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Abstract 

Conditional integration is a technique used to improve the transient performance of controllers with 
integral action. This paper proposes a novel modification of this technique and integral backstepping 
for the control of a Twin Rotor MIMO System (TRMS) to ensure efficient asymptotic output regulation 
of the system without degrading the transient response. The control objectives are to stabilize the 
helicopter-like system, reach a desired position and precisely track a given trajectory in the presence of 
significant cross couplings. The TRMS is decoupled into the vertical subsystem (VS) and the horizontal 
subsystem (HS) and an integral backstepping controller (IBC) is designed for each subsystem with the 
cross couplings considered as uncertainties. An adaptable integral gain law, which can be applied to 
any continuous control law, is then formulated to provide integral action conditionally within two (outer 
and inner) boundary layers, based on the output tracking error and reference signals. Simulation results 
show that the obtained dual boundary conditional integral backstepping control (DBCIBC) approach 
achieves robust output regulation in the presence of the system’s uncertainties and external disturbances 
whilst maintaining a good transient response. Furthermore, comparisons with three available methods in 
the literature also indicate that the DBCIBC significantly improves performance in terms of error and 
control signal indices especially for the case of tracking a time varying reference input where the error 
index in the VS is reduced by over 50% on an average. 
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

The TRMS which in many ways resembles a helicopter albeit with less degrees of freedom
(DOFs), exemplifies a high-order nonlinear cross-coupled under-actuated system [1] and 

has attracted interest from researchers in recent years. The control objective is to make 
the beam of the TRMS track a predetermined trajectory quickly by accurately positioning 

its HS (yaw) and VS (pitch) angles in the presence of significant cross couplings. Several
investigations into achieving this objective have been reported. Juang et al. [2] examined the
use of four PID controllers with independent inputs for control of the system. The parameters
of the controllers were obtained by a modified method of a real-type genetic algorithm
(M-RGA) with a performance index as a fitness function. An augmented control scheme 
consisting of a 4-impulse feedforward controller and two PID feedback compensators [3] and 

a robust PID-based deadbeat control technique [4] have also been proposed for the system.
PID control of high order systems however often leads to oscillations resulting in slower
settling times as the results in [2–4] . In [5] , an optimal LQG compensator augmented with
feedforward control was designed to reduce vibrations for the pitch subsystem in 1-DOF. 
Linear optimal controllers like LQR [6] and LQR with integral action [7] have also been
suggested for step reference inputs. Application of nonlinear Model Predictive Control to 

the system is reported in Rahideh and Shaheed [8] where the nonlinear model had to be
adaptively linearized during the prediction horizon. Intelligent controllers employing fuzzy 

logic were proposed in [9,10] . The number of rules is however large which motivated the
parallel distributed fuzzy LQR in [11] with results given only for fixed reference inputs. 

Variants of the SMC scheme have also been designed for the system [12–14] . A Fuzzy
Sliding Fuzzy Integral Sliding Controller (FSFISC) was proposed by Tao et al. [15] while
an adaptive second order SMC (SOSMC) was suggested in Mondal and Mahanta [16] .
Although the results were shown to be better than the PID in [2] , the control laws for the
FSFISC and SOSMC are however quite complex and the precision of tracking time varying 

waveforms could be improved. Other nonlinear controllers suggested for the system include 
H-infinity [17] , feedback linearisation [18,19] and quasi-Linear Parameter Varying (LPV) 
control [20] where a high fidelity model of the TRMS had first to be transformed into a
discrete time polytopic quasi-LPV model. 

With the exception of the PID based controllers, the methods proposed for the TRMS
seem to apply integral control (with low gain) only to the pitch subsystem of the TRMS.
The suspected reason being that although integral action can be introduced to achieve output 
regulation of both linear and nonlinear systems in the presence of parameter uncertainties 
and/or constant external disturbances [21,22] , it has the drawback of deteriorating the 
transient performance. Undesirable overshoot and oscillations in the closed loop which can 

also lead to longer settling times are well-known problems associated with integral control. 
Integral action must therefore be applied with caution. 

