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This paper presents the design of a software supported sliding mode controller for a biochemical process.
The state of the process is characterized by cell mass and nutrient amount. The controller is designed for
tracking of a desired profile in cell mass and it is shown that the nutrient amount in the controlled bio-
reactor evolves bounded. A smart software tool named Support Vector Machine (SVM), which minimizes
the upper bound of an empirical risk function, is proposed to approximate the nonlinear function seen in
the control law by using very limited number of numerical data. This removes the necessity of knowing
the functional form of the nominal nonlinearity in the control law. It is shown that the controller is robust
against noisy measurements, considerable amount of parameter variations, discontinuities in the com-
mand signal and large initial errors. The contribution of the present work is the achievement of robust-
ness and tracking performance on a benchmarking process, under the presence of limited prior
knowledge.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Chemical processes often display a complicated behavior due to
the strong interdependencies between the variables involved.
Although in some cases the process is described by a few state
variables, obtaining good disturbance rejection with high tracking
precision requires implementing nonlinear control laws. The per-
formance obtained with nonlinear control laws cannot be achieved
in general by utilizing the their counterparts designed through the
use of linearized or simplified models of the process. This aspect of
chemical processes make them good test beds for benchmarking. A
review of nonlinear control techniques on chemical processes is
presented in [4], where the feasibility and efficacy of nonlinear
control laws are discussed with an emphasis on relevant control
challenges displayed by chemical processes.

Ungar [32] defines a bioreactor benchmark problem that excel-
lently fits in the context. The state of the process is described by
two variables named the cell mass denoted by c1(t) and the
amount of nutrients denoted by c2(t) (see [32,25,12]). The reaction
tank is assumed to be unity volume and the dimension for the cell
mass and the nutrients is grams per volume, i.e. the concentration
of the relevant variable. The goal is to maintain the cell mass at de-
sired levels by altering the inflow rate at a rate equal to outflow
rate keeping the reaction volume constant. The challenges associ-
ated with the control of the bioreactor process are the nonlinearity
ll rights reserved.
enabling the emergence of a rich set of dynamical regimes, insta-
bilities caused even by tiny variations in the process variables
and the presence of a long control sampling interval in the feed-
back loop. These difficulties constitute a solid motivation to design
a software support to a feedback control mechanism.

In the past, bioreactor benchmark problem was studied several
times for feedback control purposes. In [12], this problem is con-
sidered for developing a nonlinear control law forcing the process
states to those of a first order linear one. Feedforward neural net-
works are used to build the nonlinear function in the control law
and the plant is forced to follow a reference model. Puskorius
and Feldkamp study this problem in the context of demonstrating
the efficacy of a neural network learning algorithm and consider
the control problem about a setpoint in the stable region, another
setpoint in the unstable region and a transition between these re-
gions [25]. The controller proposed in our study forces the system
toward the stable region as will be discussed in the sequel. Brengel
and Seider propose a multi step nonlinear controller based on pre-
dictive control theory and validate the performance of the closed
loop control system on a variant of the model considered here.
The authors emphasize the preferability of operating at highest
possible cell mass solutions, which are desired to be reasonably
away from the region of periodic oscillations [5]. Anderson and
Miller [1] emphasize that the controller design for the bioreactor
benchmark problem addressed here is a challenge due to the non-
linearity and the a set of complicated regimes that arise due to it.
Clearly, the works mentioned above motivate us to position the
merit and effectiveness of sliding mode control techniques in the
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Fig. 1. Reaction tank with equal inflow and outflow rates.
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control of continuously stirred tank reactors. In this paper, we con-
sider the problem of trajectory tracking in the cell mass and we
analyze the limitations of the design carried out with a thorough
discussion.

Sliding Mode Control (SMC), also known as Variable Structure
Control, is a well established approach ensuring some degrees of
robustness against uncertainties in the feedback loop. The under-
lying idea is to create a sliding subspace, which is an attractor
due to the philosophy of the design [16,33]. SMC technique, which
has many successful applications in motion control systems, is also
applied for feedback control of chemical processes. See for exam-
ple [15], where the process is modeled by a partial differential
equation [6], where the design is based on a first order model
including dead time, and [9], where a second order sliding mode
control is performed after feedback linearization. One fact in all
these studies needs emphasis: The sliding mode controller drives
the system toward the sliding manifold and maintains the evolu-
tion on that loci, which is stable by the design and the error con-
verges the origin of the phase space. Once the trajectories are
confined to the sliding manifold, the control system displays some
degrees of robustness against disturbances and parameter varia-
tions in system dynamics. This response is called invariance prop-
erty of sliding mode control [20,16,7,19]. The underlying idea in
this paper is to implement a robust controller for the bioreactor
benchmark problem. The reaching law approach in [16] is followed
and it is assumed that limited number of numerical data are avail-
able about the nominal plant nonlinearities. This information is
used in the training of a support vector machine, which is intro-
duced in the pioneering work of Vapnik for classification and
regression problems [34]. This new approach aims at minimizing
a structural risk, i.e. the upper bound of an appropriately defined
generalization error. Not only because of this fact SVMs are supe-
rior to conventional neural networks, but also the lack of multiple
local minima in SVM learning and the lack of best configuration
search effort make SVMs attractive to use instead of conventional
neural network structures, the training algorithms of which mini-
mize the empirical risk over a set of training pairs instead of its
bound (see [13,10]). The very role of the SVM in the problem stud-
ied here is to demonstrate that the dependence of the control law
to the nominal plant nonlinearities can even be loosened by utiliz-
ing a limited number of numerical data without giving concessions
from stability and accuracy. This aspect of the proposed strategy
makes it more practicable than those requiring exact form of the
nonlinear expressions. Despite the application fields of SVMs cover
a broad spectrum [14,22,3], the realm of control engineering is a
prime area that has benefited from the possibilities offered by this
versatile software tool. In the research reported by [17], SVMs are
applied for the water level control in a three tank system. Combi-
nation of SVMs with neuro fuzzy systems is presented by [18], use
of SVMs in the context of model predictive control is elaborated by
[26,27,2]. An application exploiting SVM tool in the field of optimal
control is considered by [23] and the use of least squares type
SVMs is elaborated by [29]. The use of SVMs with Cerebellar Model
Articulation Controller (CMAC) is reported by [8], with internal
model control is reported by [36], and with adaptive inverse con-
trol is reported by [35]. Recent works focusing on SVM aided slid-
ing mode control report the chattering elimination issue in [24],
output feedback notion in [31] and time varying sliding surface de-
sign in [30]. These works and the recent trend in the use of SVMs
in control systems constitute a strong motivation for us to develop
software tools facilitating the closed loop control tasks in process
engineering.

