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We consider integral sliding mode control with a fractional order reaching law in this paper.
The reaching law approach is followed and stability of the sliding manifold is shown
graphically. We choose a quadrotor-type unmanned aerial vehicle (UAV) to validate the design.
The attitude dynamics of the vehicle is controlled by the proposed scheme and it is seen that the
proposed form of the control system gives much better results compared with its integer order
counterpart. The contribution of the study is to report a highly robust control scheme utilizing
the fractional order differintegration operators.
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1. Introduction

A letter from L’Hôpital to Leibniz in 1695 was asking the meaning of a derivative of
order 1

2. It was not until much later, only the during the last few decades, that the
fractional order operators have made it possible to use automatic control systems.
Considering the operator D9d/dt, one could define the operators D� with a non-
integer �2R. Further, for �40, one obtains differentiators while �50 yields
integrators. In the literature, these operators are called differintegration operators
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and two widely used definitions are by Riemann–Liouville in (1) and by Caputo in (2)

(Das, 2008; Oldham and Spanier, 1974; Ortigueira, 2000; Podlubny, 1998):

D�� ¼ �ð�Þ :¼
1

�ðn� �Þ

d

dt

� �nZ t

0

�ð�Þ

ðt� �Þ�þ1�n
d� ð1Þ

D�� ¼ �ð�Þ :¼
1

�ðn� �Þ

Z t

0

�ðnÞð�Þ

ðt� �Þ�þ1�n
d� ð2Þ

where n� 1� �5n and n is an integer. Defining L as the Laplace transform and s as

the Laplace variable, it is possible to write L(D�)¼ s� and such an approach makes it

possible to write transfer functions in fractional orders, define the state space systems
in fractional order and determine their solutions under various types of operating

conditions (Das, 2008; Matignon and d’Andera-Novel, 1997; Ortigueira, 2000; Vinagre

et al., 2002). Clearly in a significant volume of research outcomes reported so far, the

linearity is an underlying assumption in the design and analysis of fractional order

control systems. This paper focuses on adapting the sliding mode control technique

for fractional order operators. The fundamental question answered here is as follows:
is �¼ 0 an attractor if a reaching law given by �(1þ�)

¼��sgn(�) with �40 is chosen? If

yes, once the error vector falls within the subspace characterized by �¼ 0, the sliding

manifold, it will behave according to the manifold equation, whose sole attractor is the

origin.
Integral sliding mode control technique is a variant of the classical sliding mode

control technique exploiting the integral of the error as the primary variable (Slotine

and Li, 1991). In the past, integral sliding mode control has been used several times.

Applications to stochastic systems displaying delays is considered by Niua et al.
(2005), magnetically suspended balance beam systems by Lee et al. (2001), discrete

time systems by Abidi et al. (2007), use of linear matrix inequalities in sliding surface
design with integral sliding mode control is considered by Choi (2007) and pulse

modulated converters operating in discrete time are elaborated on by

Venkataramanan and Divan (1990). Application to the field of mobile robot control

is considered by Defoort et al. (2006) and control of induction motors is reported by

Rios-Gastelum et al. (2003). Clearly, the range of applications of integral sliding mode

control is as wide as its conventional counterparts that have a number of applications

in quadrotor control. The problem of quadrotor control is a good test bed to
demonstrate the merits and effectiveness of novel control schemes, see Bouabdallah

et al. (2004), Bouabdallah and Siegwart (2005), Castillo et al. (2005), Tayebi and

McGilvray (2006), Xu and Özgüner (2008) and the references therein.
This paper is organized as follows. In Section 2 we present integral sliding mode

control with a fractional order reaching law approach and related issues. In Section 3

we present the dynamic model of the quadrotor and describe the control problem.
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In Section 4 we describe the problem of power loss and its alleviation using neural
networks that complete the dynamic model. The Cartesian controller and the results
obtained through a set of simulations are presented in Section 5 and concluding
remarks are given at the end of the paper.