To alleviate these problems, the integrator is modified in [23] to provide integral action 

conditionally i.e. within a specific boundary in a Sliding Mode Control (SMC) framework 

and extended to a general class of state feedback controllers in [24] using a Lyapunov
redesign approach. More recently, a variable gain integral controller has been applied to 

solve this problem in linear plants [25] . It is thus envisaged that the transient performance
and precision tracking of constant or time varying waveforms for both HS and VS of the
TRMS can be significantly improved upon by appropriately applying a suitable controller 
with an appropriate integration method. 
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Backstepping is a natural choice for the control of the TRMS as the system is nonlinear,
nder-actuated and triangular. That is, the system’s un-actuated states are controlled by
he interaction with the system’s actuated states in a cascaded manner. The most common
nd widely used method of including integral action in backstepping is to use parameter
daptation [26,27] . Parameter update laws however significantly complicate the control
omputation and are also well-known to degrade the transient performance when adaptation
s initiated. A relatively straight-forward approach introduced in [28] includes integral action
y augmenting the first step of the backstepping design with an integral of the output error.
his method of integral backstepping has been very recently proposed for the Two Rotor
ero-dynamical System (a variant of the TRMS) in [29] . The proposed controller uses

ommand filtered compensation (where virtual backstepping control derivatives are generated
sing low pass filters) which can further degrade transient performance and robustness.
he robustness of the proposed method was improved by further augmenting the integral
ackstepping controller with a disturbance observer. 

In this paper, a modified dual boundary conditional integral backstepping controller (DB-
IBC) with analytical virtual control derivatives is proposed for the TRMS to achieve asymp-

otic regulation of the output to a bounded constant or time varying reference signal without
egrading the transient performance. The main contribution of this work is the formulation
f an adaptation law which can be applied to a general class of controllers with a continuous
ontrol law, to provide integral action conditionally within two (outer and inner) boundary
ayers in order to improve tracking ability and robustness whilst maintaining a good transient
esponse. This is achieved not only by providing integral action conditionally within the spec-
fied boundaries, but also by modification of the integral law within the inner boundary layer
o provide integral action with a continuous variable gain based on the reference signal and
racking error. The resulting control law thus has some adaptation capability, thereby improv-
ng robustness during the transient phase and allowing use of sufficiently large integral gains
n the case of a sinusoidal reference input after the transient period to further minimise the
racking error. The method avoids the added complexity of designing a disturbance observer or
se of internal model control and also solves the problem of tracking associated with integral
ackstepping control where the integrator appears at the first step of the backstepping design
s highlighted in [26] . It is demonstrated that an integral backstepping controller with analyt-
cal virtual control derivatives and a saturated integrator (with a sufficient gain) significantly
mproves tracking of constant and sinusoidal waveforms while preserving the robustness prop-
rties of the system. Furthermore, this study compares the performance of the DBCIBC with
hat of the M-RGA optimised PID controller proposed for the system in [2] , the FSFISC in
15] and the SOSMC in [16] . The remainder of this paper is organised as follows. A model
escription of the TRMS is provided in Section 2 . The integral backstepping controller is de-
igned in Section 3 . In Section 4 , the dual boundary conditional integral law is introduced. The
tability of the system under the proposed control approach is analysed in Section 5 . Simula-
ion results are provided in Section 6 and concluding remarks are given at the end of the paper.

. Model description of the TRMS 

The TRMS shown in Fig. 1 consists of a beam pivoted at its base. The articulated joint
llows the beam to rotate in such a way that its ends move on the horizontal (yaw) and
ertical (pitch) planes. The main and tail rotors are driven by DC motors and attached to the
nds of the beam. A counterbalance arm with a weight at its end is fixed to the beam at the
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Fig. 1. TRMS component parts [1] . 

Table 1 
TRMS physical parameters [1] . 

Symbol Description Value 

l t Length of the tail part of the beam 0.25 m 

l m Length of the main part of the beam 0.236 m 

k h friction constant of the tail propeller subsystem 0.0054 
k v friction constant of the main propeller subsystem 0.0095 
J tr Moment of inertia for the tail rotor 1 . 6543 × 10 −5 kg m 

2 

J mr Moment of inertia for the main rotor 2. 65 × 10 −5 kg m 

2 

T tr time constant of the tail rotor 0.3842 s 
T mr Time constant of the main rotor 1.432 s 
S f Balance scale 8 . 4332 × 10 −4 

