in [15], [17], and [20].

A fundamental issue with the fractional order systems is to re-
alize the fractional differintegration operators in real time. Some
results on this issue are reported in [8]. A frequently followed
approach is to approximate these operators via integer order
components as defined in (14)

(14)

A widely used approximation is the Crone method approxi-
mating the term as given above. Crone method adjusts the
gain such that when the magnitude of the ex-
pression coincides to 0 dB level. Here, is the order of the ap-
proximation and the Crone algorithm determines the pole and
zero locations in such a way that the approximation is optimum
over the chosen frequency band. In the left subplots of Fig. 1, the
approximation order is equal to 5 and in the right subplots,
is 38. The magnitude and phase plots are given and it is seen that
as increases a better fit is obtained at the cost of increasing
the computational intensity. For both cases, the pole and zero
locations prescribed by the Crone algorithm are marked along
the frequency axis of the magnitude plots.

In the literature, there are other approximations postulating
alternative algorithms to distribute the poles and zeros; Carlson,

Matsuda, high/low-frequency continued fraction approxima-
tions are just to name a few. A detailed discussion is given in
[26].

IV. CONTROL

The value of PID control scheme in the industrial practice is
high and its role is critical in most cases. The interpretability
and comprehensibility of the scheme makes it a natural choice
when considered with the peripherals automatically tuning the
parameters without external intervention. Fractional order ver-
sion of the scheme is defined by the following transfer function:

(15)

Clearly, for and , we obtain the standard integer
order setting having three degrees of freedom (dof) only via
the gains , , and , yet the module in (15) has five pa-
rameters to determine, and through which we are able to force
five independent specifications to meet. Assuming that this con-
troller is placed in front of a in a unity feedback loop,
first specification can be on phase margin as it is tightly cou-
pled with the robustness of the control system. The equations
defining the phase margin are
and , where is the gain
crossover frequency, and stands for the phase margin. Sec-
ondly, forcing a flat magnitude response around
the gain crossover frequency can be another specification to be
met by a properly set controller. Ensuring this can be achieved
by equating the derivative to zero
when , [27]. Meeting such a constraint would make
the closed-loop control system robust against variations in the
gain of . As a third specification, a controller is supposed
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to introduce noise rejection property in the high frequencies,
which can be achieved through setting a critical frequency, say

, beyond which the magnitude of the transfer function
, which corresponds to the complementary sensi-

tivity function, is less than a preselected level. Then, we consider
the capability of good output disturbance rejection that entails
forcing an upper bound on the magnitude of the sensitivity
function below a predefined frequency , i.e., we have

(16)

Finally, to obtain zero steady-state error, the controller is
designed so that it contains an integral component.

Clearly forcing such a set of specifications require searching
for an appropriate set of parameters , , , , and . De-
spite deriving the necessary set of equations from the set of con-
straints above is one way to fix the parameters, it necessitates the
knowledge of model order, dead time, poles and zeros a priori.
If the prior information about the process to be controlled is lim-
ited, autotuning becomes an elegant alternative as discussed in
[27] exploiting relay tests and [28] postulating phase shapers.

V. SLIDING MODE CONTROL

Sliding Mode Control is a widely studied robust control
scheme that has a switching nature. The state of the process
under control is guided towards a predefined attracting sub-
space of the state space such that the trajectories on it display a
desired behavior. The phase lasting until the hitting of a trajec-
tory to the switching subspace is called reaching phase, while
the motion thereafter is called sliding mode. The latter phase
exhibits certain degrees of robustness against disturbances and
variations in the process parameters and this result is called
the invariance property. In this section, the control scheme is
adapted to fractional order case and some results on stability
are emphasized.

