
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Autonomous quadrotor flight with vision-based obstacle avoidance
in virtual environment

Aydın Eresen a, Nevrez _Imamoğlu b, Mehmet Önder Efe c,⇑
a Middle East Technical University, Inonu Bulvari, Electrical and Electronics Engineering Department, 06800 Ankara, Turkey
b Nanyang Technological University, School of Computer Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
c University of Turkish Aeronautical Association, Department of Pilotage, Akköprü, 06070 Ankara, Turkey

a r t i c l e i n f o

Keywords:
Optical flow
Vision-based control
Obstacle avoidance

a b s t r a c t

In this paper, vision-based autonomous flight with a quadrotor type unmanned aerial vehicle (UAV) is
presented. Automatic detection of obstacles and junctions are achieved by the use of optical flow veloc-
ities. Variation in the optical flow is used to determine the reference yaw angle. Path to be followed is
generated autonomously and the path following process is achieved via a PID controller operating as
the low level control scheme. Proposed method is tested in the Google Earth� virtual environment for
four different destination points. In each case, autonomous UAV flight is successfully simulated without
observing collisions. The results show that the proposed method is a powerful candidate for vision based
navigation in an urban environment. Claims are justified with a set of experiments and it is concluded
that proper thresholding of the variance of the gradient of optical flow difference have a critical effect
on the detectability of roads having different widths.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Surveillance function is a fundamental capability expected from
a UAV and it can be categorized as passive surveillance or active
surveillance. Passive surveillance can be achieved by utilizing
video frames with the purpose of detecting motion, events or
occlusions, segmenting images, recording video data, and the like.
Active surveillance systems cover the applications in passive
surveillance; further, they respond under certain circumstances,
such as giving alarm when fire is detected, producing reference
control signals to track objects or to avoid obstacles.

A common application in passive surveillance is to detect and
track a moving object. Detection of motion is achieved typically
by background modeling and optical flow techniques. Zhang et al.
propose a background subtraction technique based on modeling
the pixels according to the local dependence histogram and taking
the advantage of adaptive threshold algorithm (Zhang, Yao, & Liu,
2008). KaewTraKulPong and Bowden come up with the idea of an
improved adaptive background mixture model which detects both
motion and shadows (KaewTraKulPong & Bowden, 2001). Spagnolo
et al. detect motion using the temporal analysis of the pointwise en-
ergy information (Spagnolo, Leo, D’Orazio, Caroppo, & Martiriggi-
ano, 2006). Optical flow is also a useful method in analyzing
motion fields on images to detect and segment moving objects.

Klappstein et al. achieve moving object segmentation by using the
graph-cut algorithm that exploits optical flow information in the
analysis of motion (Klappstein, Vaudrey, Rabe, Wedel, & Klette,
2009). Lu et al. use temporal differencing, optical flow, and double
background differencing to obtain better results of motion detec-
tion with a stationary camera system (Lu, Wang, Yang, & Wu, 2007).

Optical flow computes the motion field through which the
changes on the scene can be detected; hence, it enables the detec-
tion of a target object from the view of an observer. Detection of an
obstacle is the first step of obstacle avoidance in active surveillance
systems. Sarcinelli-Filho et al. report a robotic application utilizing
the optical flow information to avoid obstacles (Sarcinelli-Filho,
Schneebeli, Calderia, & Soria, 2002). Heinrich proposes a fast obsta-
cle detection method combining stereo vision and motion analysis
by using both flow and depth information to create a robust detec-
tion scheme (Heinrich, 2002). Muratet et al. dwell on a simulation
of a collision free autonomous helicopter flight by calculating opti-
cal flow and time-to-contact in a virtual environment where a des-
tination point is not defined. Huang et al. demonstrate a vision
guided local navigation method that describes a potential field
over the robot. Distance and heading to the destination and to
the obstacles are used to observe collision free navigation (Huang,
Fajen, Fink, & Warren, 2006). Dev et al. introduce a navigation tech-
nique for a mobile robot which measures the distance to wall. The
orientation of the system and position of the wall are computed by
using the spatial derivatives of optical flow (Dev, Kröse, & Groen,
1997). Watanabe et al. use edges of objects to generate a three
dimensional obstacle model of the environment, and vision-based

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.07.087

⇑ Corresponding author. Tel.: +90 312 292 4064; fax: +90 312 292 4180.
E-mail addresses: aeresen@gmail.com (A. Eresen), nevrez@gmail.com

(N. _Imamoğlu), onderefe@etu.edu.tr, onderefe@gmail.com (M. Önder Efe).

Expert Systems with Applications 39 (2012) 894–905

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

Author's personal copy

obstacle avoidance is demonstrated using the developed obstacle
model (Watanabe, Johnson, & Calise, 2005). Braillon et al. offer
an obstacle detection technique that uses optical flow to define a
background model, and as the robot moves, the optical flow matrix
is updated according to the measured robot motions. After that, the
motion values that are dissimilar to those associated to the ground
model are labeled as obstacles (Braillon, Pradalier, Crowley, &
Laugier, 2006). Call et al. present an obstacle avoidance method
based on the tracking of features. The method detects the corners
using Harris corner detector labeling them as features to track,
then, features between two consecutive frames are matched and
the positions of the obstacles are detected in the subsequent frame
(Call, Beard, & Taylor, 2006). Except few ones, considerable num-
ber of works reported in the literature focus on straight motion and
determining the rotation or speed for obstacle avoidance without
having the goal of reaching a specified destination. Duchon com-
pares three methods for maze navigation with only using optical
flow in a simulated environment inspiring from insect behavior.
Duchon also points out that using the balance theory, or balance
strategy, straight motions can be managed at the cost of observing
zigzagging in the resulting path (Duchon, 2006) yet the method
presented here improves this drawback to some extent.