A Mechanical constant 0.0947 
B Mechanical constant 0.1086 
C Mechanical constant 0.0117 
D Mechanical constant 0.0016 
E Mechanical constant 0.0490 
F Mechanical constant 0.0062 
g Gravitational acceleration 9 . 81 m s −2 

J v Sum of moments of inertia relative to the horizontal axis 0.1099 

 

 

 

pivot. The system is balanced in such a way that when the motors are switched off, the main
rotor end of the beam is lowered. Unlike conventional helicopters where aerodynamic thrust 
is generated by changing the angles of attack of the propellers, aerodynamic thrust in the
TRMS is generated by increasing the rotation speed of the rotors. The result is a complex,
high order nonlinear system with significant cross couplings i.e. each rotor affects both 

position angles. An approximate Newtonian mathematical model of the TRMS is obtained by 

using Newton’s second law of motion and converted into state-space form [1] as expressed 

in Eq. (1) with the description and values of the physical parameters provided in Table 1 . 

˙ x 1 = x 3 
˙ x = x 
2 4 
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Fig. 2. Relationships between the input voltages, armature currents, rotor speeds and propulsive forces in the tail 
and main rotors [1] . 
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˙  3 = 

1 

J h 

[
l t S f F h ( x 5 ) cos x 2 − k h x 3 + x 3 x 4 ( D − E ) sin ( 2 x 2 ) 

− J mr ω v ( x 6 ) x 4 sin x 2 + 

J mr 

T mr 
( u v − x 6 ) 

d ω v ( x 6 ) 

d x 6 
cos x 2 

]

˙  4 = 

1 

J v 

[
l m 

S f F v ( x 6 ) − k v x 4 + g ( ( A − B ) cos x 2 − C sin x 2 ) 

− 0. 0252 x 3 
2 sin ( 2 x 2 ) + 

J tr 

T tr 
( u h − x 5 ) 

d ω h ( x 5 ) 

d x 5 

]

˙  5 = 

1 

T tr 
( u h − x 5 ) 

˙  6 = 

1 

T mr 
( u v − x 6 ) (1)

here x 1 and x 2 are the yaw and pitch angles, respectively, of the beam, x 3 and x 4 are the
ngular velocities of the beam around the horizontal and vertical axes, respectively, u h is the
nput voltage to the tail rotor, x 5 is the tail rotor armature current, u v is the input voltage to the

ain rotor and x 6 is its armature current, ω h is the rotation speed of the tail rotor and F h is the
ropulsive force it generates, ω v is the speed of the main rotor and F v is its propulsive force.

The sum of moments of inertia relative to the vertical axis J h is dependent on the pitch
osition ( x 2 ) of the beam and can be expressed as: 

 h = D si n 

2 x 2 + E co s 2 x 2 + F (2)

The input voltage signals to the motors are normalised and change in the range −1 to
 1 which corresponds to a voltage range of ±5 V. The nonlinear relationships between

he armature current and rotational speed as well as the rotational speed and thrust ( Fig. 2 )
enerated by both rotors are determined experimentally and approximated by Eqs. (3) –(6) . 

 h ( x 5 ) ≈ 2020 x 5 
5 − 194. 69 x 5 

4 − 4283 . 15 x 5 
3 + 262. 27 x 5 

2 + 3768 . 83 x 5 (3)

 h ( ω h ) ≈ −3 × 10 

−14 ω h 
5 − 1 . 595 × 10 

−11 ω h 
4 + 2. 511 × 10 

−7 ω h 
3 − 1 . 808 × 10 

−4 ω h 
2 

+ 8 . 01 × 10 

−2 ω h (4)

 v ( x 6 ) ≈ 90. 99 x 6 
6 + 599 . 73 x 6 

5 − 129 . 26 x 6 
4 − 1238 . 64 x 6 

3 + 63 . 45 x 6 
2 + 1283 . 41 x 6 (5)

 v ( ω v ) ≈ −3 . 48 × 10 

−12 ω v 
5 + 1 . 09 × 10 

−9 ω v 
4 + 4. 123 × 10 

−6 ω v 
3 − 1 . 632 × 10 

−4 ω v 
2 

+ 9 . 544 × 10 

−2 ω v (6)
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The model introduced above shows a set of coupled and nonlinear dynamical relations 
between the state variables involved. This is a prime challenge to address in the control
design process. 