Consider the th order fractional dynamic system given in (5)
and define the switching function as

(17)

where is a design parameter making the sliding manifold de-
fined by a stable subspace whose stability can be deter-
mined by using (13). Practically, this means that the nominal
plant model is a linear one, while the process is indeed non-
linear. Choose , for which the Caputo and Rie-
mann–Liouville definitions of the fractional integration coin-
cide, and let be the vector of differentiable command signals.
The goal of the reaching law approach is to obtain

for some . For , this would correspond to
that ensures if . Clearly, this is the

time derivative of the Lyapunov function and the
physical meaning of enforcing such a subdynamics is to render
the sliding manifold an attractor and once the error vector gets
trapped to it, the motion thereafter takes place in the vicinity of
the sliding hypersurface. Before generalizing such a result, one
has to prove that the mechanism works also for the cases where
the order of differentiation is not an integer. To show this, dif-
ferentiate at the order , this would leave

Fig. 2. For� � � �� ������, reaching the sliding manifold from both sides.

alone, and differentiate at order unity to obtain . These steps
are given as in (18) and the resulting expression is in (19), [8],
[25]

(18)

(19)

Since , we have , and
forcing makes the locus described by
a global attractor. To demonstrate this, the reaching dynamics

is solved numerically and two sample tra-
jectories are shown over the pair of axes and . This is de-
liberate as it is straightforward to interpret the prescribed mo-
tion in the integer order axis settings. In Fig. 2, the solution
of is shown for , , and

. Clearly, the initial push toward the switching man-
ifold is excessive and it gradually decreases as gets closer to
zero.

It is straightforward to demonstrate that choosing
with has the same effect

in the reaching dynamics of that in integer order design. Since
, we have the following relation in between

the quantities and :

(20)

Due to the relation , the reaching
dynamics governed by the above expression will create a
stronger push from both sides of the switching manifold. In
other words, the attraction strength of the switching manifold
is higher for any with than that with .

For a fixed , the increasing values of creates larger values
and this leads to quicker approaching to the locus characterized
by . If one wants to choose a Lyapunov function like

and takes the th order derivative of it, according
to the Leibniz’s rule of differentiation, the result is

, which
requires the manipulation of infinitely many terms. This clearly
does not allow inferring the attractiveness of deduced
either from or from .

Due to the definition in (1), we have the equality
. This relation stipulates
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that for , (the first derivative of ) must be negative
to have , or alternatively, for , (the first
derivative of ) must be positive to have . Therefore,
for closed-loop stability forcing via an appropriately
designed control law is sufficient. This explanation of inferring
the stability shows that the stability requirement (or

) of the integer order design is forced naturally if
is forced. This is a major contribution of the current

paper. To summarize, a control law ensuring also
ensures and the closed-loop system becomes stable.
Having these in mind, taking the th order derivative of (17)
yields

(21)

Equating the above expression to and solving
for lets us have the following control signal:

(22)

where it is necessary to have . With such a control
law deduced from a nominal model, what would be the response
if the model in (5) is a nominal representation of a plant con-
taining uncertainties and such as the one below

(23)

Inserting (22) into (23) and computing we get the dy-
namics in (24).

(24)

• If there are no uncertainties, i.e., and
, then we have , which is desired

to observe the sliding regime after hitting the sliding hy-
persurface.

• If is zero and the columns of are in the
range space of , then

. This case further requires the hold of the condi-
tion in (25) for maintaining

(25)

• If there are nonzero uncertainty terms, then (24) is valid
and the designer needs to set and carefully to main-
tain the attractiveness of the subspace defined by .
The conditions in (26) and (27) are needed to maintain

(26)

(27)

Here, we assume that columns of and are in the
range space of , i.e., the uncertainties are matched uncer-

tainties. If the matching conditions are not satisfied, the closed-
loop performance will be degraded to some extent and the de-
gree of this is determined by the functional details embodying
the plant dynamics.

It is straightforward to show that the first hitting to
the switching subspace occurs when , where

.