This paper is organized as follows. Section 2 introduces the bio-
reactor benchmark problem and analyzes its behavior. Section 3
defines the semi sliding mode control problem and emphasizes
the main result of this work. The design of the nonlinear feedback
controller is presented in Section 4, and SVM based estimator
utilized in this paper is summarized in Section 5. Section 6 is de-
voted to the operating conditions, simulation results and their
interpretations. The concluding remarks are given at the end of
the paper.

2. Bioreactor benchmark problem

The bioreactor is a tank in which the biological cells are mixed
with nutrients and water as shown in Fig. 1. The cells and nutrients
are in a dynamical interaction modeled by Eqs. (1) and (2), where
c1(t) denotes the cell mass while c2(t) stands for the nutrient
amount. The process is continuously fed by pure water and the var-
iable characterizing the inflow rate is denoted by w(t). In order to
maintain the reaction volume constant, the contents of the tank is
removed at a rate equal to the inflow rate, z(t), which is composed
of a mixture of cells, nutrients and water. The goal of the control
problem is to achieve the tracking of a desired temporal evolution
in cell mass. The state variables of the process and limited numer-
ical information about the nonlinearities seen below are assumed
to be available for constructing the controller.

_c1ðtÞ ¼ �c1ðtÞwðtÞ þ c1ðtÞð1� c2ðtÞÞe
c2 ðtÞ

c ð1Þ

_c2ðtÞ ¼ �c2ðtÞwðtÞ þ c1ðtÞð1� c2ðtÞÞe
c2 ðtÞ

c
1þ b

1þ b� c2ðtÞ
ð2Þ

where the state variables are constrained by X := {0 6 c1(t),
c2(t) 6 1}. In the nominal plant model given above, the growth rate
is characterized by the parameter b = 0.02 and the nutrient inhibi-
tion parameter is given by c = 0.48.

In Fig. 2, several trajectories are shown for a set of initial condi-
tions denoted by a circle. Each subplot depicts the evolution of the
system at a constant inflow rate indicated on the top. Depending
on the value of the inflow rate, the attractors change their locations
and new attractors emerge as well. One visible one is a limit cycle
which becomes apparent when w = 0.75. When w = 0.8290, the
system changes its qualitative behavior radically. Computing the
equilibrium values corresponding to this inflow rate, one obtains
c1 = 0.1331 and c2 = 0.8626. The eigenvalues of the linearized sys-
tem of equations at this point stipulate that in the increasing direc-
tion of c2, the system undergoes Hopf bifurcation at this operating
point and turns into an unstable one displaying spontaneous oscil-
lations due to the limit cycle. In this regime, cell mass varies in be-
tween 0.1219 and 0.1466 while the nutrient amount fluctuates in
between 0.8243 and 0.8996. At the points of crossing the imagi-
nary axis, the eigenvalues of the linearized model are approxi-
mately equal to 0 ± j1.7543, from which we infer that the self
sustained oscillations are quite fast.

In Fig. 3, the limit cycle and the convergence of the neighboring
trajectories are illustrated for w = 1.2. In fact, limit cycles can occur
for all values of admissible inflow rates, i.e. 0 6 w 6 2. According to
Bendixson theorem (see [28,21]), since the quantity
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Fig. 2. The evolution of the process state for different initial conditions and at different inflow rates. The trajectories are for 20 s time.
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H :¼ @

@c1
�c1wþ c1ð1� c2Þe

c2
c

� �

þ @

@c2
�c2wþ c1ð1� c2Þe

c2
c

1þ b
1þ b� c2

� �
¼ �2wþ hðc1; c2Þ

ð3Þ
does not vanish and does not change sign in K # X, no limit cycles
can exist entirely in K. For a given constant w, the curve of sign
change for H is moved to the curve described by h(c1, c2) = 2w.
Therefore one should run the quantity 2w from 0 to 4 and deter-
mine where the sign change occurs. In Fig. 4, the regions where
the limit cycles cannot lie entirely within are depicted as white re-
gions, termed K above, and the value of 2w is contoured for 2w
equals to 0,2,3 and 4. According to this result, we figure out that
it is possible to have other limit cycle trajectories in the system
dynamics and K is a significantly wide subspace of X. From the con-
trol engineering point of view, this practically tells us that during
the controlled operation of the process, many attractors and/or
repellers can be created or destroyed depending on the value of w
and the controller must be overcoming the dynamical influence of
such difficulties while meeting the performance specifications and
revealing disturbance rejection.

Consider the process at the steady state, i.e. c_1 = 0 and c_2 = 0.
This yields the steady state control action wss ¼ ð1� c2Þe

c2
c and

with this control signal _c2 ¼ ð1� c2Þe
c2
c ð�c2 þ c1gÞ, i.e. when the

steady state is reached c2 is either 1 or a value that satisfies
g = c2/c1 where gðc2ðtÞÞ :¼ 1þb

1þb�c2ðtÞ
. In the top subplot of Fig. 5, the

parabolic (lower) curve depicts the solution obtained from
�c2 + c1g = 0. The same subplot also depicts the value of steady
state control action wss. This figure stipulates that when the steady
state is reached, the cell mass cannot assume values larger than
1þb

4 ¼ 0:255. This practical constraint was also highlighted in [25]
and [12]. The bottom subplot of Fig. 5 depicts how an arbitrary va-
lue of (c1(t0), c2(t0)) moves under the control action wss. Few
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comments can be made for the motion for t > t0 with wss. If
c1ðt0Þ > 1þb

4 then the final value of the state vector is
(c1(1), c2(1)) = (c1(t0), 1). If c1ðt0Þ < 1þb
4 , then any initial condition

that is below the curve defined by �c2 + c1g = 0 moves in the hor-
izontal direction and stops on the left segment of the curve
�c2 + c1g = 0, which is shown in the bottom subplot of Fig. 5. Alter-
natively, the initial conditions that are above the curve defined by
�c2 + c1g = 0 move right until an equilibrium is reached, i.e. those
satisfying c2ðt0Þ < 1þb

2 converge the left segment of the curve
�c2 + c1g = 0, however those with c2ðt0Þ > 1þb

2 stop at (c1(1),
c2(1)) = (c1(t0), 1). At the point ðc1ðt0Þ; c2ðt0ÞÞ ¼ ð1þb

4 ; 1þb
2 Þ, the

eigenvalues of the linearized system are both equal to zero.
According to the behavior indicated by the vector field (flow), we
conclude that this point is a half stable point, i.e. the trajectories
close to this point but below �c2 + c1g = 0 behave different from
those above �c2 + c1g = 0. This discussion with the flow illustrated
in Fig. 5 clarifies the stability of the equilibrium states thoroughly.