3. Integral backstepping controller design 

The controller design is presented in this section through application of the iterative 
backstepping design procedure to the TRMS by considering the cross couplings between the 
HS and VS as uncertainties. The integral of the error is added to the first stabilising function
in the iterative backstepping design to introduce integral action in order to eliminate steady
state error and improve disturbance rejection [28,30] . A detailed description of the iterative
backstepping design process can be found in [31,32] . 

3.1. Horizontal subsystem integral backstepping 

The decoupled model of the HS of the TRMS is expressed as [1] 

˙ x 1 = x 3 

˙ x 3 = 

1 

J h 

[
l t S f F h ( x 5 ) cos x 2 − k h x 3 

]

˙ x 5 = 

1 

T tr 
( u h − x 5 ) (7) 

Define 

z 1 := x 1 − x 1 d (8) 

z 3 := x 3 − α1 (9) 

z 5 := F h ( x 5 ) − α3 (10) 

where x 1 d is the desired yaw angle and α1 and α3 are stabilising functions yet to be determined.
Step 1: 
Select a Control Lyapunov function (CLF) as 

 1 = 

λ1 

2 

χ1 
2 + 

1 

2 

z 1 
2 (11) 

where χ1 = 

∫ t 
0 z 1 (τ ) dτ and λ1 is a positive constant. 

Therefore, 

˙ 
 1 = λ1 χ1 ̇  χ1 + z 1 ̇  z 1 = λ1 χ1 z 1 + z 1 ( ̇  x 1 − ˙ x 1 d ) = λ1 χ1 z 1 + z 1 ( x 3 − ˙ x 1 d ) (12) 

By taking x 3 as the virtual control, a stabilising function α1 ( x 1 ) for z 1 is designed as 

α1 ( x 1 ) = −c 1 z 1 − λ1 χ1 + ˙ x 1 d , c 1 , λ1 > 0 (13) 

Hence, 

˙ 
 1 = −c 1 z 1 

2 (14) 
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Step 2: 
Select a CLF 

 3 = 

λ1 

2 

χ1 
2 + 

1 

2 

z 1 
2 + 

1 

2 

z 3 
2 (15)

Its derivative is 

˙ 
 3 = λ1 χ1 ̇  χ1 + z 1 ̇  z 1 + z 3 ̇  z 3 (16)

The resultant dynamics of z 1 is obtained as 

˙  1 = x 3 − ˙ x 1 d = x 3 − α1 + α1 − ˙ x 1 d (17)

˙  1 = z 3 − c 1 z 1 − λ1 χ1 (18)

With ˙ z 3 = ˙ x 3 − ˙ α1 ( x 1 ) , the dynamics of z 3 is expressed as 

˙  3 = 

1 

J h 

[
l t S f F h ( x 5 ) cos x 2 − k h x 3 

] − ∂ α1 

∂ x 1 
˙ x 1 (19)

By substituting Eqs. (18) and (19) into Eq. (16) , ˙ V 3 is obtained as 

˙ 
 3 = −c 1 z 1 

2 + z 3 

[
z 1 + 

l t S f 

J h 
( F h ( x 5 ) cos x 2 ) − 1 

J h 
( k h x 3 ) − ∂ α1 

∂ x 1 
˙ x 1 

]
(20)

Taking F h ( x 5 ) as the virtual control, design α3 ( x 1 , x 3 ) as 

3 ( x 1 , x 3 ) = 

J h 
l t S f cos x 2 

[
−z 1 + 

1 

J h 
( k h x 3 ) + 

∂ α1 

∂ x 1 
˙ x 1 − c 3 z 3 

]
(21)

So that, 

˙ 
 3 = −c 1 z 

2 
1 − c 3 z 

2 
3 , c 1 , c 3 > 0 (22)

Step 3: 
Finally, the full state control input u h to stabilize the entire horizontal subsystem is

esigned. 
Select a CLF as 

 5 = 

λ1 

2 

χ1 
2 + 

1 

2 

z 1 
2 + 

1 

2 

z 3 
2 + 

1 

2 

z 5 
2 (23)

Its derivative is 

˙ 
 5 = λ1 χ1 z 1 + z 1 ̇  z 1 + z 3 ̇  z 3 + z 5 ̇  z 5 (24)