Autonomous obstacle avoidance systems as in Zhang et al.
(2008), KaewTraKulPong and Bowden (2001), Spagnolo, Leo,
D’Orazio, Caroppo and Martiriggiano (2006), Klappstein et al.
(2009), Lu et al. (2007), Sarcinelli-Filho et al. (2002), Heinrich
(2002), Huang et al. (2006), Dev et al. (1997), Watanabe et al.
(2005), Braillon et al. (2006), Call et al. (2006), Low and Wyeth
(2005), Duchon (2006) require a control system to handle the task
after the analysis of the information acquired through vision
periphery. Especially, control of UAVs is a challenging research
problem for researchers because of the demanding nature of the
operating conditions and typically nonlinear and underactuated
nature of the vehicle dynamics (Kurnaz, Cetin & Kaynak, 2010).
This paper considers the control of rotational and translational
behavior of a quadrotor type UAV. The feedback controller is de-
signed to stabilize the dynamics of the quadrotor in Google Earth�

virtual environment. According to the outcome of the vision based
obstacle detection process, the reference yaw trajectory is derived
and it is supplied to the low level control loop. A PID controller is
implemented to observe the desired attitude (rotational response)
from the vehicle (Ang, Chong, & Li, 2005; Aström & Hagglund,
1995).

The contribution of this paper is to demonstrate that a UAV can
perform an autonomous flight toward a predefined destination
point by realizing required turns and generating a path using only
the vision information. Some studies in the literature use simpler
environments with more complicated techniques to reach the
specified destination points making the flight costly and unrealis-
tic. The method proposed here utilizes only the optical flow infor-
mation to detect the junctions and to avoid obstacles. The method
proposed needs very small computational time and the overall re-
sponse of the whole system is suitable for UAV based autonomous
navigation applications. This paper is organized as follows: The
second section presents the dynamics of the UAV and its physical
parameters. The third section presents the optical flow technique
and its use in detecting the obstacles in Google Earth� environ-
ment. The fourth section is devoted to the implementation specific
issues and results. Concluding remarks are given at the end of the
paper.

2. Dynamic model of the quadrotor UAV

The quadrotor type UAV, shown in Fig. 1, is a kind of rotating
rigid structure having six degrees of freedom. The two pairs of ro-

tors rotate in opposite directions to alleviate the torque imbalance.
Therefore first and the third rotors rotate in the counter-clockwise
direction while second and fourth ones rotate in the clockwise
direction. During the hover condition, varying the angular speeds
of each rotor while keeping the changes equal causes a change in
the altitude of the vehicle. The motion in the x direction is gener-
ated due to change in pitch angle by varying the angular speeds
of the first and third rotor inversely proportional. The motion in
the y direction is generated due to change in roll angle by varying
the angular speeds of the other pair of rotors inversely propor-
tional. Difference in the angular speeds of the two pairs of rotors
results in drag torque and yaw motion, which is necessary to per-
form turns at the junctions. Quadrotor type UAV is modeled under
the following assumptions.

(1) The quadrotor structure is rigid and symmetrical.
(2) The center of mass of the quadrotor and body-fixed frame

coincides.
(3) Thrust and drag forces are proportional to the square of the

angular speeds of the propellers.
(4) The propellers are rigid.
(5) Ground effect is neglected.

Let E and B denote earth fixed frame and body fixed frame
respectively as shown in Fig. 1. Let {exb, eyb, ezb} denote the body
axes and {ex, ey, ez} denote the inertial axes. The dynamic model
of the vehicle is derived using Newton–Euler formulation and the
equations governing the dynamics can be written in the following
form (Amir & Abbass, 2008):

mI3�3 0
0 I

� � ~_V
~_x

" #
þ x�m~V

x� I~x

" #
¼

F

s

� �
; ð1Þ

where m is the mass of the vehicle. With the diagonal inertia matrix
I = diag(Ixx Iyy Izz) e R3�3, x is the body angular velocity, and ~V is the
body linear velocity vector. After arranging the terms appropriately,
the dynamics in (1) can be cast into six ordinary differential equa-
tions (ODEs) as given in (2)–(7). The translational motion is gov-
erned by the ODEs in (2)–(4), where it is seen that the Euler
angles / (roll), h (pitch) and w (yaw) need to be controlled appropri-
ately to observe a desired motion in Cartesian coordinate system.
The latter three ODEs in (5)–(7) govern the rotational dynamics,
called the attitude. Observing a desired attitude can be obtained
by a properly selected low level controller that provides the control
inputs U2, U3 and U4:

€x ¼ c/shcw þ s/sw

� � 1
m

U1; ð2Þ

€y ¼ c/shsw � s/cw

� � 1
m

U1; ð3Þ

€z ¼ �g þ c/ch

� � 1
m

U1; ð4Þ

€/ ¼ _h _w
Iyy � Izz

Ixx

� �
� Jr

Ixx

_hXd þ
l

Ixx
U2; ð5Þ

€h ¼ _/ _w
Izz � Ixx

Iyy

� �
þ Jr

Iyy

_/Xd þ
l

Iyy
U3; ð6Þ

€w ¼ _h _/
Ixx � Iyy

Izz

� �
þ 1

Izz
U4; ð7Þ

where c/ stands for cosð/Þ and sh denotes sin(h) and the parameters
of the vehicle are listed in Table 1. The variable Xd seen in roll and
pitch dynamics above is defined as in (8). The control inputs U1, U2,
U3 and U4 seen in the ODEs above are defined in (9), where Xi is the
angular speed (in rad/s) of the ith rotor:

A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905 895

Author's personal copy

Xd ¼ X1 �X2 þX3 �X4; ð8Þ

U1

U2

U3

U4

2
6664

3
7775 ¼

b b b b

0 �b 0 b

�b 0 b 0
d �d d �d

2
6664

3
7775

X2
1

X2
2

X2
3

X2
4

2
66664

3
77775; ð9Þ

where b is the thrust coefficient, d is the drag coefficient. The reader
is referred to Castillo, Lozano, and Dzul (2005), Bouabdallah and
Siegwart (2007), Chen (2003) for a more detailed discussion on
the dynamics of vehicle considered here.