A last point that should be emphasized is the effect of sampling
in the control loop. In [32], the equation system in (1) is discretized
by Euler method and a step size D = 0.01 s is used. The sampling
period for the control signal, called macro time steps ([25]) is equal
to 50 Ds, which is long enough for the bioreactor process to devel-
op deviations and spontaneous oscillations from a desired setpoint
or a trajectory. In this paper, we test the performance of the pro-
posed controller by operating it at the same rates too.

In [32], Ungar points out that although this system is not a com-
pletely realistic model of any bioreactor, which may display totally
different time scales other than seconds, as seen from the pre-
sented discussion, the system considered in this paper displays
several challenges highlighted also by [1] with a similar motiva-
tion. Due to the presented properties of the system, the model con-
stitutes a good candidate for scrutinizing the merits and
effectiveness of nonlinear control laws exploiting the possibilities
offered by versatile software tools.

3. Main result

Definition 1. The semi sliding mode control problem is to force
the state vector of a dynamical process to a subspace of the state
space where some states are constrained to follow a predefined set
of reference signals while the remaining ones are constrained to
evolve bounded.

Clearly, the above definition of the control problem requires a
very careful study of stability issues. Under such a problem setting,
one can design a controller and check (i) whether the states under
tracking penalty follow the reference signals via conventional
Lyapunov analysis, and (ii) whether the remaining states evolve
bounded under the designed feedback control strategy. Following
theorem describes the chosen form of the control law.

Theorem 3.1. Let r(t) be a differentiable desired profile for the cell
mass c1(t), and let e1(t): = r(t)�c1(t) be the error in cell mass. Let
s(t) = e1(t) be the switching function and define the sliding subspace
(sliding manifold) by (s, c2) 2 0 � (0, 1). If the nominal plant nonlin-
earity is denoted by

f ðc1ðtÞ; c2ðtÞÞ :¼ c1ðtÞð1� c2ðtÞÞe
c2ðtÞ

c

then with f,g > 0, the sliding mode control law given by

wðtÞ ¼ �
_rðtÞ þ f ðc1; c2Þ � fsgnðsðtÞÞ � gsðtÞ

c1ðtÞ
ð4Þ

ensures hitting in finite time and (s, c2) 2 0 � [0, 1] is forced.
Note that parallel to the closed loop control goal, the phase

space is ðs; c2Þ 2 R� ½0; 1� and the sliding subspace is a line seg-
ment characterized by s = 0 and c2 2 (0, 1). It should further be
noted that the law in (4) needs the function f, however, in the
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sequel, the function will be replaced by a SVM based predictor
exploiting limited number of data and outputting f̂ . The proof of
the above theorem is given in the next section.

4. Semi sliding mode control of the bioreactor

In this section, the claims in Theorem 3.1 are justified with ana-
lytical details. The design presented is based on the nominal repre-
sentation seen in (1) and (2).

First, choose the Lyapunov function candidate

V ¼ 1
2

s2 ð5Þ

which clearly does not contain any information about the bounded-
ness of c2. The time derivative of the Lyapunov function in (5) is gi-
ven by _V ¼ _ss. For a f > 0, if a control law assures

_ss 6 �fjsj ð6Þ

then all trajectories are forced towards the locus described by s = 0
in the phase space. Equivalently, choosing the reaching law ap-
proach (see [16]) and setting a reaching dynamics as below ensures
the hold of (6);

_s ¼ �f sgnðsÞ ð7Þ

which can further be modified as

_s ¼ �f sgnðsÞ � gs ð8Þ

to speed up the reaching as g > 0 and _ss ¼ �fjsj � g s2 is forced. The
hitting in finite time can be shown as below. Note that when hitting
occurs, s(th) = 0 and _sðthÞ ¼ 0 are satisfied. Here, th denotes the hit-
ting time, i.e. the time elapses till a nonzero value of s(0) reaches the
sliding subspace.

sðthÞ ¼ sð0Þ �
Z th

0
f sgnðsðsÞÞ þ gsðsÞð Þds ð9Þ

The quantity sgn(s(t)) is constant and does not change sign until
the time of hitting. Therefore we have

sðthÞ ¼ sð0Þ � sgnðsð0ÞÞ
Z th

0
ðfþ g jsðsÞjÞds ¼ 0 ð10Þ

Or alternatively

sgnðsð0ÞÞ jsð0Þj �
Z th

0
ðfþ g jsðsÞjÞds

� �
¼ 0 ð11Þ

Paraphrasing and rearranging (11) yields

jsð0Þj ¼
Z th

0
ðfþ g jsðsÞjÞds P

Z th

0
f ds ¼ f th ð12Þ

The hitting time th satisfies th 6
jsð0Þj

f , which puts a finite upper
bound on the time interval for reaching the sliding subspace, i.e.
e1(t) = 0 is reached in finite time. Once the system is in the sliding
mode, the motion is confined to the sliding subspace thereafter.
This result guarantees that the desired cell mass profile is followed.
For a detailed discussion on SMC technique, one should refer to
[33,28,38].

If the phase space is Rn then the sliding motion takes place in
Rn�1. Clearly as in the case we present here, for n = 1 the sliding
mode control problem reduces to the reaching mode as the sliding
subspace is zero dimensional. It is still possible to interpret the ap-
proach within the context of sliding mode control as it displays the
robustness against uncertainties and invariance properties, all sub-
ject to the same mathematical treatment.