2. Integral sliding mode control with a fractional order reaching law

Sliding mode control has been a very popular control scheme experimented with on
various types of real-time dynamical systems admitting switching-type control
signals. Robotics is one prime area of application where tracking precision along
various types of trajectories is often sought. The philosophy of the scheme is based
upon the creation of an attractor in the phase space, typically spanned by the error and
its time derivative, and once the point travelling within the phase space is captured by
the attractor, the behaviour thereafter is governed by the subspace, called the sliding
manifold. The latter dynamic behaviour is called the sliding mode due to the guidance
of the error vector toward the origin of the phase space in a manner that slides along
the sliding manifold. The phase lasting until the first contact with the sliding manifold
is called the reaching phase and the law rendering the sliding subspace an attractor is
called the reaching law (Gao and Hung, 1993; Young et al., 1999). No matter what the
differentiation order, the general description of SMC is as described above yet
demonstrating the attractiveness of the sliding subspace is a problem remedied in this
paper.

The standard design steps of the sliding mode control scheme is as follows.
Consider the nonlinear dynamic system given as €x ¼ f ðx, _xÞ þ�f þ gðx, _xÞ þ�g

� �
u.

In this representation, x and _x are the state variables, f ðx, _xÞ and gðx, _xÞ are smooth
functions of the state variables referring to the known nominal part, �f and �g denote
the unknown but bounded functions of the state variables and time. In addition, u is
the input and gðx, _xÞ 6¼ 0. Consider the reference trajectory for position xr, which is
differentiable, and for velocity _xr. Define the positional tracking error ex9 x� xr and
its derivative _ex :¼ _x� _xr. Based on these variables, set the switching function as
� :¼ _ex þ �ex, �40 is the parameter determining the slope of the sliding line. If a
control law forces �¼ 0 for t� t0, then one obtains ex(t)¼ ex(t0) exp(��(t� t0)), t� t0.
With a positive valued Q, choosing the reaching law _� ¼ �Q sgnð�Þ would force any
initial error vector to �¼ 0 in finite time as the time derivative of a Lyapunov function
V ¼ 1

2 �
2 is negative definite for � 6¼ 0. Calculating the derivative _� and equating it to

�Q sgn(�) then solving for the input (u) yields the control law in (3), where we utilize
solely the information about the known nominal part:

u ¼
1

gðx, _xÞ
€xr �Q sgnð�Þ � �_ex � f ðx, _xÞ
� �

ð3Þ
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Substituting the control law into the system dynamics with uncertainties lets us have

_� ¼ �Q sgnð�Þ þ�f þ�gu ð4Þ

Clearly if supx, _x, tj�f þ�guj5Q, then � _�5 0 is satisfied and the subspace defined by

�¼ 0 becomes an attracting subspace making the overall feedback control system

insensitive when the error is trapped within it. It is also possible to derive an upper

bound for the time of first contact with the sliding line, say th. In this case, _ex ¼ ��ex

and we have th5|�(0)|/Q.
Integral sliding mode control in integer order modifies the switching function as

� :¼ Dþ �ð Þ
2~ex, where ~ex :¼

R t
0 exð�Þd�. This clearly implies the new switching function

in (5) and, according to the aforementioned procedure, the control signal in (6):

� ¼ _ex þ 2�ex þ �
2

Z t

0

exð�Þd� ð5Þ

u ¼
1

gðx, _xÞ
€xr �Q sgnð�Þ � 2�_ex � �

2ex � f ðx, _xÞ
� �

ð6Þ

The control law above enforces the switching variable

� :¼ Dþ �ð Þ
2~ex ð7Þ

to zero thereby leading to the emergence sliding regime after a contact with the sliding

surface in finite time. The modification by considering the integral of the error instead
of the error itself makes the overall control scheme more robust against disturbances

(Abidi et al., 2007; Choi, 2007; Defoort et al., 2006; Lee et al., 2001; Niua et al., 2005; Rios-