The low level control is implemented by utilizing PID type con-
trollers. Having established the link between Matlab� and Google
Earth� environments the dynamics is operated under the Matlab�

side and the response is realized in Google Earth� side. While oper-
ating this cycle repetitively during the flight, the visual information
is acquired and processed at Matlab� side to observe the autono-
mous flight with obstacle avoidance feature. Such a high level
behavioral goal is obtained via generating the necessary control
sequences from the PID controllers receiving the command signals
produced by the obstacle avoidance scheme (see Fig. 2).

3. Obstacle avoidance

Navigation in a complicated environment is a difficult problem
if the flight is desired to be autonomous. Detecting the obstacles
such as buildings, holes; pedestrians, vehicles etc. for collision free
autonomous flight is the crux of the design problem. In nature,
insects such as bees, flies and the like are able to fly using visual
sensors, and they are capable of passing through the perceived cor-
ridors (Barron & Srinivasan, 2006; Egelhaaf & Kern, 2002; Siriniva-
san, Zhang, Lehrer, & Collett, 1996). Some studies in biology show
that vision systems of flying insects have excessively sensitive to
motion as the vision system receives significant amount of excita-
tion from motion thereby providing information about obstacles.
After a significant amount of research done in the past, scientists

derived a method called optical flow to obtain motion flow. Optical
flow enables the detection of the movement of brightness in
sequentially ordered gray scaled images, e.g., a video stream com-
posed of grayscale images. It also gives information about the mo-
tion of the observer as well as the objects in the scene. Optical flow
takes the advantage of gradients of the temporal and spatial infor-
mation to calculate approximate motion vectors, i.e. the temporal
derivatives lead to the detection of motion in time domain, and
spatial derivatives facilitate the perception of the motion in the
two dimensional (2D) coordinate system (Barron, Fleet, & Beauche-
min, 1994; Horn & Brian, 1992).

A number of methods to calculate the optical flow are proposed
in the literature. The techniques to determine the optical flow can
be categorized as differential methods, correlation based methods
and frequency based methods (Barron et al., 1994). In frequency
based techniques, spatiotemporal velocity-tuned linear filters are
utilized to create the new form of the image sequence, and optical
flow velocity matrix is obtained from the new form of the image
sequence (Fleet & Jepson, 1990). In the correlation based method,
features are extracted from sequential images and optical flow is
calculated as a matching feature obtained using the consecutive
images (Camus, 1997). Differential optical flow techniques take
the advantage of spatiotemporal derivatives of image sequences
(Barron et al., 1994). Differential-based optical flow algorithms –
Lucas–Kanade (Lucas, 1984; Lucas & Kanade, 1981), Horn and
Schunk (Barron et al., 1994; Horn & Brian, 1992) – have been
experimented in our autonomous flight applications, and due to
its prominent features, Horn and Schunk algorithm is chosen to
determine the optical flow.

In this paper, autonomous flight is obtained via detecting the
junctions, which is necessary to perform collision free turns, and
approaching a predefined destination by continuously checking a
performance measure. Contrary to the cited body of literature,
which focuses on where the obstacles are, the process of flight here
is involved with the detection of volumes that are not occupied by
obstacles. Detecting the junctions by the UAV is achieved by an
algorithm seeking for the least magnitude optical flow field and
with a proper treatment of the information contained in the vari-
ance of the optical flow velocity the vehicle performs the com-
manded turns. In the sequel, we summarize the calculation of
the optical flow by using the Horn and Schunk method.

3.1. Calculation of optical flow using Horn & Schunk method

In differential optical flow calculation methods, velocity is com-
puted using spatiotemporal derivatives or filtering of the grayscale
image. Horn and Schunk improved differential technique using

Rotor 1
Rotor 2

Rotor 3Rotor 4

f4

mg
x axis

y axis

z axis

E

B
f1

f3

f2

eyb

ezb

exb

ex ey

ez

Fig. 1. Structure of quadrotor type UAV.

Table 1
Physical parameters of the quadrotor UAV.

Total weight of the vehicle m 0.800 kg
Gravitational acceleration g 9.81 kgm2

Arm length of the vehicle (from c.g. to tip) l 0.3 m
Moment of inertia along x axis Ixx 15.67 � 10�3 kgm2

Moment of inertia along y axis Iyy 15.67 � 10�3 kgm2

Moment of inertia along z axis Izz 28.34 � 10�3 kgm2

Thrust factor b 192.32 � 10�7 Ns2

Drag factor d 4.003 � 10�7 Nms2

Propeller inertia Jr 6.01 � 10�5 kgm2

896 A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905

Author's personal copy

additional constraints to obtain more accurate optical flow velocity
than differential based approach. It is more sensitive to environ-
mental changes than the method by Lucas and Kanade (Barron
et al., 1994), but the sensitivity provides us the necessary informa-
tion to locate the junctions or obstacles. Hence, in our application,
Horn and Schunk method is preferred for computing the optical
flow vectors (Horn & Brian, 1992).

Assuming I(x, y, t) as the grayscale density function (intensity
image), if the Taylor series expansion of gray scale density function
is evaluated, we obtain the expression in (10):

I xþ dx; yþ dy; t þ dtð Þ ¼ Iðx; y; tÞ þ Ixdxþ Iydyþ Itdt þ j; ð10Þ

where Ix and Iy are spatial partial derivatives respectively along x,
and y directions and It stands for the temporal derivation of inten-
sity image with respect to time, and j denotes the higher order
terms of Taylor series expansion, dx, dy, dt are very small changes
in x, y, and t. Higher order terms can be neglected because these
terms are small in magnitude, and the equation can be written as
in (11), which is indeed an approximation:

I xþ dx; yþ dy; t þ dtð Þ ffi Iðx; y; tÞ þ Ixdxþ Iydyþ Itdt: ð11Þ

Considering dx ? 0, dy ? 0, dt ? 0 the expression in (11) can be
simplified as follows:

Ix
dx
dt
þ Iy

dy
dt
þ It ¼ 0: ð12Þ

Rearranging (12) yields:

It ¼ � Ix _xþ Iy _y
� �

; ð13Þ

where _x; _yare the time derivatives of x, and y. Velocity vector in x
and y directions can be expressed as V :¼ ðu;vÞ ¼ ð _x; _yÞ, and the
relationship between Ix, Iy, velocities and It are stated compactly
in (14). Since the image domain is quantized, the necessary deriva-
tives such as Ix, Iy and It can be computed numerically. With these
definitions, we have:

It ¼ � Ixu; Iyv
� �

¼ �rI � V : ð14Þ

Velocities in x and y directions (u, v) will be computed using itera-
tive methods as there is only one equation but two unknowns (u, v).
Horn and Schunk suggest loose classification technique which min-
imizes the general error and the noise error to solve this problem,
(Horn & Brian, 1992). Partial derivatives can be calculated as given
as in (15)–(17), and axial indexing to calculate them is shown in
Fig. 3:

Ix �
1
4

Ii;jþ1;k � Ii;j;k þ Iiþ1;jþ1;k � Iiþ1;j;k þ Ii;jþ1;kþ1 � Ii;j;kþ1
�
þ Iiþ1;jþ1;kþ1 � Iiþ1;j;kþ1

�
; ð15Þ

Iy �
1
4

Iiþ1;j;k � Ii;j;k þ Iiþ1;jþ1;k � Ii;jþ1;k þ Iiþ1;j;kþ1 � Ii;j;kþ1
�
þ Iiþ1;jþ1;kþ1 � Ii;jþ1;kþ1

�
; ð16Þ

It �
1
4

Ii;j;kþ1 � Ii;j;k þ Iiþ1;j;kþ1 � Iiþ1;j;k þ Ii;jþ1;kþ1
�
� Ii;jþ1;k þ Iiþ1;jþ1;kþ1 � Iiþ1;jþ1;k

�
; ð17Þ

where Ii,j,k is grayscale density function for ith row jth column and
kth temporal frame. i, j, and k index the entries in y, x and time
directions, respectively. In order to determine the optical flow vec-
tors accurately, illumination changes should be minimized using
the smoothness measure given by (18), which is desired to be close
to zero:

J2
s :¼ ou

ox

� �2

þ ou
oy

� �2

þ ov
ox

� �2

þ ov
oy

� �2

: ð18Þ

On the other hand, we also would like to maintain the quantity
Jb ¼ It þrI � V around zero. This practically implies the minimiza-
tion of the cost functional below:

J ¼
Z Z

r
ða2J2

s þ J2
bÞdxdy; ð19Þ

where a is a coefficient determining the relative importance of the
terms contributing to the total cost defined over the image domain
!. Defining l(u) and l(v) as the approximate Laplacians of the
velocity components u and v, respectively, and using the calculus
of variation for (19), we arrive at the following equations, which
we can solve for u and v iteratively:

a2 þ I2
x þ I2

y

� 	
u ¼ a2 þ I2

y

� 	
lðuÞ � IxIylðvÞ � IxIt; ð20Þ

a2 þ I2
x þ I2

y

� 	
v ¼ �IxIylðuÞ þ a2 þ I2

x

� 	
lðvÞ � IyIt : ð21Þ

Assuming velocity estimate for nth frame as (un, vn), and (n + 1)th
frame as (un+1, vn+1); velocities are computed using (22) and (23)
iteratively:

unþ1 ¼ lðunÞ � Ix
IxlðunÞ þ IylðvnÞ þ It

a2 þ I2
x þ I2

y

; ð22Þ

vnþ1 ¼ lðvnÞ � Iy
IxlðunÞ þ IylðvnÞ þ It

a2 þ I2
x þ I2

y

: ð23Þ

The aforementioned process yields two velocity matrices having the
same size with intensity image, say u and v, and the obtained veloc-
ity matrices will be used for obstacle avoidance and turn detection
processes. For an in depth discussion of the Horn and Schunk meth-
od, the reader is referred to Horn and Brian (1992).

Quadrotor Dynamics

Linear dynamics feedback

Angular dynamics
feedback

Attitude ControllerPosition Controller

U1

U2 U3 U4
Desired
Euler
angles

Vision-based
Reference Signal

Generator Reference
Signal

Fig. 2. Quadrotor control block diagram.

A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905 897

Author's personal copy

3.2. Obstacle avoidance using optical flow

Optical flow gives information about motion caused by the ob-
server and objects, and this information makes it possible to detect
obstacles and position of the objects in simple working environ-
ments. However, detection of obstacles is a tedious task in complex
environments where there are typically low quality environment
textures or noise on the frames. Hence, additional assumptions
are inevitably imposed, such as computing time-to-contact, deter-
mining edges and corners to detect obstacles are just to name a
few. Edge and corner information can be useful when the image
is not corrupted by noise and the content is simple, however, as
the operating conditions approach those of real life, edge detection
may not be used effectively. Time-to-contact, or range information
of obstacles, is commonly used in obstacle avoidance due to its
usefulness. Nevertheless time-to-contact is affected by the struc-
ture and position of the obstacles. If the obstacle is close to the
boundary of the image, calculated range information for obstacle
is likely to be incorrect and UAV maneuvers based on such infor-
mation is potentially dangerous.

It is known that magnitude of optical flow velocity for obstacles
that are close is larger than those in the far. The proposed system
here utilizes this fact to detect obstacles in a way seeking the min-
imum change in the optical flow to determine the allowed move-
ment area in front of the quadrotor UAV. Running the straight
motions and turning maneuvers at the junctions are principally
different from each other. In the straight motion, the proposed
algorithm discovers the most appropriate field to move in. The
turning at a junction requires yaw axis motion and after detecting
the obstacle free region, expected center of the optical flow veloc-
ity is determined to compute the reference yaw angle.