According to the above discussion, and the chosen Lyapunov
function, one sees that the control law in (4) ensures ðs; c2Þ !
ð0;RÞ, i.e. the cell mass follows a desired profile, but this is clearly
insufficient as the nutrient amount is desired to satisfy 0 < c2 < 1.
Remember gðc2ðtÞÞ ¼ 1þb

1þb�c2ðtÞ
, drop the arguments of the variables

for simplicity and solve the variable w from (1) and substitute into
(2). This yields

_c2 ¼ g � c2

c1

� �
f þ c2

c1
_c1 ð13Þ

Note the equality in (13) is satisfied regardless of the selected
inflow rate (w). Rearranging (13), we obtain the expression below,
and the solution in (15)

Z t

0

_c2

c2
�

_c1

c1

� �
ds ¼

Z t

0
g � c2

c1

� �
1
c2

f ds ð14Þ

c2ðtÞ ¼
c2ð0Þ
c1ð0Þ

c1ðtÞeIðtÞ ð15Þ

where

IðtÞ ¼
Z t

0
g � c2

c1

� �
f
c2

ds ð16Þ

The evolution of c2(t) should be analyzed for two cases, namely
_r ¼ 0 case, where the reference signal is a constant, and _r – 0 case,
where the reference signal is changing.

4.1. The First Case, _r ¼ 0

We analyze the steady state conditions with three lemmas gi-
ven below.

Lemma 4.1. If for some t1, c1(t1) = 0, then at t = t1

_c1 ¼ 0 ð17Þ
_c2 ¼ �c2w ð18Þ

which require w = 0 for arriving at a steady state for t P t1.
Clearly from (17) and (18), the system arrives at the steady state

when w = 0. Alternatively, any nonzero control action for t > t1 to
recover this forces c2(t) ? 0 and the steady state described by
c1 = c2 = 0 is reached as t ?1. Once the system is at c1 = c2 = 0,
then the control action is functionless. Therefore c1(t) = 0 is highly
undesirable. Physically, c1 = c2 = 0 means that there are no cells in
the reactor tank and no nutrients to feed the cells.

Lemma 4.2. If for some t2,c2(t2) = 1, then at t = t2, we have the system
of equations

_c1 ¼ �c1w ð19Þ
_c2 ¼ �w ð20Þ

which require w = 0 for arriving at a steady state for t P t2.
Due to Lemma 4.2, maintaining c2(t) = 1 for t P t2 requires

w = 0, which stops the change in c1 and the system is trivially in
the steady state. Any nonzero control action to reduce c2 causes
a reduction in c1 and this may trigger the results that arise when
c1(t) = 0. Physically, the nutrient amount is at its highest value
and the cells within the tank are overfed. Reducing the nutrient
amount in the reaction tank requires a very good scheduling of in-
flow rate.

Lemma 4.3. If the cell mass and the nutrient amount are at a steady
state (c_1 = 0, c_2 = 0), and if f – 0 then g � c2

c1
¼ 0 holds true due to (13).

As opposed to the steady state requirements of Lemmas 4.1 and 4.2,
this result enables the designer to manipulate the cell mass within
some limits with nonzero inflow rates.

The same conclusion can also be drawn from the open loop sys-
tem equations in (1) and (2), and the proof is straightforward.
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Theorem 4.1. Let _r ¼ 0; r –0 and th be the hitting time, and (4) be
the closed loop control law. At t = th, the system enters the steady state
and for t P th, the nutrient amount is characterized by

c2ðtÞ ¼
c2ð0Þ
c1ð0Þ

c1ðtÞeIðthÞ t P th ð21Þ
Proof. Since g ¼ c2
c1

in the steady state, the transient phase is the
interval 0 6 t 6 th, during which the nutrient amount is character-
ized completely by (15). At t = th, s(th) = 0 and _sðthÞ ¼ 0, i.e. c1(th) = r
and c_1(th) = 0 as _r ¼ 0. This means that the system is in the steady
state and I(t) = I(th) for t P th and (21) holds true. j
Theorem 4.2. For all steady state values maintained with w – 0, the
nutrient amount is bounded and the inequality

r < c2 6 2r 6
1þ b

2
ð22Þ

is satisfied.
Proof. Analyzing the value of c2(th) by utilizing g ¼ c2
c1

and c1(th) = r
at the hitting time gives

c2ðthÞ ¼
ð1þ bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ2 � 4ð1þ bÞr

q
2

ð23Þ

In order to have a real solution to (23), r 6 1þb
4 must be satisfied

for "t P th (see [12]). Considering the constraint 0 6 c2 6 1, we
have

c2ðthÞ ¼
ð1þ bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ2 � 4ð1þ bÞr

q
2

ð24Þ

Solving I(t) from (15) lets us have

IðtÞ ¼ ln
c2ðtÞ=c1ðtÞ
c2ð0Þ=c1ð0Þ

ð25Þ

The result of Theorem 4.1 implies that for t P th

IðtÞ ¼ IðthÞ ¼ ln
c2ðthÞ=c1ðthÞ
c2ð0Þ=c1ð0Þ

¼ ln
c2ðthÞ=r

c2ð0Þ=c1ð0Þ
ð26Þ

Substituting (24) into (26) and performing appropriate rear-
rangements yield

IðtÞ ¼ ln
c1ð0Þ
c2ð0Þ

�
ð1þ bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ2 � 4ð1þ bÞr

q
2r

0
@

1
A

¼ ln 2
c1ð0Þ
c2ð0Þ

� 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� h
p

h

 !
t P th ð27Þ

Here h ¼ 4r
1þb. Clearly, we have 0 < h 6 1 due to the condition

r 6 1þb
4 , and for these values of h, we end up with 1

2 <
1�
ffiffiffiffiffiffi
1�h
p

h 6 1.
This fact with the result in (27) lets us write the inequality

ln
c1ð0Þ
c2ð0Þ

� �
< IðtÞ 6 ln 2

c1ð0Þ
c2ð0Þ

� �
t P th ð28Þ

Utilizing the result in (21), and remembering t P th stipulate

c1ðtÞ ¼ r < c2ðtÞ 6 2c1ðtÞ ¼ 2r ð29Þ

The result above and the requirement r 6 1þb
4 for obtaining non-

negative discriminant in (23) prove the theorem. j
4.2. The Second Case, _r–0

Theorem 4.3. Let u :¼ c2
c1

be the ratio of nutrients per unit of cell mass.
Let the expression given by (13), which characterizes the behavior of
the nutrient amount, is paraphrased as

_u ¼ ðg � uÞð1� c2Þe
c2
c ð30Þ

For every possible value of the nutrient amount (c2) satisfying
0 6 c2 < 1, the equilibrium value of (30) is a global attractor within
X and the equilibrium is reached only when u = g holds true.
Proof. Recall that the expression ð1� c2Þe
c2
c was termed wss, the

steady state control action. Rewriting (30) as _u ¼ �wssuþwssg
shows that u is forced to follow g as long as 0 6 c2 < 1 holds true.
This conclusion is due to the nonnegativeness of wss. If c2 = 1 for
some time, then wss = 0 and _u ¼ 0, i.e. no change in u occurs as long
as c2 = 1 is satisfied. But any nonzero inflow rate causes 0 6 c2 < 1,
the condition of the theorem is satisfied, and u settles down to a
value determined by u = g. The latter part of this conclusion is
due to Lemma 4.2. j

In Fig. 6, several values of _u are contoured over a vector field. For
every value of c2, the illustrated vector field indicates that u tends
to converge to a constant value on the thick contour labeled 0 in
the figure. This curve describes the steady state _u ¼ ðg � uÞð1�
c2Þe

c2
c ¼ 0, and is a global attractor within X. We visualize the

behavior for 0 6 u 6 15 for better illustration. Due to the smooth-
ness of the involved expressions, the same behavior is seen for
large values of u too.

