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A SUFFICIENT CONDITION FOR CHECKING THE ATTRACTIVENESS

OF A SLIDING MANIFOLD IN FRACTIONAL ORDER SLIDING MODE

CONTROL
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ABSTRACT

Stability issues of fractional order sliding mode control laws are analyzed
in this paper. For differentiation orders less than unity, it is shown that a stable
reaching law in the fractional order case corresponds to a stable reaching law
in the integer order case. The contribution of the current study is to explain the
stability of the closed loop by the use of the Caputo and Riemann-Liouville
definitions of fractional order differentiation.
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I. INTRODUCTION

Sliding mode control (SMC) is a well-established
robust control scheme that produces a switching type
control signal that alleviates uncertainties that are
matched and bounded. In the past, a number of vari-
ants of the sliding mode control scheme have been
developed and successful results have been obtained.
Most studies reported so far have a common property;
for the continuous time case, the derivatives and inte-
grators are of integer order and the differences for the
discrete-time cases involve a finite number of terms.
Motivated by this and the fact that some physical
processes are described by fractional order operators,
e.g. heat conduction, lossy transmission lines, etc.,
this paper aims to explain the stability properties of
fractional order sliding mode control systems.

Fractional order control offers more degrees
of freedom to designers to meet a predefined set of
performance criteria. Order selection for differentia-
tion and integration in a proportional, integral plus
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derivative (PID) controller is an example of this. Many
successful outcomes have appeared in the literature on
linear control applications. Recently, there has been a
dramatic increase in the number of research outcomes
regarding the theory and applications of fractional order
systems and control [1–3]. Since the emergence of the
theory dating back to a letter from Leibniz to L’Hôpital
in 1695, asking about the possible consequences of
choosing a derivative of order 1/2, the theoretical
foundations have been stipulated and, with advances
in computational facilities, many important tools of
classical control have been reformulated for (or adapted
to) the fractional order case, such as PID controllers
[4, 5], stability considerations [6–9], Kalman filtering
[10], state space models and approaches [3, 11, 12],
root locus technique [13], applications involving partial
differential equations [14, 15], discrete time issues
[1–3, 10], and so on. A system to be identified can be
well approximated by an integer order model, or it can
be approximated by a much simpler fractional order
model. Having the necessary techniques and tools for
such cases becomes a critical issue. With this motiva-
tion in mind, this paper focuses on the sliding mode
control technique, although applications to nonlinear
systems are highly limited due to the lack of a tool such
as Lyapunov analysis for explaining the stability. This
paper aims to fill this gap to some extent. A sufficient
condition is derived and an application example is
discussed. SMC is considered, as its robustness and
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invariance properties are exploited strongly to observe a
desired response. Introductory work considering SMC
of a double integrator is discussed in [16]. This paper
gives a practical condition for checking whether the
switching manifold is an attractor. The paper is orga-
nized as follows. Section II briefly describes fractional
order differentiation and the main result of the letter.
Section III presents the SMC design. A numerical
example is given in Section IV, and concluding remarks
constitute Section V.

II. FRACTIONAL ORDER
DIFFERENTIATION AND INTEGRATION

Let � be a function of time and �∈ (0,1) be a posi-
tive real number. With the lower terminal equal to zero,
Caputo’s definition of derivative at order � is given by
(1) and the Riemann-Liouville definition is given in (2):

d�

dt�
�(t) = 1

�(1−�)

∫ t

0

�̇(�)

(t−�)�
d� :=C��(t) (1)

d�

dt�
�(t) = 1

�(1−�)

d

dt

∫ t

0

�(�)

(t−�)�
d� :=R��(t) (2)

where �(�)=∫ t
0 e

−t t�−1dt is the Gamma function.
It should be noted that fractional integration in the
sense of Riemann-Liouville and Caputo corresponds

to the same expression given as d−�

dt−� �(t) :=D−��(t)=
1

�(�)

∫ t
0

�(�)
(t−�)1−� d�. This is due to the selection of

�∈ (0,1).