Required yaw angle for obstacle avoidance is determined by
using the magnitude field of the optical flow which is obtained
after resizing the grayscale image to the quarter of the original
frame. This operation reduces the computational intensity of the
optical flow calculation. Sum of the optical flow magnitudes are
computed among various templates by running on the optical flow
data in a predefined subimage instead of entire 2D data. The search
window and template are represented in Fig. 4 where we see that
the window slides along the horizontal axis but it covers only the
rows in between 187 and 374, which are determined experimen-
tally. After the horizontal scan along the shown strip (see Fig. 4),
the center point of the template with a minimum sum of magni-
tudes is used to determine the reference yaw angle for the next
control cycle. Denoting the width of the search window by S and

that of the predefined template by T‘, the necessary yaw command
correction value (Wp1) is determined as described by the pseudo
code given in Table 2. The algorithm checks the center position
of the template having the minimum sum of optical flow magni-
tudes and prescribes the required adjustment for the yaw angle
to avoid obstacles.

In Table 2, M(x, y) is the magnitude of optical flow for template
point (x, y) and the pixel thresholds seen in the inequalities are the
determined experimentally.

For the movements requiring turns, the algorithm determines
the necessary second adjustment for yaw angle in addition to the
first adjustment process by considering the expected value of the
computed sum values. The expected value gives descriptive

k+1kk−1
t

y y y

x x x

(i,j)

(i+1,j)

(i,j+1)

(i+1,j+1)

(i,j)

(i+1,j)

(i,j+1)

(i+1,j+1)

(i,j)

(i+1,j)

(i,j+1)

(i+1,j+1)

Fig. 3. Matrix which is used for calculating gradients x, y directions and time domain (k and k + 1 are sequential video frames).

Search Window
Template

Fig. 4. Used search window and template in obstacle avoidance process.

Table 2
Pseudo code of obstacle avoidance for movements not requiring turns.

for i = 1 to (S � T‘)
Ts(i) =

P
x
P

y M(x, y)
end

i⁄ = arg mini Ts(i)
Choose the template having the minimum sum of optical flow by setting

Tc = Ts(i⁄)
Calculate the center of Tc and denote the center by Cc

if Cc < 55 then wp1 = �7�
elseif 55 6 Cc < 65 then wp1 = �3�
elseif 65 6 Cc < 75 then wp1 = �1.5�
elseif 75 6 Cc 6 85 then wp1 = 0�
elseif 85 < Cc 6 95 then wp1 = 1.5�
elseif 95 < Cc 6 105 then wp1 = 3�
elseif Cc > 105 then wp1 = 7�
Update the command signal for the yaw angle (wr w + wp1)

898 A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905

Author's personal copy

information about free maneuvering area after the turning. The
pseudo-code of the algorithm is presented in Table 3.

3.3. Detection of junctions with optical flow

Collision free navigation with a UAV like the one considered
here is involved mostly with problems having a destination and
autonomous flight is a typical requirement to plan the motion at
different levels. Although the industrial applications consider the
flight management under several task layers handling different
functionalities, the goal here is to exploit the information con-
tained in the optical flow to perform successful maneuvers when-
ever commanded. In this respect, typical drawbacks of the
available methods are the inability to perceive the junctions, fail-
ure in handling the sizes of the roads and costly memory require-
ments of the complicated flight management platforms. In Duchon
(2006), in order to guide the turning maneuvers, a perception
based navigation algorithm is used to detect the openings on the
left and right sides utilizing large decrease in the optical flow mag-
nitudes. Emphasized also in Sarcinelli-Filho et al. (2002), Heinrich
(2002), Huang et al. (2006), Sirinivasan et al. (1996), Egelhaaf and
Kern (2002), Barron and Srinivasan (2006), the viewpoint of con-
sidering the regions with larger optical velocities as obstacles is
the classical approach to detect the obstacles. We propose the
use of classical approach for determining the junctions, which
are not obstacles indeed. The lateral optical flow (optical flow on
left and right sides) decreases fast when the vehicle approaches a
junction, and it gets larger when the junction is passed and there
are again buildings on the sides. Using only the information avail-
able in the optical flow of the left and right halves of the camera
image, we propose a new technique to detect the junctions and
schedule correct maneuvers.

Remember the optical flow velocity magnitudes are larger for
closer objects and assume that un and vn are the optical flow matri-
ces for the nth frame in x and y directions. The temporal variation
matrices are computed as given in (24):

Dun ¼ unþ1 � un;

Dvn ¼ vnþ1 � vn:
ð24Þ

After calculation of temporal variations in the optical flow, the gra-
dient of these matrices (Gx :¼ rDun;Gy :¼ rDvn) are calculated.
The matrices Gx and Gy are partitioned into two halves to represent
the left and right of the acquired image:

GxL ¼ Gxðr; cÞ; 1 6 r 6 R; 1 6 c 6 C=2;
GxR ¼ Gxðr; cÞ; 1 6 r 6 R; 1þ C=2 6 c 6 C;

GyL ¼ Gyðr; cÞ; 1 6 r 6 R; 1 6 c 6 C=2;
GyR ¼ Gyðr; cÞ; 1 6 r 6 R; 1þ C=2 6 c 6 C;

ð25Þ

where R and C stand for the total number of rows and columns of
the image, which has been scaled down to a quarter of the original
image. Obtained gradient matrices are resized into single column
vectors, say X, and variances of these vectors are computed using
r2(X) = E[(X � E(X))2] where X {txL, txR, tyR, tyL}. Then, magnitudes
of the variances for left and right sides are calculated using (26).
Achieved magnitudes for the left and right sides are utilized to
determine the junction for proper navigation of the vehicle:

tmL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

xL þ t2
yL

q
;

tmR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

xR þ t2
yR

q
:

ð26Þ

If the vehicle chooses to move along an unusually wide street, the
information available in the sides mislead the navigation scheme
such that the vehicle assumes that it is approaching a junction
although in reality there is not a junction ahead. In order to prevent
such a misguidance, the quantity given by tmR/tmL (or tmL/tmR) is
checked. If tmR/tmL is much larger than 1.5 the vehicle understands
that there is not a junction and the building on the right is closer
than that on the left. This enables to fly along wide streets without
colliding with the buildings.