This analysis shows that g = u is forced in the closed loop, i.e. c2

evolves bounded under the control law in (4) and its value is deter-
mined by the value of the cell mass as u ¼ c2

c1
. It should also be

emphasized that since (13) is the general expression for the evolu-
tion of nutrient amount in the closed loop, the graphical analysis
based on (30) accounts for the first case (_r ¼ 0) too. Clearly the con-
trol law in (4) forces the steady state ( _u ¼ 0) described by u = g for
_r – 0 and the results of Theorem 4.2 hold true. When considered
with the results in Fig. 6, the steady state behavior requires
1 < u 6 2, which corresponds to the lower left part of the _u ¼ 0
curve in Fig. 6.

In the derivations presented so far, we have assumed that when
the sliding mode starts, s = 0 and _s ¼ 0. Furthermore, the nominal
function f(c1, c2) is assumed to be available. Yet in the application
domain, it is hard to encounter these idealized conditions. Practi-
cally, due to the infinite gain when s = 0, unnecessarily fast switch-
ing control signals are produced and very small variations in s can
cause this phenomenon, which is highly undesired. This is called
chattering and is a prime drawback of sliding mode control sys-
tems. Significant number of research studies addressed to obtain
chattering free sliding control, and it is pointed out that switching
delays and actuator dynamics do not allow the infinite frequency
switching and a natural consequence is the chattering. Though
not exact yet a practical remedy is to introduce a boundary layer
using a function that is smooth around s = 0 instead of the sign
function (see [28,6] and the references therein). Among other alter-
natives, in this study, we adopt the following function with d > 0
for smoothing the switching element.

sgnðsÞ � s
jsj þ d

ð31Þ

The function in (31) resembles the original sign function as d
gets closer to zero. Conversely, the discontinuity of the sign func-
tion is changed into a very smooth transition as d gets larger.

The design presented so far assumes that the terms seen in (1)
and (2) are available for designing a controller. Although under
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certain circumstances one may follow online estimation tech-
niques [11], clearly, this constitutes a difficulty to alleviate as it re-
quires knowing the structural form of the nonlinear expression
under interest. This paper assumes the presence of limited amount
of numerical information, which is highly practical, and exploits
them to implement the proposed controller. The motivation for
utilizing SVM structure for function approximation is mainly be-
cause of its ability to approach precisely mostly based on limited
number of data pairs. In the next section, we summarize the
SVM based function approximation scheme adopted in construct-
ing the control law in (4). The function f is substituted by f̂ , where
few data to describe f are available and jf � f̂ j is desired to be small.
5. A Support Vector Machine (SVM) for approximating f(c1, c2)

The relevance of the SVMs to the problem in hand lies in the fact
that SVMs have very powerful mapping capabilities even when the
number of training data is very few. Clearly the value of such an
approach becomes visible when the cost of collecting data to de-
scribe the dynamics is high. The very role of using such a mecha-
nism is to increase the implementability of a feedback controller
for a system displaying several forms of uncertainties. Since the
process monitoring is an integral part of the control of such sys-
tems, typical problem formulation allows the designer to have
some data instead of the functional forms. A more difficult case
is when the number of data is limited. This work aims at showing
the usefulness of SVMs in such cases as detailed below.

Define c = (c1, c2) and consider the regression problem over the
set of pairs

D ¼ fðc1;d1Þ; . . . ; ðcN ;dNÞg; ci 2 ½0;0:4� � ½0;1�; di 2 R ð32Þ

with a function

f̂ ðcÞ ¼ hw; ci þ b ð33Þ

where w and b denote the weight vector and the bias value, respec-
tively. h�, �i stands for an appropriately defined operator, which is an
inner product for linear regression and a kernel for nonlinear
regression. Defining an e � insensitive loss function as in (34) the
pairwise contribution of the ith pair is quantified.

Lðdi; f̂ ðciÞÞ ¼
0 if jdi � f̂ ðciÞj < e
jdi � f̂ ðciÞj � e otherwise

(
ð34Þ

Clearly the cis satisfying jdi � f̂ ðciÞj < e do not contribute the
loss function and this explains how the trained SVM becomes
insensitive to samples that are in the e vicinity of the target values.
Minimizing the empirical risk given by (35) lets us obtain the best
values of wis causing least complexity represented by kwk2;

R ¼ 1
2
kwk2 þ C

XN

i¼1

Lðdi; f̂ ðciÞÞ; ð35Þ

where C is a parameter determining the relative importance of the
terms contributing to R [13]. The primal form of the optimization
problem can be expressed compactly as

min
w;b

1
2
kwk2 þ C

XN

i¼1

ðni þ n�i Þ ð36Þ

s:t:

f̂ ðcjÞ � dj � e 6 nj;

dj � f̂ ðcjÞ � e 6 n�j ;

nj; n
�
j P 0;

8>><
>>: ; j ¼ 1;2; . . . ;N ð37Þ

where nj and n�j are slack variables penalizing the deviations from
the target output. The above described problem can be converted
into a convex quadratic optimization problem by writing the dual
representation, which is obtained after the application of Karush–
Kuhn–Tucker conditions (see [13] for details). The solution can be
obtained by introducing the Lagrange multipliers and performing
the following minimization for k; k� 2 RN;

�k; �k� ¼ arg min
k;k�

1
2

XN

i¼1

XN

j¼1

ki � k�i
� �

kj � k�j

� �
hci; cji

�
XN

i¼1

ki � k�i
� �

di þ
XN

i¼1

ki þ k�i
� �

e; ð38Þ



M.Ö. Efe / Advances in Engineering Software 42 (2011) 94–107 101
with constraints
PN

i¼1ðki � k�i Þ ¼ 0 and 0 6 ki; k
�
i 6 C for i =

1, 2, . . . , N. It should be noted that the support vectors are the cis
for which the corresponding ki � k�i value satisfies e < ki � k�i <
C � e. Defining C as the set of support vectors and M as the number
of elements in C, the result of the minimization lets us obtain

w� ¼
XN

i¼1

ki � k�i
� �

ci; ð39Þ

b� ¼ 1
M

XN

i¼1; i2C
ðdi � e sgnðki � k�i Þ �

XN

j¼1; jRC

hci; cjiðkj � k�j ÞÞ ð40Þ

which are to be used in (33). The nonlinear regression problem is to
replace the operator h�, �i in (32) with a kernel function satisfying
the Mercer conditions (see [13,10] for details).