VI. BACKSTEPPING CONTROL

Backstepping technique has been a frequently used nonlinear
control technique that is based on the definition of a set of inter-
mediate variables and the procedure of ensuring the negativity
of Lyapunov functions that add up to build a common control
Lyapunov function for the overall system. Due to this nature,
the backstepping technique is applicable to a particular yet wide
class of systems, which includes most mechanical systems, bio-
chemical processes etc. The technique has successfully been im-
plemented in the field of robotics as one of the state variables is
of type position and the other is of type velocity [29]. Consider
the system

(28)

where and are the state variables,
are positive fractional differentiation orders, and

are known and smooth functions of the state variables
and . Define the following intermediate variables
of backstepping design:

(29)

where and .
Let be the variable of interest and choose the Lyapunov

function given by (30)

(30)

We know from the previous section that if ensures
for . Now, we will formulate the backstepping con-
trol technique for the plant described by (28) by repetitively
checking the quantities and as ex-
plained next.
Step 1) Check

(31)

Step 2) With , choose , this would let us
have

(32).
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Step 3) Check

(33)

Step 4) Force , ,
this requires

(34)

Step 5) Solve for

(35)
It is possible to generalize the above procedure for higher

order systems of the form

(36)

and we obtain the control law

(37)

where and

(38)

(39)

and the result of applying the control law in (37) is as below

(40)

Ensuring the negativeness of the right-hand side of (40) is equiv-
alent to ensuring the negativity of , and the trajecto-
ries in the coordinate system spanned by converge
the origin.

VII. ADAPTIVE CONTROL

Adaptive control has been a good alternative for the indus-
trial applications where the process parameters change and the
controller needs to adapt itself automatically to new operating
conditions. This capability is called adaptiveness and fractional
calculus enters the picture in designing noninteger order adapta-
tion laws or choosing noninteger order reference models [8]. A
widely used adaptive control structure is based on a model and
is called Model Reference Adaptive Control (MRAC), which is
depicted in Fig. 3.

The underlying assumption is that the changes in the process
parameters are slower than other changes in the closed-loop
system. Parameter adjustment mechanism exploits the differ-
ence between the model output and the process response

Fig. 3. Structure of the MRAC scheme.

and utilizes the gradient rule to modify the parameters of the
control law. This is stated as given below

(41)

where is a generic parameter of the control law, is
the instantaneous model following error and is the
instantaneous performance measure. Clearly, if in (41),
we obtain the conventional update laws. Stability considerations
and an example considering fractional order reference model is
presented in [8]. The benefit of utilizing fractional order setting
in MRAC is to observe a shorter transient regime compared to
the classical case and this might be critical in applications re-
quiring high speed in response.

As an illustrative example, consider the process transfer func-
tion given by and the refer-
ence model . Denote

as the Laplace transform and choose the control law
, where and .

According to the rule in (41), we obtain the following update
laws to tune and :

(42)

(43)

In Table I, the settings of the simulation are given and in
Fig. 4, the time evolution of the relevant variables are shown.
For the chosen value of the adaptation gain , we see a slow
convergence yet the speed of the response could be increased
by increasing the value of this parameter. According to the top
subplot Fig. 4, the process output follows the model output,
the middle subplot depicts the applied control signal and in the
bottom subplot, the evolution of the adaptable parameters are
displayed. The values of and are chosen 0.8 to demon-
strate the overall performance in the cases where differentiation
orders are all noninteger.

This simple yet descriptive example shows that the design
steps of the adaptive control framework can be implemented
for the processes that are too complicated in integer order do-
main yet simple in fractional orders and the toolkit in fractional
order representations is mature enough to employ in industrial
applications.
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TABLE I
SIMULATION SETTINGS

Fig. 4. Simulation results. Process output and the model output (top), applied
control signal (middle), time evolution of the adjustable parameters (bottom).

VIII. LINKS TO COMPUTATIONAL INTELLIGENCE

The term computational intelligence is often used to refer to
connectionist structures like neural networks, rule-based mod-
ules in the form of fuzzy inference systems, support vector ma-
chines or systems using a blend of these structures with heuris-
tics, evolutionary computation or methods adopted from arti-
ficial intelligence. The 1990s were the years of resurgence for
these novel methodologies as their computational needs were
excessive for the computers of the 1980s and tuning laws were
not optimized. Today, the lightweight and cheap hardware for
collecting data at high speeds and optimum processing of them
in very high-speed CPUs make these versatile tools good as-
sets for industrial applications that are involved with real time,
typically multidimensional, possibly nonlinear, and sometimes
sparsely or multirate sampled. As discussed previously within
the context of adaptive control, intelligent systems have the flex-
ibility to adapt themselves to new operating conditions and use

of fractional calculus in adaptation of parameters is another al-
ternative speeding up the learning process. In [5], a fractional
order adaptation scheme is proposed for an adaptive neurofuzzy
inference system model that runs as a control module for a two
dof manipulator, and in [30] another adaptation law is consid-
ered for sliding mode control and an adaptive linear element
is used as the controller for tuning, which is the mechanism
making the neural models dynamic.