Gastelum et al., 2003; Venkataramanan and Divan, 1990).
The traditional approaches summarized so far consider the integer order

derivatives as the theory and practice lying behind is well founded and many

successful applications were reported in the literature. We now choose the reaching

law as given by (8) with 05�51:

�ð1þ�Þ ¼ �Q sgnð�Þ ð8Þ

In order to obtain _�, we differentiate (8) to the order ��, which corresponds to

integrating (8) to the order �. This would let us have

_� ¼ �Q D��sgnð�Þ ð9Þ

On the other hand, the first derivative of (7) with respect to time yields

_� ¼ Dþ �ð Þ
2ex ð10Þ

¼ €ex þ 2�ex þ �
2ex ð11Þ

¼ €x� €xr þ 2�ex þ �
2ex ð12Þ

¼ f ðx, _xÞ þ gðx, _xÞu� €xr þ 2�ex þ �
2ex ð13Þ
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Equating (13) to (11) and solving for u yields the following control law that contains

the integral of the switching variable at order �:

u ¼
1

gðx, _xÞ
€xr �Q D��sgnð�Þ � 2�_ex � �

2ex � f ðx, _xÞ
� �

ð14Þ

Regarding the stability of the closed-loop control system exploiting the control law in

(14), one has to figure out whether �¼ 0 is an attractor, or not. In Figure 1, the time

solution of the reaching dynamics is given for unity initial condition and for various

� values. Clearly, �¼ 0 is reached in all cases yet every trajectory has its own transient

characteristics. Recall (9) with the Riemann–Liouville definition of the fractional order

integration in (1). Since 05�51, we have sgn(D�� sgn(�))¼ sgn(�) and this leads us to
deduce that a control law forcing �(1þ�)�50 would also force � _�50 initially.

Therefore, the control law in (14) renders the subspace defined by �¼ 0 an attractor. In

Figure 2, the convergence is depicted for �¼ 0.5. Two initial conditions are studied

and the results are plotted on the axes _� versus �. It is seen that the trajectories follow

a particular pattern while converging to the origin and numerically it is seen that the

origin is a stable attractor.
Let S9 {th0

, th0
, . . . , thn

} be the set of time instants corresponding to switching

times. Let th0
be zero and ck9 (�1)k(ukþ uk�1) and uk¼ 1 for k� 0, zero otherwise.
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Figure 1 The solution of �(1þ�)
¼�� sgn(�) for �¼ 1 and

for �(0)¼ 1

Efe 989



Having these in mind, we can postulate the following solution to use in the right-

hand side of (9):

D��sgnð�Þ ¼
sgnð�ð0ÞÞ

�ð�þ 1Þ

Xn

k¼0

ckðt� thk
Þ
�

where thn
� t� th nþ1. Clearly when t¼ thk

for k� 1, we have �(thk
)¼ 0, which is solved

explicitly as in (15):

�ðtÞ ¼ �ðthn
Þ �

Qsgnð�ð0ÞÞ

�ð�þ 2Þ

Xn

k¼0

ck ðt� thk
Þ
�þ1
� ðthn

� thk
Þ
�þ1

� �
, n ¼ 1, 2, . . . ,1 ð15Þ

Regarding the solution above, when n¼ 1, ie, 0¼ th0
� t� th1

, we have

�ðtÞ ¼ �ð0Þ � Qsgnð�ð0ÞÞ
�ð�þ2Þ ðt� th0

Þ
�þ1. From this, it can be shown that the first contact

occurs at th1
given as follows:

th1
¼
j�ð0Þj�ð�þ 2Þ

Q

� � 1
�þ1

ð16Þ

For |�(0)|¼ 1, �¼ 1 and �¼ 0.5, one obtains th1
¼1.209 s, which is the value seen in

Figure 1 as well. When n¼ 2, ie, th1
� t� th2

, the second hitting time is solved from the

following equation:

ðth2
� th0
Þ
�þ1
� ðth1

� th0
Þ
�þ1
� 2ðth2

� th1
Þ
�þ1
¼ 0 ð17Þ
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Figure 2 Integer order phase space trajectories of the solution of
�(1þ�)

¼�� sgn(�) for �¼ 1 and for �(0)¼�1
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Similarly, for the computation of th3
, one needs to solve the following algebraic

equation:

ðth3
� th0
Þ
�þ1
� ðth2

� th0
Þ
�þ1
� 2ðth3

� th1
Þ
�þ1

þ 2ðth2
� th1
Þ
�þ1
þ 2ðth3

� th2
Þ
�þ1
¼ 0

ð18Þ

Unfortunately, as n increases, the complexity of the equation to be solved increases
and it only becomes possible to show the result via numerical techniques as seen in
Figure 1, where we see that �¼ 0 is a global attractor.

3. Quadrotor dynamics

The vehicle considered in this study is illustrated in Figure 3 and the physical
parameters are listed in Table 1. The dynamical equations describing the quadrotor
rotorcraft are given in (19)–(24), where the first three of these equations describe the
dynamics in the Cartesian space, whereas the last three express the dynamics in
the Euler angles, ie, the attitude. The state of the system is characterized by the
translational and angular positions and velocities, ie, x, y, z, _x, _y, _z, �, 	,  , _�, _	 and _ .
The control input for the translational dynamics is denoted by U1. The control inputs

Mg
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Figure 3 Top: Schematic view and variable definitions of a
quadrotor type unmanned aerial vehicle (UAV). Bottom: Real
implementation used to determine b and d coefficients
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influencing the attitude of the vehicle are U2 for the roll axis, U3 for the pitch axis and

U4 for the yaw axis:

€x ¼ cos� sin 	 cos þ sin� sin ð Þ
1

M
U1 ð19Þ

€y ¼ cos� sin 	 sin � sin� cos ð Þ
1

M
U1 ð20Þ

€z ¼ �gþ cos� cos 	
1

M
U1 ð21Þ

€� ¼ _	 _ 
Iyy � Izz

Ixx

� �
þ

jr
Ixx

_	� þ
L

Ixx
U2 ð22Þ

€	 ¼ _� _ 
Izz � Ixx

Iyy

� �
�

jr
Iyy

_�� þ
L

Iyy
U3 ð23Þ

€ ¼ _	 _�
Ixx � Iyy

Izz

� �
þ

1

Izz
U4 ð24Þ

Denoting the lifting force created by the ith motor–propeller pair by Fi and the

corresponding angular velocity by �i, in (25)–(29), the definitions of the control inputs

and the term W seen in the unmanned aerial vehicle (UAV) dynamics are given by:

U1 ¼ b�2
1 þ b�2

2 þ b�2
3 þ b�2

4 ¼
X4

i¼1

Fi ð25Þ

U2 ¼ b�2
4 � b�2

2 ¼ F4 � F2 ð26Þ

U3 ¼ b�2
3 � b�2

1 ¼ F3 � F1 ð27Þ

U4 ¼ d ð�2
1 ��2

2 þ�2
3 ��2

4Þ ð28Þ

� ¼ �1 ��2 þ�3 ��4 ð29Þ

Table 1 Physical parameters of the quadrotor unmanned aerial vehicle

L Half distance between two motors 0.3 m
M Mass of the vehicle 0.8 kg
g Gravitational acceleration constant 9.81 m/s2

Ixx Moment of inertia around x-axis 15.67�10�3

Iyy Moment of inertia around y-axis 15.67�10�3

Izz Moment of inertia around z-axis 28.346�10�3

b Thrust coefficient 192.3208�10�7 Ns2

d Drag coefficient 4.003�10�7 Nms2

jr Propeller inertia coefficient 6.01�10�5
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The control problem here is to drive the UAV toward a predefined trajectory in the
3D space by generating an appropriate sequence of Euler angles, which also needs to
be controlled. The latter is called attitude control and the command signals to which
are produced by the Cartesian controller.