The rationale behind choosing e-insensitive SVM structure for
approximating the nominal function f is the following: The nomi-
nal function f should be extracted from the sparsely distributed
samples, but in performing this, the SVM approximator must not
memorize the map described by such a limited number of pairs.
One good way is to reserve a tolerable margin for the errors in
nominal plant nonlinearity through the use of a dead e band in
the cost expression. This further enables the elimination of geo-
metrically very close data pairs that might enter the training set,
which will be shown in the following section.
6. Operating conditions, results and discussion

According to the procedure and tools introduced, the control
law in (4) is realized under the following operating conditions.

	 As mentioned earlier, since the nominal system dynamics is
known, the function f̂ is constructed by utilizing a very limited
number of numerical values. This is especially important as in
real-time applications, one generally do not have access to the
functional details of the system in hand. Due to powerful
regression capabilities based on numerical observations, the
use of SVM is a remedy among other alternatives such as fuzzy
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logic, neural networks or genetic algorithms, which generally
suffer from the presence of multiple local minima, structure
(hidden layer number or node/rule number) selection problem
and overfitting [37]. Based on this, the control law in (4) is con-
structed by the use of f̂ provided by the SVM module. That is to
say, during the tests, we have the following control law.
100
e (se

ibition

10
e (sec

ate pa

ameter (
wðtÞ ¼ �
_rðtÞ þ f̂ ðc1; c2Þ � fsgnðsðtÞÞ � gsðtÞ

c1ðtÞ
ð41Þ
	 The observations for the state variables c1(t) and c2(t) are noisy.
The Gaussian noise sequences corrupting the state variables lie
within the interval [�0.001, 0.001] with a probability very close
to unity. Such values for noise sequences indicate an average of
�50 dB signal-to-noise ratio (SNR). The noise in the observa-
tions is a difficulty introducing uncertainties that necessitates
the design of a robust controller.
	 Ungar [32] emphasizes that small variations in the values of c

and b lead to significant deviations from the target cell mass.
For example, given perfect measurements, 2% change in c and
20% change in b may cause 50% deviation in the cell mass,
c1(t) (see [5,32]). In this paper, we consider the nominal values
of these parameters for the design of the controller and in the
justification of the proposed scheme, we study these parame-
ters with some variation in time. The necessity for investigating
the behavior under parameter variations is tightly relevant to
the need of exploring the controller performance under extreme
conditions. In the top subplot of Fig. 7, c(t) is illustrated for the
first 200 s of the simulation. The value of this variable changes
within the interval [0.4568, 0.5032], which means maximum
4.83% change in the nutrient inhibition parameter (c). Likewise,
the bottom subplot of Fig. 7 depicts the change of growth rate
parameter, b. This parameter is depicted for the first 20 s of
the simulation and it displays a variation in [0.1276, 3.5717] �
10�2 indicating a maximum of 93.62% deviation from the
nominal value given by b = 0.02. Clearly the chosen profiles
for the variables and the presence of measurement noise entail
certain degrees of robustness to meet the stability and perfor-
mance requirements.
150 200
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 parameter

15 20
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c) and growth rate parameter (b).
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	 Another difficulty is the large initial errors in the cell mass. If
the initial value of e1 is large, then the controller must force it

towards zero with a sequence of admissible inflow rates, w(t),
and must maintain the stability during the transient phase. This
paper also addresses the issue of handling the large initial
errors.
	 The choice of the reference signal is another important issue in

closed loop control. As shown in the top subplot of Fig. 8, the
desired cell mass (dashed curve) claims the management of
three different regimes, namely the simulation is started with
a trapezoidal profile, continued with a sinusoidal profile and
finally we choose a discontinuous desired profile to see how
the controller stabilize the system. Although the design pre-
sented entails _r <1, i.e. differentiable reference signals, choos-
ing this sort of a command profile enables us to figure out the
qualitative and quantitative observations arise during the
reaching phase especially at different cell mass (c1(t)) levels.
	 Next, the effect of actuation interval for the controller will be

emphasized. In [32], Ungar defines T = 50D = 0.5 s as the control
interval. In other words, the inflow rate maintains its value dur-
ing nT 6 t < (n + 1)T, where n is a discrete time index. Conse-
quently, the computation of the control signal applied during
this interval is based on the observations at t = nT. The practical
drawback of such an actuation scheme is the following: As dis-
cussed in the Section 2 and shown in Fig. 2, the system may get
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Fig. 8. The evolution of the cell mass and the nutrient amount for a given desired
trapped to a limit cycle or an attractor during this time, or it
may develop instabilities, and these make it necessary to imple-
ment a perfect flow rate management strategy. In Fig. 9, several
trajectories of the controlled system are shown. The ideal
control law in (4) is utilized and the nominal plant is simulated.
No noise and no parametric uncertainties are considered in the
figure and reference signal is rðtÞ ¼ 0:12� 0:1 sinð2pt

100Þ. Clearly if
there is fast control actuation, the system is suppressed to
develop instabilities yet as the control period is increased, the
trajectories are more likely to display deviations.
	 Monitoring of process parameters, state variables, performance

metrics and time variation of process subfunctions is a
core component in process engineering industry. As it is the
crux of the presented approach, collecting data and developing
models for the real processes is an important issue in data based
identification techniques. Despite their usefulness in providing
data continuously, the monitoring systems contain costly
hardware and software. Here, we assume that the process is
not equipped with such a costly monitoring periphery yet few
data from the process is achievable by experiments or from pro-
cess operators. Since every chemical process has its own
dynamical properties, data collection scheme becomes peculiar
to each case individually. The case studied in this paper
assumes few data are provided to the control system
engineer.
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	 Finally, the discrete time formulation needs emphasis. Let k
denote the discrete time index. If the switching variable is cho-
sen as s(k): = r(k)�c1(k) and discretizing the reaching law in (8)
with period T would give s(k + 1) = (1 � gD)s(k)�fDsgn(s(k)).
On the other hand, the first order Euler approximation to the
derivative would let us have the discrete time representation
below.
c1ðkþ 1Þ ¼ c1ðkÞ þ Dð�c1ðkÞwðkÞ þ f ðc1ðkÞ; c2ðkÞÞÞ
c2ðkþ 1Þ ¼ c2ðkÞ þ Dð�c2ðkÞwðkÞ þ f ðc1ðkÞ; c2ðkÞÞgðc2ðkÞÞÞ