The resultant dynamics of z 3 is obtained as 

˙  3 = ˙ x 3 − ˙ α1 ( x 1 ) 

= 

1 

J h 

[(
l t S f F h ( x 5 ) cos x 2 

) − k h x 3 
] − l t S f cos x 2 

J h 
α3 + 

l t S f cos x 2 
J h 

α3 − ∂ α1 

∂ x 1 
˙ x 1 (25)

Therefore, 

˙  3 = 

l t S f cos x 2 
J 

( F h ( x 5 ) − α3 ) − 1 

J 
( k h x 3 ) − ∂ α1 

∂ x 
˙ x 1 + 

l t S f cos x 2 
J 

α3 (26)

h h 1 h 
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Substituting for α3 ( x 1 , x 3 ) from Eq. (21) in the last term on the right-hand side of Eq.
(26) yields 

˙ z 3 = 

l t S f cos x 2 
J h 

z 5 − z 1 − c 3 z 3 (27) 

Also as 
˙ z 5 = 

˙ F h ( x 5 ) − ˙ α3 ( x 1 , x 3 ) and 

d F h 

dt 
= 

d F h 

d ω h 
. 
d ω h ( x 5 ) 

dt 
= 

d F h 

d ω h 
. 
d ω h 

d x 5 
. 
d x 5 
dt 

= 

d F h 

d ω h 
. ̇  x 5 

d ω h 

d x 5 
(28) 

The dynamics of z 5 is obtained as 

˙ z 5 = 

d F h 

d ω h 
. 
d ω h 

d x 5 
. 

1 

T tr 
( u h − x 5 ) − ˙ α3 ( x 1 , x 3 ) (29) 

Substituting Eqs. (18) , (27) and (29) into Eq. (24) yields 

˙ 
 5 = −c 1 z 1 

2 − c 3 z 3 
2 + z 5 

[
l t S f cos x 2 

J h 
z 3 + 

d F h 

d ω h 
. 
d ω h 

d x 5 
. 

1 

T tr 
( u h − x 5 ) − ∂ α3 

∂ x 1 
˙ x 1 − ∂ α3 

∂ x 3 
˙ x 3 

]
(30) 

To cancel out the nonlinear terms and stabilise the dynamics of z 5 , the control input u h is
designed as 

u h = x 5 + 

T tr 
d F h 
d ω h 

. d ω h d x 5 

(
− l t S f cos x 2 

J h 
z 3 + 

∂ α3 

∂ x 1 
˙ x 1 + 

∂ α3 

∂ x 3 
˙ x 3 − c 5 z 5 

)
(31) 

So that, 

˙ 
 5 = −c 1 z 1 

2 − c 3 z 3 
2 − c 5 z 5 

2 , c 1 , c 3 , c 5 > 0 (32) 

Evaluating the partial derivatives in Eq. (31) and expanding yields the control law for the
HS 

u h = x 5 + 

T tr 
d F h 
d ω h 

. d ω h d x 5 

{
− l t S f cos x 2 

J h 
( x 3 + c 1 z 1 + λ1 χ1 − ˙ x 1 d ) + 

J h 
l t S f cos x 2 

[
−x 3 (1 + λ1 x 3 

+ c 3 ( c 1 + λ1 z 1 )) + ˙ x 3 

(
k h 
J h 

− λ1 z 1 − c 1 − c 3 

)]
−c 5 [ F h ( x 5 ) − α3 ( x 1 , x 3 ) ] 

}
(33) 

3.2. Vertical subsystem integral backstepping 

The decoupled model for the vertical subsystem (VS) of the TRMS [1] is obtained as 

˙ x 2 = x 4 

˙ x 4 = 

1 

J v 

[
l m 

S f F v ( x 6 ) − k v x 4 − G ( x 2 ) 
]

˙ x 6 = 

1 

T mr 
( u v − x 6 ) (34) 

where G ( x 2 ) = g( ( A − B ) cos x 2 − C sin x 2 ) is the return moment of the VS. 
Let: 

z 2 := x 2 − x 2d (35) 
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 4 := x 4 − α2 (36)

 6 := F v ( x 6 ) − α4 (37)

here x 2d is the desired pitch angle, α2 and α4 are stabilising functions to be obtained in
he backstepping design. 