In [31], Hopfield neural network is analyzed by replacing the
capacitors with fractors and recognition problem is considered.
This second line of research deals with the realization of neu-
rodynamic systems by utilizing noninteger order components,
whose terminal equations are, involved with noninteger orders
of the operator . In the future, the representations that are not
constrained to integer orders are expected to dominate the ap-
plication domains as exemplified in the next section.

IX. A DESIGN EXAMPLE: CEMENT MILL CONTROL

Maintaining the quality of the ground product with the
increasingly demanding cement standards has been a core issue
in the industry of cement producers. Some parameters like the
strength after a certain period of time, percent sulfate content,
percent tricalcium aluminate content or fineness of the cement
material determine to what extent the final product satisfies
the desired specifications. Obtaining a consistent fineness and
quality, on the other hand, depend heavily on the control and op-
timization approach utilized on-site. Without loss of generality,
the design and implementation of control schemes in cement
milling processes is typically involved with the selection of
several feed rates as the control variables and these schemes
aim to maintain a desired load on the mill. Therefore, the clari-
fication of operational properties of milling process has been an
interesting research problem encountered in the field. For this
reason, the dynamic representation of cement milling processes
relate the variables like mill load, product flow rate, tailing flow
rate and some other system parameters in a nonlinear fashion,
consequently, the synthesis of an appropriate command and
control mechanism entails tools offering design flexibility and
novel toolkits to handle nontraditional representations.

Control of cement milling processes has been the focus of a
number of research studies. The approaches postulated in the
area of nonlinear control have extensively been applied. Partic-
ularly, the model used in this paper has constituted a prime ex-
ample due to the inextricably intertwined relations among the
variables involved. The model has three state variables and two
control inputs, despite its representational simplicity, the dy-
namics is quite complex, and a good control performance can
only be achieved if a suitable coordination between the two con-
trol inputs can be established and maintained.

The dynamic model of the system is described by three cou-
pled and nonlinear differential equations as given in (44)–(46).
In this representation, is the mill load, is the product flow
rate, and is the tailings flow rate. These three variables are the
states of the system. On the other hand, is the output flow rate
of the mill and denotes the relative hardness of the material
inside the mill with respect to the nominal one, which is unity.
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Fig. 5. Schematic diagram of the cement milling circuit.

The system has two control inputs, denoted by , feed flow rate
and, , classifier speed

(44)

(45)

(46)

where the functions
and , where and

. In the above, ,
, , ,

, and . A schematic representation of the process is
depicted in Fig. 5, and a detailed description of the system dy-
namics and results regarding the experimental verification can
be found in [31] and [32].

The control problem is to enforce the system states by appro-
priately altering the two control inputs. However, it can easily
be shown that the designer can choose two of the three state
variables independently as the behavior of the third state vari-
able will be determined upon the selection of other two. It is
emphasized in [31] that the choice of and may lead to un-
achievable values for and it is suggested that keeping and

under control would be a suitable approach. In this paper, we
adopt the same reasoning and proceed parallel to this idea.