ð42Þ
Choosing
wðkÞ¼�rðkþ1Þþc1ðkÞþD f̂ ðc1ðkÞ;c2ðkÞÞþð1�gDÞsðkÞ�fDsgnðsðkÞÞ
Dc1ðkÞ

ð43Þ
would force the stability condition (s(k + 1)�s(k))s(k) �
�(g + f)Ds(k)2 < 0 iff f̂ ð�; �Þ � f ð�; �Þ, and the same set of results
would be obtained as the discrete time approach would consider
only the integer multiples of the sampling period T.

The above issues describing the operating conditions emphasize
the associated challenges of the control problem. From an industry
practitioner’s point of view, some of these issues may be of limited
value, yet, considering them is informative in the sense of capabil-
ities of the proposed control technique. Choice of reference signal
in Fig. 8 or the time variations in the process parameters can be
considered differently in a practical application yet our goal is to
unfold the performance of the closed loop control system under
stringent operating conditions and demanding performance
expectations.

In the simulations, we have used only 30 training patterns for
the training of SVM and obtained an approximate form of f̂ . The
nominal function f is used in generating the training pairs and
the nominal values of c and b are utilized whenever required.
The samples have been chosen randomly from the interval
(c1, c2) 2 [0, 0.4] � [0, 1] and quadratic optimization tools of Mat-
lab
�

have been used in solving the optimization problem in (38).
The parameters used during the optimization are, C = 10,000, e =
0.0001 with a Radial Basis Function (RBF) kernel hci; cji ¼
e�

1
2kci�cjk2

. The reason that lies behind the choices of these values
is to allow very little degrees of freedom in the e neighborhood
to learn f with smallest possible number of support vectors (small
but nonzero e) but not to memorize the pairs (large but finite C)
while meeting a reasonably small kwk2 value. The optimization
procedure terminates at the optimum point yielding kwk2 =
368.25 and

PN
i¼1ðki � k�i Þ ¼ �4:1 with 28 support vectors. Clearly,

for the chosen value of e, 2 patterns in the training set do not con-
tribute to the loss in (34) and these patterns are not contained in
the SVM basis. It is possible to utilize kernels other than RBF kernel
and loss functions different from the one used here. For a list and
derivation of other alternatives that can be incorporated into the
design, the reader is referred to [13,10].

Now we use the approximate provided by SVM, exploit the law
in (41), and perform the simulations. The other parameters of the
controller are f = 0.04, g = 0.2 and d = 0.05, which have been set
after few trials. As shown in the top subplot of Fig. 8, the cell mass
(solid curve) closely follows the desired cell mass profile (dashed
curve). The middle subplot depicts the discrepancy between these
two quantities, i.e. e1(t), or in other words, the value of the switch-
ing function, s(t). The results seen emphasize that very small track-
ing error is maintained. The bottom subplot of the figure depicts
the evolution of nutrient amount, c2(t). The variable evolves
bounded as claimed in the derivation of the controller. The initial
transient regime in the cell mass is illustrated in a window at the
bottom of the figure, where it is convincingly apparent that hitting
occurs around th = 4.4 s satisfying th 6

jsð0Þj
f � 7:007 s since s(0) =

�0.2803.
A substantially important measure for practical applicability is

the cost of physical realizability of the signals produced by the con-
troller. The time evolution of the inflow rate corresponding to the
emergence of the behavior shown in Fig. 8 is illustrated in Fig. 10.
Clearly the signal is smooth enough to realize as shown also in the
window plots. The top window in the figure displays the initial
transient regime, whereas the bottom window depicts the
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fluctuations around t � 700 s. It is worthwhile to stress that the
control signal is saturated for a very short while only when there
are step changes in the command signal, i.e. the condition _r <1
is violated. During the rest of the operation, the control signal is
smooth enough and the fluctuations are convergent. It is seen from
Figs. 8 and 10 that the plant response has deviations around a con-
stant value in spite of no change in the command signal. This
unsteadiness in response to a steady command signal is due to
the low frequency changes in the plant parameters. The effect of
high frequency fluctuations is not distinguishable from the figures.
These prominent features of the control signal demonstrate that
the controller possesses highly desirable characteristics such as
good disturbance rejection capability and guaranteed tracking pre-
cision under the presence of uncertainties. The use of (31) intro-
duces a thin boundary layer whose thickness is determined by d.
If s(t) is within the boundary layer, then it approaches the origin
smoothly. This modification of the original control law gives a very
slight rise to the value of th, which is found to be acceptable. From a
practical point of view, smoothness of the control signal makes it
possible to implement the control law with hardware having no
or little extraordinary properties at the cost of giving very slight
concessions from the performance.

Another quantity to monitor is given by g � c2
c1

, which is forced to
zero when _r ¼ 0. When _r–0, this quantity determines the evolu-
tion characteristics of c2. Referring to Fig. 6, we have shown that
the control law in (4) forces all trajectories shown in Fig. 6 to the
locus described by g � c2

c1
¼ 0, which explains the results shown in

Fig. 12. The window plot in the figure depicts the initial transient
regime, which very quickly converges to zero and the motion
thereafter takes place in the vicinity of zero, i.e. g � c2

c1
� 0 is

maintained.
In Fig. 11, the trajectories followed in the state space are

illustrated and the same initial conditions considered in Fig. 9
are selected. The trajectories are obtained with the control law
in (41) and the uncertainties in the parameters b and c are effec-
tive. The SVM provides the estimate f̂ , the observed states are
noisy and the reference signal is the one shown on the top sub-
plot of Fig. 8. Clearly, a comparison with the trajectories seen in
Fig. 9 stipulates that the proposed control scheme is able to
force the cell mass towards its desired value while keeping the
amount of nutrients around the loci g ¼ c2

c2
. The system success-

fully alleviates the adverse effects of increasing control periods
which indicate the robustness and real-time practicability of
the approach.