Step 1: 
Select a CLF as 

 2 = 

λ2 

2 

χ2 
2 + 

1 

2 

z 2 
2 (38)

here χ2 = 

∫ t 
0 z 2 (τ ) dτ and λ2 is a positive constant. 

Its derivative is 

˙ 
 2 = λ2 χ2 ˙ χ2 + z 2 ̇  z 2 = λ2 χ2 z 2 + z 2 ( ̇  x 2 − ˙ x 2d ) = λ2 χ2 z 2 + z 2 ( x 4 − ˙ x 2d ) (39)

Design the stabilising function α2 ( x 2 ) by taking x 4 as the virtual control. 

2 ( x 2 ) = x 4 = −c 2 z 2 − λ2 χ2 + ˙ x 2d , c 2 , λ2 > 0 (40)

Hence, 

˙ 
 2 = −c 2 z 2 

2 (41)

Step 2: 
Select a CLF as 

 4 = 

λ2 

2 

χ2 
2 + 

1 

2 

z 2 
2 + 

1 

2 

z 4 
2 (42)

Its derivative is 

˙ 
 4 = λ2 χ2 ˙ χ2 + z 2 ̇  z 2 + z 4 ̇  z 4 (43)

The resultant dynamics of z 2 is obtained as 

˙  2 = ˙ x 2 = x 4 
= x 4 − α2 + α2 (44)

˙  2 = z 4 − c 2 z 2 − λ2 χ2 (45)

With ˙ z 4 = ˙ x 4 − ˙ α2 ( x 2 ) , the dynamics of ˙ z 4 can be is expressed as 

˙  4 = 

1 

J v 

[
l m 

S f F v ( x 6 ) − G ( x 2 ) − k v x 4 
] − ∂ α2 

∂ x 2 
˙ x 2 (46)

Substituting Eqs. (45) and (46) into Eq. (43) yields 

˙ 
 4 = −c 2 z 2 

2 + z 4 

[
z 2 + 

l m 

S f 

J v 
F v ( x 6 ) − 1 

J v 
( G ( x 2 ) + k v x 4 ) − ∂ α2 

∂ x 2 
˙ x 2 

]
(47)
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Taking F v ( x 6 ) as the virtual control, α4 ( x 2 , x 4 ) is designed as 

α4 ( x 2 , x 4 ) = 

J v 
l m 

S f 

(
−z 2 + 

1 

J v 
( G ( x 2 ) + k v x 4 ) + 

∂ α2 

∂ x 2 
˙ x 2 − c 4 z 4 

)
(48) 

Such that, 

˙ 
 4 = −c 2 z 2 

2 − c 4 z 4 
2 , c 2 , c 4 > 0 (49) 

Step 3: 
Finally a full state control law u v to stabilise the entire VS is designed. 
Select the CLF as 

 6 = 

λ2 

2 

χ2 
2 + 

1 

2 

z 2 
2 + 

1 

2 

z 4 
2 + 

1 

2 

z 6 
2 (50) 

Its derivative is 

˙ 
 6 = λ2 χ2 z 2 + z 2 ̇  z 2 + z 4 ̇  z 4 + z 6 ̇  z 6 (51) 

The resultant dynamics of z 4 is obtained as 

˙ z 4 = ˙ x 4 − ˙ α2 ( x 2 ) 

= 

1 

J v 

[
l m 

S f F v ( x 6 ) − G ( x 2 ) − k v x 4 
] − l m 

S f 

J v 
α4 + 

l m 

S f 

J v 
α4 − ∂ α2 

∂ x 2 
˙ x 2 (52) 

Substituting for the positive α4 term on the right-hand side of Eq. (50) yields 

˙ z 4 = 

l m 

S f 

J v 
z 6 − z 2 − c 4 z 4 (53) 

Also as 
˙ z 6 = 

˙ F v ( x 6 ) − ˙ α4 ( x 2, x 4 ) and 

d F v 

dt 
= 

d F v 

d ω v 
. 
d ω v ( x 6 ) 

dt 
= 

d F v 

d ω v 
. 
d ω v 

d x 6 
. 
d x 6 
dt 

= 

d F v 

d ω v 
. ˙ x 6 

d ω v 

d x 6 
(54) 

the dynamics of ˙ z 6 can be expressed as 

˙ z 6 = 

d F v 

d ω v 
. 
d ω v 

d x 6 
. 