4. Power loss compensation using neural networks

The dynamical model of a UAV such as that considered in this paper is obtained using
the laws of physics. Principally, a control signal to be applied to the motors must be
converted to pulse width modulation (pwm) signals then electronic speed controllers
properly drive the brushless motors, and a thrust value is obtained from each motor–
propeller pair. The numerical value of the thrust is dependent upon the type of the
propeller and the angular speed of the rotor in radians as Fi ¼ b�2

i where Fi is the
thrust at the ith motor, b is a constant-valued thrust coefficient and �i is the angular
speed in radians per second. If the control inputs (thrusts) needed to observe a desired
motion were immediately available, then it would be easier to proceed to the closed-
loop control system design without worrying about the effects of the actuation
periphery, which introduces some constraints shaping the transient and steady-state
behavior of the propulsion. Indeed, the real-time picture is complicated as the control
signals are torques produced by motor–propeller pairs introducing certain transient
characteristics, further, the vehicle is powered electrically, where the battery voltage is
reducing gradually. Such a change in the battery voltage causes different lift forces at
different battery voltage levels although the applied pwm level is constant as shown
in Figure 4. The same 42-second pwm profile in Figure 4 is applied 40 times and as the
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Figure 4 Left: Applied pwm profile. Right: Decrease in the
angular speed as the battery voltage decreases
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battery voltage reduces the angular speed at a constant pwm level decreases thereby

causing a decrease in the generated thrust. Furthermore, the relation with different

pwm levels is not linear, ie, the same amount of change in the input causes different

amounts of change at different levels, and this shows that the process to be modeled is

nonlinear.
According to Figure 4, comparing the fully charged condition of the battery and the

condition at the last experiment displays 15 g of difference for the lowest level, 154 g at

the highest level, which is obviously an uncertainty that has to be incorporated into

the dynamic model and the feedback controller appropriately. The use of neural

networks is a practical alternative to resolve the problem induced by battery
conditions. Using Vb(t) to denote the battery voltage, a neural network model

performing the map ypwm¼NN(�c, Vb) is the module installed to the output of a

controller generating the necessary angular speeds. Here �c is the angular speed

prescribed by the controller. Another neural network that implements y�¼NN(Vb,

pwm, H2(pwm)) is the module installed to the inputs of the dynamic model of the

UAV. The box with H2(�) is a low pass filter incorporating the effect of transient in the

thrust value. The dynamic model contains Fi that are computed using �i.
The reason why we would like to step down from thrusts to the pwm level and step

up from pwm level to forces is the fact that brushless DC motors are driven at the

pwm level and one has to separate the dynamic model of the UAV and the controller

by drawing a line exactly at the point of signal exchange occurring at the pwm level.
The use of neural networks facilitates this in the presence of voltage loss in the

batteries.
In Figure 5, the diagram describing the role of aforementioned offline trained

neural models are shown. In Figure 6, the results obtained with real-time data are

shown. A chirp-like pwm profile was generated and some noise was added to obtain a

pwm signal to be applied. When this signal is applied as an input to any motor, the

variation in the battery voltage is measured and filtered to guide the neural models as

shown in the top right subplot. After that, the corresponding angular speed is

pwm
predictor NN 

 predicting 
NN

Vb
Filtered battery voltage 

i

Controller side

pwm

Dynamic model side

ic

Ω

Ω

Ω H2

H1

Figure 5 Installing the neural network components for hand-
shaking at pwm level, whose applicable range is [0.050, 0.085]
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computed experimentally. In the middle left subplot, the reconstructed pwm signal

and the applied signal are shown together. In the middle right subplot, the

performance for the angular speed (�) predicting neural model is depicted. Both

subplots of the middle row of the figure suggest a useful reconstruction of the signal

obtained from the neural networks that were trained by using Levenberg–Marquardt

algorithm. In both models, the neural networks have a single hidden layer with
hyperbolic tangent-type neuronal nonlinearity and linear output neurons. The pwm
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predicting model has 12 hidden neurons with a final mean squared error (MSE) value
of 90.8285� 10�4, which is for 88 400 pairs of training data. Angular speed predicting
neural model has 10 hidden neurons with a final MSE value 3.9208� 10�4 for 62 050
pairs of training data collected utilizing a DS1104 data acquisition system.