Variance magnitudes are continuously monitored and when
both of them decrease under a predefined threshold value, denoted
by TL, the system understands that it is approaching a junction.
When a junction is detected the vehicle decides on the best action
among the three possible actions namely, turn right, turn left or
continue the straight motion. The criterion is to get closer to the
destination point and the Euclidean distance between the vehicle
and the destination point is evaluated before implementing any
of these actions. When the best action is determined, the vehicle
is commanded to that direction. The algorithm guides the vehicle
till it is one meter away from the destination point. The pseudo-
code of the junction detection process is as given in Table 4.

4. Experiments in the virtual environment

The experiments considered here are realized in the Google
Earth� environment. A dynamic link between the Matlab/Simu-
link� and Google Earth� is established to observe and perform real-
istic motions. To perform the autonomous flight experiments, we
choose New York City (NYC) streets as the information available
in NYC is as much detailed as we need. Latitude and longitude val-
ues required for global positioning are obtained from Google
Earth� on start, and then the latitude and longitude values are
updated using movements of the UAV. The presented experiments
assume the following:

Table 3
Obstacle avoidance for movements requiring turnings.

for i = 1 to (S � T‘)
Ts(i) =

P
x
P

y M(x, y)
end

Calculate the expected value of Ts and denote the value by Te which states the
start position of the template

Determine center position of the template which employs the expected value
as center position and denote the center by Ce

if Ce < 55 then wp2 = 7�
elseif 55 6 Ce < 65 then wp2 = 3�
elseif 65 6 Ce < 75 then wp2 = 1.5�
elseif 75 6 Ce 6 85 then wp2 = 0�
elseif 85 < Ce 6 95 then wp2 = �1.5�
elseif 95 < Ce 6 105 then wp2 = �3�
elseif Ce > 105 then wp2 = �7�
Update the command signal for the yaw angle (wr w + wp1 + wp2)

Table 4
Junction detection algorithm.

Calculate Dxi, Dyi

Calculate Gx, Gy

Partition to obtain (GxL, GxR, GyL, GyR) and recast them into
a column vector

Calculate txL, txR, tyR, tyL

and tmL, tmR

if (tmR/tmL) P 1 then ratio = tmR/tmL

elseif (tmL/tmR) > 1 then ratio = tmL/tmR

if (tmL < TL)
and (tmR

< TL) and
(ratio < 1.5)

then CR = true

else CR = false
if CR = true then Calculate Euclidean

distances for three
possible actions

Perform the action resulting in minimal Euclidean distance between the
vehicle and the destination point

A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905 899

Author's personal copy

Fig. 5. Captured frames during hover.

Fig. 6. Captured frames during landing.

900 A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905

Author's personal copy

(1) The trees are not obstacles as Google Earth� environment
does not provide information about them.

(2) There are no air-specific disturbances such as winds, rain
etc.

(3) Internet connection speed is assumed to be good enough to
obtain the information about the buildings, i.e. buildings
appear quickly in the scene.

In the proposed system, the first phase is the hover operation
managed with the aid of PID controllers. The visual feedback is
not utilized during this operation. Closed loop control of the alti-
tude dynamics (z axis) is achieved by using the altitude data ac-
quired from the Google Earth�. This keeps the quadrotor UAV at
the desired heights, i.e. ten meters from the ground in this paper.
Vision-based navigation of the UAV is started after the desired alti-
tude is reached. A set of figures depicting the vehicle viewpoint
during the hover are shown in Fig. 5 and those for landing are de-
picted in Fig. 6. The time interval between the consecutive figures
is equal to 1 s, and the entire flight management algorithm is de-
picted in Fig. 7.

As seen in Fig. 8, white filled rectangle area indicates the max-
imally obstacle free area. Utilizing the center position of the area,
which is denoted by Cc in Table 2, the first component of the
desired yaw angle is computed and this is denoted by Wp1. If no
turns is needed, the desired yaw command is computed by
Wr = W + Wp1. For the cases where turns are required, an additional
adjustment component denoted by Wp2 is computed using the ex-
pected value inferred from the sum of the optical flows evaluated
along the strip shown in Fig. 4. If the expected center point, de-
noted by Ce in Table 3, arises in the middle of the frame then it is
decided that the obstacles lie on both sides of the observer, and
they are nearly the same distance away from the vehicle. If the ex-
pected center point is on the left side of the frame, the obstacles to
be avoided are mostly in the left side of the frame, and if the center
point is on the right side of the frame, obstacles are decided to be
on the right side of the frame. Depending on the value of the var-
iable Ce, Table 3 suggests an additive correction value for the yaw
angle reference as described by Wr = W + Wp1 + Wp2.

Sequential frames and the corresponding gradients of the opti-
cal flow matrices are illustrated respectively in the left and right
subplots of Fig. 8. In the top row, there is a building seen on the
right and the building is marked with a rectangle. In the subse-
quent frames, the building disappears slowly and the variance of
the optical flow decreases on the region corresponding to the
building. When the variance decreases under the selected thresh-
old value, the system detects the junction (see (n + 11)th–
(n + 12)th frames of Fig. 9).

In addition to the aforementioned discussion, the vehicle is not
allowed to perform lateral movements as the visual information is
provided only in the forward direction. The velocity of the vehicle
in the straight motion is set to 1 m/s, and when a turn is realized,
the forward velocity is set to zero and optical flow calculation is
also stopped as the turning maneuvers bring highly difficult scenes
to analyze. These issues necessitate relatively slower UAV motions
in the Cartesian space and the choice of the quadrotor structure is
deliberate due to this fact.