1 

T mr 
( u v − x 6 ) − ∂ α4 

∂ x 2 
˙ x 2 − ∂ α4 

∂ x 4 
˙ x 4 (55) 

Substituting Eqs. (45) , (53) and (55) into Eq. (51) yields 

˙ 
 6 = −c 2 z 2 

2 − c 4 z 4 
2 + z 6 

[
l m 

S f 

J v 
z 4 + 

d F v 

d ω v 
. 

1 

T mr 
( u v − x 6 ) · d ω v 

d x 6 
− ∂ α4 

∂ x 2 
˙ x 2 − ∂ α4 

∂ x 4 
˙ x 4 

]
(56) 

The control voltage u v is designed as 

u v = x 6 + 

T mr 
d F v 
d ω v 

. d ω v d x 6 

(
− l m 

S f 

J v 
z 4 + 

∂ α4 

∂ x 2 
˙ x 2 + 

∂ α4 

∂ x 4 
˙ x 4 − c 6 z 6 

)
(57) 

Such that, 

˙ 
 6 = −c 2 z 2 

2 − c 4 z 4 
2 − c 6 z 6 

2 , c 2 , c 4 , c 6 > 0 (58) 
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Fig. 3. TRMS with dual boundary conditional integral backstepping control (DBCIBC). 
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Evaluating the partial derivatives in Eq. (57) and expanding yields the final control law
or the VS as 

 v = x 6 + 

T mr 
d F v 
d ω v 

. d ω v d x 6 

{
− l m 

S f 

J v 
( x 4 + c 2 z 2 + λ2 χ2 − ˙ x 2d ) 

+ 

J v 
l m 

S f 

[
x 4 

(
−1 − g 

J v 
(( A − B ) sin x 2 + C cos x 2 ) − λ2 x 4 − c 4 ( c 2 + λ2 z 2 ) 

)

+ ˙ x 4 

(
k v 
J v 

− c 2 − c 4 − λ2 z 2 

)]
− c 6 [ F v ( x 6 ) − α4 ( x 2 , x 4 ) ] 

}
(59)

. Dual boundary conditional integral law 

In this section, the novel approach postulated by this paper to provide conditional integral
ction within two (outer and inner) boundary layers is introduced. For a simulation case with
 constant reference signal and unmatched disturbances, the backstepping controller with
nalytical virtual control derivatives and no integral action is sufficient to guarantee zero
teady state error. For a sinusoidal input reference however, obtaining zero tracking error is
ore challenging and requires integral action. In this work, the following integral gain law

s formulated to minimise the tracking error without degrading the transient response. 

i (t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0, | z i | > μi > δi 

λri , μi ≥ | z i | > δi 

λri + k λi 
∫ 

sgn ( ̇  x id (t ) . ̈x id (t ) ) | z i | dt, | z i | ≤ δi , t < t p 
λri + k λi 

∫ | z i | dt , | z i | ≤ δi , t ≥ t p 

(60)

For i = 1 and 2 and 0 ≤ λi ≤ λmi where λmi ε R 

+ is the minimum integral gain required
o achieve adequate tracking, μi and δi are the widths of the outer and inner boundary layers,
espectively, λri < λmi is the integral gain within the outer boundary layer, k λi is a positive
onstant and t p is the time instant of the first peak in the reference input during the transient
eriod. The closed loop system under the proposed DBCIBC scheme is shown in Fig. 3 

Here, it is assumed that the reference is a bounded continuously differentiable signal
f known frequency and the gains of the closed loop system c i for i = 1 , 2, . . . , 6 without
ntegral action, can be tuned such that the outputs of the HS and VS approach a neighbour-
ood of their respective reference signals. Within the outer boundary, integral action is then



6842 A. Haruna et al. / Journal of the Franklin Institute 354 (2017) 6831–6854 

 t = tp

 r + 

 r -  

 r + 

 r - 

 ref (r)
  = 0
 = m

 = r

 r ± 
 r ± 

Fig. 4. Tuning of λm , λr , width of the outer boundary μ, width of the inner boundary, δ and integrator reset (peak) 
time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

applied to minimise the error by the integral gain law in Eq. (60) initially with λi (t ) = λri 

which increases to λmi within the inner boundary at a rate determined by k λi . In the case of
sinusoidal references, λi (t ) increases/decreases as determined by sgn ( ̇  x id (t ) . ẍ id (t ) ) in Eq. 
(60) within the inner boundary when t < t p before increasing to λmi afterwards. 