In [31] and [32], the model is used with ,
i.e., the dynamics in (44)–(46) are constructed via integer order
differential equations. In this paper, we will consider ,

, and case. Obviously, a process model
having such a fractional order components would require the
knowledge of fractional order systems and control and in the
sequel, due to the space limit, we will discuss only the sliding
mode control of the cement milling process. Consider the stable
reference model given by (47)–(49), where and are ex-
ternally supplied command signals driving the reference model
and

(47)

(48)

(49)

The control laws in (50)–(52) with , enforce
the response of the process to that of the reference model. We
further modify the control laws to the those given in (53)–(55)
to consider the effects of noise in the observations and changes
in the hardness parameter

(50)

(51)

(52)

(53)

(54)

(55)

where the Gaussian noise sequences , , and are
zero-mean and they have magnitude less than five with a
probability very close to zero. The variation in hardness
parameter is embedded into the system by selecting The
relative material hardness parameter has been chosen as

, which
has the slowly changing component to simulate the changes in
relative hardness in the material and high-frequency component
to simulate the small magnitude noise. Initially, ,

, and , on the other hand, the refer-
ence model states have initially been set as ,

, and . These values have been se-
lected according to the typical values that appear in the cited
references. We set for realizing the fractional order
operators numerically and chose the frequency band to

as the spectrum over which the fractional approxi-
mation is to be carried out. 90 h of simulation is performed with
these settings and the results of the simulation are illustrated in
Fig. 6. The results on the left column indicate that the process
states follow the state values prescribed by the reference model
(shown dashed in the plots) and the tracking precision under
the considered noise and uncertainty scenarios is very good.
In the right column of the figure, the applied control signals
and the change of the relative material hardness parameter
are depicted. The control signals seem to have high-frequency
components due to the discontinuities in the control laws yet
the duration of the experiment is 90 h and such fluctuations are
fairly in the acceptable range of ordinary actuation periphery.
Nevertheless, one can smooth out the sign functions to obtain
smoother control signals yet the price paid for this will be to
introduce a boundary layer around the switching subspace.

The demonstrated example shows that the control laws of the
classical systems and control theory can be generalized in such a
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Fig. 6. State tracking results and the applied control signals for� � � � �.

way that they can be applied to systems having noninteger order
derivative terms.

X. CONCLUSION

This paper considers the fractional order systems and con-
trol methods within the context of industrial automation. The
expectations of the industrial applications are demanding and
oftentimes the conventional solutions to problems are so com-
plicated that the manufacturing of the goods based on standard
approaches is not feasible. Restricting ourselves to the realm
of control systems, fractional order models and controllers pro-
vide precision and they are able to represent any real order of
system perfectly. From this point-of-view, a high-order model
containing integer order differentiators or integrators can fairly
be approximated by fractional order modules that are mathemat-
ically tractable and representationally simple.

This paper has considered the fractional order versions of PID
controller, sliding mode controller, backstepping and adaptive
controllers as well as the links to computational intelligence are
described. Though the literature of the control systems tech-
nology has a lot more than what could be presented here but
the goal of this paper is to motivate the practicing engineers in
industry to try solutions based on fractional order models.

Toward this goal, a cement milling circuit is chosen as the
test bed and a fractional order version of the nonlinear model
is adopted as the process to be investigated. The control laws
were defined in such a way that the process states follow those
of a reference model, where both of these systems are fractional
order. The findings in the simulations seem very promising to
motivate real-time experimentations in industrial applications.
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with Boǵaziçi University, Mechatronics Research

and Application Center, as a Research Assistant. During 2001, he was a
Postdoctoral Research Fellow at the Department of Electrical and Computer
Engineering, Carnegie Mellon University, and he was a member of the Ad-
vanced Mechatronis Laboratory team. Between January 2002 and July 2003,
he was with the Department Electrical Engineering, The Ohio State University,
as a Postdoctoral Research Associate. He worked at the Collaborative Center of
Control Science. As of September 2003, he started working at the Department
of Mechatronics Engineering, Atılım University, as an Assistant Professor.
He became an Associate Professor in 2004 and Full Professor in 2009. In
2004, he joined the Department of Electrical and Electronics Engineering,
TOBB University of Economics and Technology. He was the head of the
department between August 2004 to July 2007 and between June 2008 to
August 2010. He has initiated the M.S. and Ph.D. programs in Electrical and
Electronics Engineering at TOBB ETU. He has taken several administrative
positions at TOBB ETU. Between December 2010 to April 2011, he was
with the Department of Electrical and Electronic Engineering, Bahçeşehir
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