Four different destination points are selected to test the pro-
posed scheme. Firstly, a distant destination point is selected to ob-
serve the behavior of the UAV. As seen in Fig. 10, the UAV
successfully arrives at the destination point while avoiding the
obstacles and identifying the junctions to perform necessary turn-
ing maneuvers. When the UAV reaches 10 m away from the desti-
nation point, the UAV averts its heading to the destination and
proceeds to go ahead till it reaches the destination. This mode does
not utilize the optical flow calculation as the optical flow informa-
tion around the destination point is not descriptive for the destina-

tion itself. When the error falls under 1 m the vehicle lands
automatically. The proposed system is executed for the other three
destination points as well. The UAV successfully arrives at the
specified destinations without colliding to any of the buildings.
The autonomous flight results are shown in Figs. 10–14. The desti-
nation point in Fig. 10 and that in Fig. 14 are the same but the
threshold values for the variances are different. As seen from these
two figures, this changes the vehicle’s ability to distinguish differ-
ent routes having different roads with different widths. Variance
value for the destinations shown in Figs. 11–14 exploit a threshold

Get
Snapshot

Image
Preprocess (resize

and denoise)

Determine the
desired yaw angle

for straight
motion

Obstacle
detected?

Junction turn
needed?

YES

YES

Determine the
desired yaw angle
toward an obstacle

free direction

Generate path

NO

NO

Take-off

Is destination arrived?
NO

YES

Landing

PID Controllers

Vision-based path generation

Fig. 7. Flow diagram of the proposed autonomous navigation system.

A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905 901

Author's personal copy

value of 1.5 and it is clearly seen that the flight performance for
this value is good for the roads having relatively smaller width.
In the flight result seen in Fig. 12, the vehicle lands on a parking
lot indicating that the vehicle is not restricted to land on destina-
tions lying only on the streets.

Above discussion stipulates that the variance information is
critical in achieving a collision free flight. More explicitly, choosing
a large threshold value may result in ignorance of the obstacles and
this may eventually cause a crash. The threshold values between
acceptable levels, on the other hand, have the effect of changing

M
ag

ni
tu

de
s

of
 S

um
V

al
ue

s

Sum of Optical Flow

Sum of Optical Flow

Sum of Optical Flow

Sum of Optical Flow

M
ag

ni
tu

de
s

of
 S

um
 V

al
ue

s
M

ag
ni

tu
de

s
of

 S
um

 V
al

ue
s

M
ag

ni
tu

de
s

of
 S

um
 V

al
ue

s

 Expected Center of
Optical Flow Templates

 Expected Center of
Optical Flow Templates

 Expected Center of
Optical Flow Templates

 Expected Center of
Optical Flow Templates

Most Motion
Allowed Direction

Maximum Obstacle
Free Direction

Maximum Obstacle
Free Direction

Maximum Obstacle
Free Direction

Maximum Obstacle
Free Direction

(a)

(c)

(b)

(d)

Fig. 8. Object detection process results (1st yaw adjustment are left sides, 2nd yaw adjustments are right sides).

902 A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905

Author's personal copy

the route to be followed by the vehicle. It has been demonstrated
experimentally that the smaller threshold values prevent detection
of narrower junctions, middle level ones lead to the emergence of

desired response and higher levels trigger the potential danger of
collision. The existence of a best value depends on the availability
of different width roads from the starting point to the destination.

(n+3)th

Frame

(n+6)th

Frame

(n+10)th

Frame

(n)th

Frame

(n+11)th

Frame

(n+12)th

Frame

Fig. 9. Sequential frames and gradients of optical flow differences between sequential frames (while the building is disappearing variance value is decreasing under threshold
value (1), and after (n + 12)th frame is processed, crossroad detection notices to a junction) destination.

A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905 903

Author's personal copy

5. Conclusions

This paper demonstrates the use of optical flow information for
autonomous flight. A quadrotor type UAV is considered as it is a
vertical takeoff and landing type vehicle. Its dynamic model has
been realized in the Matlab/Simulink� environment and the atti-
tude (the Euler angles) of the vehicle as well as the Cartesian
dynamics of the UAV is equipped with a set of PID controllers.
The reference signals to be tracked are derived utilizing the optical
flow based flight management system. The virtual flight is per-
formed in the Google Earth� environment and exemplar cases
are considered in the streets of NYC. The flight is autonomous,
i.e. no information about the path to be followed is provided to
the vehicle, which is only provided the coordinates of the destina-
tion point. A link between the Matlab/Simulink� environment,
which runs the dynamic model, and Google Earth� environment,
where all high level information is contained, is established and
the UAV is expected to hover, find its way to the destination and
land in the vicinity of the destination point. Optical flow informa-
tion is utilized in detecting the junctions as well as a comfortable
forward motion is also maintained using the optical flow

Fig. 10. Result of the first experiment. Variance threshold is 0.5 and the vehicle
cannot see narrow roads after the start position.

Fig. 11. Result of the second experiment. Variance threshold is 1.5 and a proper
turn from a wide road to narrow road is achieved after the start position.

Fig. 12. Result of the third experiment. Variance threshold is 1.5 and a proper turn
from a wide road to narrow road is achieved after the start position.

Fig. 13. Result of the fourth experiment. Variance threshold is 1.5 and a proper turn
from a wide road to narrow road is achieved after the start position and a wide
junction is passed successfully just before the destination.

Fig. 14. Result of the fifth experiment. Variance threshold is 1.5 and a proper turn
from a wide road to a narrow road is achieved after the start position. The vehicle
then turns right to a wide road to approach the destination.

904 A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905

Author's personal copy

technique. The problem in both cases is to derive the reference yaw
angle to traverse an appropriate path. The constraint is to avoid the
obstacles and the goal is to reach a predefined target point.

One of the key parameters is discovered to be the variance of
the gradient of optical flow differences. The approach presented
entails the selection of a threshold value for this parameter and dif-
ferent threshold values result in different paths. Assuming there
are various paths with various widths in between the starting
point and the destination, it is observed that smaller variance
threshold values make the vehicle interpret small magnitude activ-
ities in the video as obstacles and it expects larger magnitude
activities to detect a junction. Apparently, large magnitude changes
are caused by wide streets and therefore for smaller threshold
values, the vehicle cannot distinguish the junctions with narrow
roads. On the other hand, larger variance threshold makes the
vehicle detect both narrow and wide streets. This is due to the
increased sensitivity to small magnitude changes in the scene.
Despite slight increase of the threshold improve the visibility of
narrow roads, further increase of the threshold may make the
vehicle blind as the oversensitivity triggers incorrect response
under circumstances where no junctions are seen and this may
lead to eventual crash.