Theorem 1. Let D∈{C,R} be one of the fractional
differentiation operators. Let �(t) be a function of time,
and let �(t) be a signal satisfying D��=−k sgn(�),
where k>0 and �∈ (0,1). Such a nonzero �(t) also
satisfies ��̇<0, indicating a convergence toward �=0.

Proof. As 0<�<1, equality D��=−k sgn(�) can be
rearranged as �̇=−kD1−�sgn(�). Since sgn(D1−�sgn
(�))= sgn(�) the inequality �D��<0 is satisfied for
∀t>0. Let us consider the implications of this for (1)
and (2) separately. According to (1), Caputo’s defini-
tion yields �C�� := �

�(1−�)

∫ t
0

�̇(�)
(t−�)�

=d�. If �C��<0,
for ∀t>0, then � and �̇ must have opposite signs,
i.e. ��̇<0 is obtained. According to (2), we have
�R�� := �

�(1−�)
d
dt

∫ t
0

�(�)
(t−�)�

d� in terms of the Riemann-
Liouville definition of the fractional order derivative.
We can obtain �R��<0 in the following cases. In the
first case, �(t)<0 and the integral

∫ t
0 �(�)(t−�)−�d�

need to monotonically decrease. In the second case,

�(t)<0 and the integral
∫ t
0 �(�)(t−�)−�d� must mono-

tonically increase. In both cases, the signal �(t) is
forced to approach the origin faster than t−�. According
to both definitions, D��=−k sgn(�) ensures that �=0
is a global attractor for �∈�. �

A numerical example justifying this result is
shown in Fig. 1, where �=0.5 and k=1. The solutions
of D��=−k sgn(�) for �(0)=1 and �(0)=−1 are
plotted on integer order axes, and it is clear from Fig. 1
that ��̇<0 is satisfied. According to the aforementioned
rule of fractional integration, if we apply the integration
operator to both sides of D��=−k sgn(�) we obtain

�(t)−�(0) =D−�(−k sgn�(t))

=D−�(−k sgn�(0))

= −k sgn�(0)
1

�(�)

∫ t

0

d�

(t−�)1−�
(3)

and taking the integral leads to the following solution:

�(t)=

⎧⎪⎨
⎪⎩

(
|�(0)|− k

�(�+1)
t�

)
sgn(�(0)) t<th

0 t≥ th

(4)

where th = (k−1|�(0)|�(�+1))1/�. It is important to
note that the solution does not change sign until it
reaches zero, which allows us to write the second line
of (3).
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Fig. 1. The solution of D��=−k sgn(�) for �(0)=1 and
�(0)=−1 are obtained and �(t) is plotted versus its
first derivative to show that �(0)=0 is a global
attractor.
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III. SLIDING MODE CONTROLLER
DESIGN

Let x∈�n and u∈� be the state vector and the
input signal, respectively. Let �∈ (0,1) and D�x= (A+
�A)x+(B+�B)u be the system to be controlled. Let
r∈�n be the vector of reference signals, and let � be
the switching function defined as

�=K(x−r) (5)

where K is chosen such that �=0 is a subspace in �n−1

and its global equilibrium is the origin. With k>0, the
control law in (6) forces the dynamics in (7).

u = −KAx+KD�r−k sgn(�)

KB
(6)

D�� = −
(
1+K�B
KB

)
k sgn(�)

+K�B
KB
K(D�r−Ax)+K�Ax (7)

1. If there are no uncertainties, i.e. DA=0 and
DB=0, then we have D��=−k sgn(�). This
ensures �D��<0 and the sliding regime emerges
after hitting the sliding hypersurface �=0.

2. If DB=0 and the columns of DA are in the range
space of B, then D��=−k sgn(�)+K�Ax. This
case further requires that the condition in (8) holds
to maintain �D��<0.

k>|K�Ax| (8)

3. If there are nonzero uncertainty terms, then (7) is
valid and the designer needs to set k carefully to
maintain the attractiveness of the subspace defined
by �=0. The conditions in (9)–(10) are needed to
maintain �D��<0.