Bottom subplots of Figure 6 illustrate the difference between the desired and
predicted values. As the local frequency of the target output increases, the neural
models start performing poorer yet the performance is good when the signals change
slowly. This is an expected result that is in good compliance with the typical real-time
signals obtained from a quadrotor-type UAV discussed in the third section.

5. Simulation results

Denote the reference Cartesian positions and velocities by rx , ry, rz and _rx, _ry, _rz.
We define Pz9�4_z� 4(z� rz) and choose the altitude controller as given in (30):

U1 ¼M
Pz þ g

cos 	 cos�
ð30Þ

Substituting (30) into (19) and (20), and adopting the small angle approximation
would let us obtain the following dynamics:

€x � ðPz þ gÞ tan 	 ð31Þ

€y � �ðPz þ gÞ tan � ð32Þ

In the above dynamics, tan � and tan 	 can be regarded as the control inputs for
observing the desired motion in Cartesian space. To achieve this, following choices are
made

�r ¼ � arctan
Py

Pz þ g

� �
ð33Þ

	r ¼ arctan
Px

Pz þ g

� �
ð34Þ

where Px ¼ �_x� ðx� rxÞ and Py ¼ �_y� ð y� ryÞ. Now we utilize the fractional order
integral sliding mode controller explained in the Section 2 to track these Euler angles
to obtain the desired motion. The simulations have been carried out with the settings
given in Table 2.

The other practical considerations implemented are listed below.

	 A common problem of the sliding mode control systems is the presence of a chattering
phenomenon, that is a natural consequence of the scheme checking the sign of
a quantity that is close to zero. The robustness is dependent upon the value of �, and
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if a larger � is chosen, theoretically the system becomes more capable of alleviating
uncertainties of larger magnitudes yet this provokes the switching nature of the control
signal and the performance degrades significantly. Further, chattering is magnified and
the control system becomes practically infeasible. A remedy is to introduce a sign
function smoothing, yet this introduces a boundary layer and reduces from the
performance. In the current study, due to the design presented, a (relatively) large value
for � is chosen and no smoothing is performed on the sign function.
	 The UAV developed in the laboratory is powered by lithium–polymer type batteries and

it is shown that the outrunner brushless DC motors claim very high currents causing a
significant reduction in the battery voltage. This causes an uncertainty to be alleviated
by the controller as the same input signal causes different lift forces as the battery
voltage drops in time. Owing to space limitations, the details are not presented here but
the change in the battery voltage is simulated as an exponentially converging value
starting from 11.1 V to 9.9 V in 130 seconds of flight. For details refer to Köroglu et al.
(2009).
	 Aside from the initial conditions given in Table 2, the remaining set of initial conditions

are chosen to be zero, ie, the vehicle is motionless initially. Since the goal is to
demonstrate the performance of the proposed fractional order sliding mode control
scheme, it is adequate to assume non-zero positional initial values for the Euler angles
and x and y coordinates.
	 In order to demonstrate the robustness against disturbances, the angular speeds of the

vehicle have been perturbed additively to simulate the effect of weather conditions, such
as wind. The perturbations modify the angular speeds to �iþK sin(2
t/Ti), where
T1¼10 s, T2¼ 12 s, T3¼ 14 s, T4¼ 16 s and K¼ 8.
	 The observations are noisy, the state vector composed of the positions and velocities are

corrupted by noise sequences of power 1�10�4, which is large enough to test the
performance of the proposed control scheme.
	 Since we need the angular speeds without installing any rpm sensors, the term W is

computed by utilizing the prescribed control signals

�ðtÞ � �1cðt� �Þ ��2cðt� �Þ þ�3cðt� �Þ ��4cðt� �Þ ð35Þ

where � is a small delay removing the algebraic loop problems. Although it was

possible to choose a smaller value, in the simulations �¼ 0.1 s has been selected to see