This shows that very small threshold values and very large
threshold values make the vehicle blind and there exists an accept-
able interval in which the autonomous flight response is
satisfactory.

The contribution of the paper is to describe an autonomous
flight scheme employing the optical flow information. Claims are
validated in a Google Earth� linked Matlab/Simulink� environ-
ment. Future work of the authors aims to implement adaptive var-
iance thresholding to increase the degree of autonomy.

Acknowledgment

This work is supported by TÜB_ITAK 1001Programme, Grant No.
107E137.

References

Amir, M., & Abbass, V. (2008). Modeling of quadrotor helicopter dynamics. In
International conference on smart manufacturing application (pp. 100–105).

Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis, design and
technology. IEEE Transactions Control Systems Technology, 13(4), 559–576.

Aström, K. J., & Hagglund, T. (1995). PID controllers: Theory, design and tuning. USA:
The Instrumentation, Systems and Automation Society (ISA).

Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow
techniques. International Journal of Computer Vision, 12(1), 43–77.

Barron, A., & Srinivasan, M. V. (2006). Visual regulation of ground speed and
headwind compensation in freely flying honey bees. The Journal of Experimental
Biology, 209, 978–984.

Bouabdallah, S., & Siegwart, R. (2007). Design and control of quadrotors with
application to autonomous flying. Ph.D. Thesis. Ecole Polytechnique Federale De
Lausanne.

Braillon, C., Pradalier, C., Crowley, J.L., & Laugier, C. (2006). Real-time moving
obstacle detection using optical flow models. In Intelligent vehicles symposium
(pp. 466–471).

Call, B., Beard, R., & Taylor, C. (2006). Obstacle avoidance for unmanned air vehicles
using image feature tracking. In American institute of aeronautics and
astronautics guidance, navigation, and control conference and exhibit.

Camus, T. A. (1997). Real-time quantized optical flow. The Journal of Real-Time
Imaging, 3, 71–86.

Castillo, P., Lozano, R., & Dzul, A. (2005). Modeling and control of mini-flying machines.
London, USA: Springer-Verlag.

Chen, M. (2003). Formation and flight control of affordable quadrotor unmanned aerial
vehicles. Ph.D. Thesis. The University of British Columbia.

Dev, A., Kröse, B., & Groen, F. (1997). Navigation of a mobile robot on the temporal
development of the optic flow. In Proceedings IEEE international conference on
intelligent robots and systems (pp. 558–563).

Duchon, A. P. (2006). Maze navigation using optical flow. In P. Maes, M. Mataric, J. A.
Meyer, J. Pollack, & S. Wilson (Eds.), Proceedings of the international conference of
adaptive behavior. From Animals to Animats (Vol. 4, pp. 224–232). Cambridge,
MA: MIT Press/Bradford Books.

Egelhaaf, M., & Kern, R. (2002). Vision in flying insects. Current Opinion Neurobiology,
12(6), 699–706.

Fleet, D. J., & Jepson, A. D. (1990). Computation of component image velocity from
local phase information. International Journal of Computer Vision, 5(1), 77–104.

Heinrich, S. (2002). Fast obstacle detection using flow/depth constraint. In
Proceedings of the IEEE intelligent vehicle symposium.

Horn, B. K. P., & Brian, G. S. (1992). Determining optical flow. Artificial Intelligence,
17, 185–204.

Huang, W. H., Fajen, B. R., Fink, J. R., & Warren, W. H. (2006). Visual navigation and
obstacle avoidance using a steering potential function. Robotics and Autonomous
Systems, 54(4), 288–299.

KaewTraKulPong, P., & Bowden, R. (2001). An improved adaptive background
mixture model for real-time tracking with shadow detection. In Proceedings of
2nd European workshop on advanced video based surveillance systems.

Klappstein, J., Vaudrey, T., Rabe, C., Wedel, A., & Klette, R. (2009). Moving object
segmentation using optical flow and depth information. In Proceedings of the
3rd Pacific Rim symposium on advances in image and video technology (pp.
611–623).

Kurnaz, S., Cetin, O., & Kaynak, O. (2010). Adaptive neuro-fuzzy inference system
based autonomous flight control of unmanned air vehicles. Expert Systems with
Applications, 37(2), 1229–1234.

Lu, N., Wang, J., Yang, L., & Wu, H. (2007). Motion detection based on accumulative
optical flow and double background filtering. In Proceedings of the world
congress on engineering (Vol. 1, pp. 602–607).

Lucas, B. D. (1984). Generalized image matching by the method of differences. Ph.D.
Thesis. Carnegie-Mellon University.

Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an
application to stereo vision. In Proceedings of imaging understanding workshop
(pp. 121–130).

Sarcinelli-Filho, M., Schneebeli, H. A., Calderia, E. M. O., & Soria, C. M. (2002). Optical
flow-based obstacle detection and avoidance in mobile robot navigation. In
Proceedings of the 10th IEEE Mediterranean conference on control and automation.

Sirinivasan, M. V., Zhang, S. W., Lehrer, M., & Collett, T. S. (1996). Honeybee
navigation en route to the goal: Visual flight control and odometry. The Journal
of Experimental Biology, 199(1), 237–244.

Spagnolo, P., Leo, M., D’Orazio, T., Caroppo, A., and Martiriggiano, T. (2006). An
energy-based background modelling algorithm for motion detection. In
Proceedings of the 3rd international conference on informatics in control,
automation and robotics, robotics and automation (pp. 378–383).

Watanabe, Y., Johnson, E., and Calise, A. J. (2005). Vision-based approach to obstacle
avoidance. In American institute of aeronautics and astronautics guidance,
navigation, and control conference and exhibit.

Zhang, S., Yao, H., and Liu, S. (2008). Dynamic background subtraction based on
local dependency histogram. In The 8th international workshop on visual
surveillance.

A. Eresen et al. / Expert Systems with Applications 39 (2012) 894–905 905