∣∣∣∣K�B
KB

∣∣∣∣<1 (9)

k >

(
1+K�B
KB

)−1 ∣∣∣∣K�B
KB
K(D�r−Ax)+K�Ax

∣∣∣∣
:= K (t) (10)

IV. A NUMERICAL EXAMPLE

Consider

A=
⎡
⎢⎣

0 1 0

0 0 1

−1 −2 −1

⎤
⎥⎦ , B=

⎡
⎢⎣
0

0

1

⎤
⎥⎦ , �=0.5

and

�A=
⎡
⎢⎣

0 0 0

0 0 0

0.1x2 0.12sin6�t+0.15x3 0.15sin 10�t−0.11x1

⎤
⎥⎦

�B=
⎡
⎢⎣

0

0

0.02sin7�t+0.1x1

⎤
⎥⎦

Due to the uncertainty terms, the plant dynamics is
nonlinear. With K=[1 2 1], the switching function
becomes �= (D�+1)2e1, where ei = xi −ri , i =1,2,3,
and x=[x1 x2 x3]T . Due to the above choice, �=0
is a plane and has a unique global equilibrium at the
origin. In the simulations, we need to realize the frac-
tional order operators via numerical approximations
exploiting integer order terms. Crone approximation in
(11) is selected to realize the operator D, and sinusoidal
reference profiles are chosen as described by (12)–(13).

D� := s� ≈G

∏N
k=1 1+s/wpk∏N
k=1 1+s/wzk

(11)

r1 = sin(10t) (12)

r2 = D�r1=√
10sin

(
10t+ �

4

)
(13)

r3 = D�r2=10sin
(
10t+ �

2

)
(14)

where G in (11) is set so that the expression passes
through 0 dB level when w=1rad/s. The variables
wpk and wzk are scheduled by the Crone algorithm
with a given realization order N and a frequency
region. We choose N =38 for the frequency range
[1e−12 1e+4] rad/s. In setting these values, we
considered the highest possible N value not causing
numerical problems and an adequately wide band of
the frequency spectrum to approximate the fractional
order operator. With these selections, we simulate
the control loop and, in Fig. 2, the reference signals
and the process responses are shown together. In spite
of the initial errors, the process states very quickly
reach their desired values. Figure 2 shows that the
sliding mode starts very quickly as the errors very
quickly reach zero. Figure 3 illustrates the control
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Fig. 2. Reference signals and the plant responses.
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Fig. 3. Applied control signal.

signal produced by the proposed scheme. The smooth-
ness of the control signal needs emphasis as it is
relevant to the actuation periphery in real control
systems. Since the control signal depends on the sign
of a quantity that is very close to zero, noise in the
observations can introduce undesired high frequency
switching in the control signal. This is known in the
literature as chattering. A remedy for this is to utilize
the approximation sgn(�)≈�/(|�|+�) with a small �,
e.g. �=0.01, to obtain a smoother control signal and to
reduce chattering to some extent. In Fig. 4, the behavior
in the phase space is shown with a circle marking
the origin. The error vector hits the sliding surface at
approximately t=0.5ms and remains in the vicinity.
Since the prescribed dynamics require convergence to
zero, the trajectory tends toward the origin. To see this
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Fig. 4. Phase space behavior.
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Fig. 5. The evolution of the switching variable �(t).

explicitly, in Fig. 5, the time evolution of the switching
variable is shown on a logarithmic time axis. Clearly,
the switching function is maintained around zero for
approximately t>0.5ms. The regime around zero is
depicted separately as a window plot in Fig. 5, where
the results support the theoretical claims. Figure 6
depicts K (t) defined in (10), which is always less than
k=10. The condition in (9) is satisfied as KB=1 and
|K�B|≤0.12.

V. CONCLUSIONS

In the SMC approach for fractional order nonlinear
systems with nonlinearities entering as the uncertainty
terms, it is sufficient to check whether �D��<0 is satis-
fied if �=0 is desired as a global attractor. Due to the
design of the switching function �, the trajectories lying
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Fig. 6. The evolution of K (t) of (10).

on the sliding hypersurface defined by �=0 converge
to the origin of the phase space.
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