One might wonder what happens if other values for f are used.
According to the tests we have carried out, larger values of f pro-
voke oscillations in the cell mass particularly effective as the cell
mass approaches the value 1þb

4 . Larger values of g degrade the
tracking performance significantly too. In fact the choice of f is
tightly dependent upon the quantity supc1 ; c2

jf � f̂ j. If the control
law is rewritten in (1) with f̂ , one obtains the expression

_s ¼ �f sgnðsÞ � g s� ðf � f̂ Þ ð44Þ

It is straightforward to show that the sliding subspace is an
attractor, i.e. s_s < 0, if jf � f̂ j < f holds true. In our case, the chosen
value of f assures this condition without provoking any undesired
oscillation.

Finally, tests carried out with smaller values of the macro time
steps have shown that the controller performs much better as the
control interval is decreased yet this would require high sampling
rates and fast computing facilities entailing costly hardware in
practice.

A comparison of the controller proposed in this study and the
one in [12] differs significantly in terms of tracking performance.
Specifically, the control law in this reference given by

w ¼ f̂ þ c1 � r
c1

ð45Þ
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forces _c1 ¼ �c1 þ r dynamics. Since f̂ � c1ð1� c2Þe
c2
c with c = 0.48 in

(45), although the sliding mode controller maintains the tracking of
the desired cell mass profile, the control law given by (45) is unable
to force the plant states to their desired values. The controller fails
particularly during the intervals 700 < t < 750 s and 800 < t < 850 s
because of the variations in the nutrient inhibition parameter and
the growth rate parameter. In the top left subplot of Fig. 13, the de-
sired and the observed cell mass behaviors with the control law in
(45) are depicted. Clearly the tracking precision is good till the
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Fig. 12. The evolution of the expression g
t = 600 s, which is the instant when the command signal jumps
from 0.12 to 0.22 suddenly. Overshoots due to step change in this
subplot are visible which is also available in the response with
the sliding mode controller (see Fig. 8). We denote the percent over-
shoot by Mp but compute it for the peaks that occur at t = 600 s and
t = 900 s for the controller in (45). The results shown in this subplot
together with the values tabulated in Table 1 stipulate that the slid-
ing mode controller analyzed in this study yields considerably
smaller Mp values. In other words, the capability of handling sharp
0 750 1000

 (sec)

ession g−c2/c1

20
(sec)

e in the quantity g−c2/c1

� c2
c1

during the course of operation.
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Fig. 13. A comparison of the sliding mode controller with that proposed by [12].

Table 1
A comparison of the peak values and overshoot percentages at some particular
instants of time.

Time (t) c1(t) and Mp with
(41), SMC

c1(t) and Mp

with (45)

t = 600 s 0.300 %80.0 0.368 %148.0
t = 700 s 0.283 %31.5 0.415 n/a
t = 800 s 0.280 %30.0 0.409 n/a
t = 900 s 0.272 %26.0 0.401 %90.5
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changes in the command signal is a prominent feature of the SVM
aided sliding mode controller, and this feature is not gained through
the use of the control law in (45).

In the bottom left subplot of Fig. 13, the inflow rate computed
by the control law in (45) is shown. Clearly the inflow rate is zero
for some periods of time and c2 is unity. As discussed earlier in
Lemma 4.2, the cell mass keeps constant below the desired value,
which is an undesired result. The behavior of the cell mass during
the interval 680 6 t 6 780 s is depicted in the top right subplot of
the figure, where the command signal is the dashed curve and
the response with (41) is the dash-dotted curve, which closely fol-
lows the reference signal, and the response with (45) is the solid
curve. The figure makes it possible to compare the overshoots
and steady state responses clearly. Lastly in the bottom right sub-
plot, the computed inflow rates are shown for (41) by the dash-
dotted curve, (45) by the solid curve. Although the two control
laws compute similar values till t = 700 s, after this time, the con-
trol signals and the associated responses differ dramatically.

The observations above with the facts visualized in Fig. 13 indi-
cate that the tracking performance, robustness and disturbance
rejection capability of the SVM aided sliding mode controller are
remarkably better than the controller proposed in [12].
In [25], the closed loop control is achieved with neural networks
and only the cell mass is assumed to be available. In that study,
c = 0.416 and b = 0.016 are used during the validation phase. These
values correspond to a 5% change in c and 20% change in b and are
mentioned to degrade the performance significantly in [32]. The
SVM aided sliding mode controller presented here maintains the
desired cell amount with smaller amount of nutrients compared
to the results in [25]. Although the only condition on c2 is the
bounded evolution, the interval for c2 in [25] correspond to a tran-
sition in between stable and unstable regions, while the design
presented here forces the system to operate at stable region only
(see Fig. 5).
7. Concluding remarks

This paper considers the SVM aided semi sliding mode control
of a chemical process displaying several difficulties for achieving
and maintaining a satisfactory closed loop performance. The chal-
lenges associated with the plant are discussed and the derivation
of the sliding mode controller are presented. The controlled vari-
able is the cell mass within the tank and is shown to follow a de-
sired profile while the other state variable (nutrient amount)
evolves bounded. This is analyzed thoroughly and the theoretical
claims are justified through simulations. It is observed that the
proposed sliding mode controller displays invariance to the varia-
tions in the parameters and the noise in the measured quantities.
The results obtained with the SVM aided sliding mode controller
are compared with the controller proposed in [12] and it is seen
that the approach presented in this study outperforms the control-
ler in (45) in terms of tracking performance, control signal smooth-
ness, disturbance rejection capability and robustness against
uncertainties.
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This paper differentiates from the existing body of literature in
terms of (i) introducing an analytic explanation for the behavior of
the uncontrolled state, (ii) utilizing a statistical learning theory
based software tool (SVM) for constructing the control signal from
sparsely distributed limited number of data, (iii) demonstrating
how such a distinguishable degrees of robustness can be observed
with a design based on nominal plant dynamics, (iv) providing
graphical tools with physical interpretation of the conditions that
are likely to occur in practice, and finally (v) postulating a fairly
simple control law.

In brief, robustness is acquired through the sliding mode control
law while the optimal representation in the sense of margin
maximization for the plant nonlinearity is performed through an
e-insensitive SVM. The paper demonstrates the success of the
cooperation of these powerful design tools on a benchmark prob-
lem with a comparison with previously published alternatives.
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