Table 2 Simulation settings

� Fractional order 0.5
�t Simulation stepsize 1 ms
T Final time 130 s
� Slope parameter 1
� Reaching law parameter 10
(�(0), 	(0),  (0)) Initial attitude of the vehicle 


7 , � 

6 , � 


5

� �
(x(0), y(0), z(0)) Initial position of the vehicle (�2, 3, 0)
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how robust the overall control system is.
	 Finally, the implementation of fractional order operators need to be discussed. During

the simulations, the numerical implementation of the control law in (6) is achieved
through the use of well-known Crone approximation, which prescribes a series of poles
and zeros to build a transfer function k

QN
i¼1ð1þ s=ziÞ=ð1þ s=piÞ approximating the

desired operator spectrally (Valério, 2005). We choose N¼ 9 and a frequency range
covering 0.001 to 1000 rad/s to realize these operators. Regarding the choice �¼ 0.5,
following remarks are useful. For �¼ 0, classical design is obtained, and in this case, the
closed-loop system is not more robust than the case with 05�51. At the other extreme,
when �¼ 1, the attractiveness of �¼ 0 is lost. Such a behavioral spectrum indicates that
there is a good value of � such that �¼ 0 is an attractor and the closed-loop system
displays the desired robustness properties. Based on these observations, this paper
considers �¼ 0.5.
As � approaches zero, the robustness is lost smoothly and many contacts take place
before the sliding regime starts; on the other hand, as � approaches zero, the errors
signals are deteriorated and the control system becomes extremely vulnerable to noise.
This naturally suggests choosing �¼ 0.5, which is equally distant to the mentioned
undesired regimes.

Under the aforementioned conditions, the results shown in Figure 7 are
obtained. According to the trajectories depicted in the top left subplot of the
figure, the vehicle is seen to follow the desired path closely. The other three
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subplots illustrate the discrepancies observed in the Cartesian components of the
dynamics. Considering the followed trajectory, the errors are seen to be tolerable
yet it is possible to enhance these error trends by changing the Cartesian space
controller to another one. In this work, we only implement the fractional order
integral sliding mode control scheme for the attitude dynamics whose results are
shown in Figure 8. The subplots on the left column depict the tracking of the
prescribed Euler angles, and those on the right illustrate the tracking errors, which
converge to zero after a transient phase characterized by the proposed reaching
dynamics. The evolution of the switching variables (�) for each subdynamics
is shown in Figure 9, where it is seen that the switching variables converge
to zero during the reaching phase and sliding mode starts after the reaching
phase ends.

A comparison of the control law in (6) with the classical integral sliding mode
control scheme stipulates the results shown in Figure 10. Few parameter
combinations have been studied and it is seen that either the performance is
poor or the closed-loop system becomes unstable. For the smaller values of wind
disturbance magnitude K, the controller is able to force the UAV to track its
desired trajectory, yet when K¼ 8, the controller is unable to maintain a safe flight.
This simple comparison shows that the proposed scheme, despite its slightly costly
nature, is a good alternative in applications requiring robustness such as that
considered in this paper.
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6. Concluding remarks

Integral sliding mode control has been reformulated for a fractional order reaching

law approach. The benefits of the classical sliding mode control are observed, further,

the control system has been shown to be robust against disturbances acting on the

state variables and the controller output. A quadrotor-type UAV was chosen as the test

bed and it is seen that the proposed control scheme successfully drives the system

toward the desired regime under the presence of loss in the battery voltage.
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Compared with its integer order alternative, the proposed form of the control law
enhances the trajectory tracking performance of the UAV, the control of which require
robustness against disturbances and uncertainties.
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