In general, consider a closed loop system with output y(t ) to a bounded reference r(t )
and continuous control law u(t ) augmented by a saturated integrator χ with integral gain 

λ(t ) . Let y λo (t ) be the output of the system with no integral action in the neighbourhood
of r(t ) and y λm (t ) be the output with sufficient integral action which adequately tracks r(t )
after a transient period. Assuming | y(0) | > 0, let μ and δ ( | y( 0) | > μ > δ) be compact
sets containing r(t ) . A step by step procedure for tuning the integral gain law for this system
is described in the following and shown in Fig. 4 . 

Tune all controller parameters using any known tuning process and determine λm 

as 
the minimum integral gain, such that the system output y(t ) = y λm (t ) precisely tracks the
reference r(t ) after some transient period. 

Set λ = λo = 0 and determine the bifurcation point y b defined as the value of y λo (t ) during
the transient period where the output with sufficient integral action diverges from the output 
with no integral action i.e. y b := max | y λo || | y λm −y λo | ≥ ε where ε is a small positive constant.

Set the width of the outer boundary layer μ as the compact set containing y b and r(t ) . 
Determine λr < λm 

as the integral gain within the outer boundary that facilitates 
minimisation of the tracking error with marginal or no overshoot during the transient period.

Determine the width of the inner boundary layer δ as the compact set such that the
response of step 4 above enters this boundary during the transient period and remains within
it for all future time. 

Tune k λ to determine the rate at which λ(t ) = λr → λm 

as a trade-off between overshoot
and speed of convergence. 
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In the case of a sinusoidal reference, apply a reset once to the integrator χ at t = t p to
urther improve performance immediately after the first peak of the reference signal during
he transient phase. 

. Stability of the TRMS under DBCIBC 

In this section, the stability of the HS and VS of the TRMS with the system’s uncertainties
s analysed under the proposed control method. 

.1. Stability of the HS 

The proposed control law in Eq. (33) with no integral action for the nominal HS as
xpressed in Eq. (7) ensures the negative definiteness of the Lyapunov derivative ˙ V 5 in Eq.
32) which implies the exponential stability of the origin. The uncertainty in the HS form
q. (1) is given as 

f h = J −1 
h 

(
x 3 x 4 ( D − E ) sin ( 2 x 2 ) − J mr ω m 

( x 6 ) x 4 sin x 2 + 

J mr 

T mr 
( u v − x 6 ) 

d ω m 

( x 6 ) 

d x 6 
cos x 2 

)

(61)

nd satisfies the extended matching condition i.e. it appears one integrator before the control
nput and only affects the dynamics of z 3 directly. Also � f h ( x 2 , x 3 , x 4 , u v ) is bounded as x 3
nd x 4 (the velocities of the beam in the HS and VS axes, respectively) are bounded since
he nominal HS and VS are stabilised by the saturated control inputs u v and u h , respectively.
he closed loop dynamics of the HS in the z coordinates from Eqs. (18) , (27) and (29) with

he uncertainty in Eq. (61) can be expressed in matrix form as 

˙  h = 

⎡ 

⎢ ⎣ 

−c 1 1 0 

−1 −c 3 
l t S f cos x 2 

J h 

0 − l t S f cos x 2 
J h 

−c 5 

⎤ 

⎥ ⎦ 

z h + 

⎡ 

⎣ 

−λ1 χ1 

� f h 
0 

⎤ 

⎦ (62)

here z h = [ z 1 z 3 z 5 ] T 

Let 

 h = 

λ1 

2 

χ1 
2 + 

1 

2 

z h 
T z h (63)

The derivative of V h along the dynamics of z h is obtained as 

˙ 
 h = −

∑ 

i=1 , 3 , 5 

c i z i 
2 + z 3 � f h ≤ −2 min ( c i ) 

1 

2 

z h 
T z h + z 3 � f h (64)

r 

˙ 
 h ≤ − min ( c h ) ‖ z h ‖ 2 + 

| z 3 � f h | (65)

here c h = [ c 1 c 3 c 5 ] 
It is assumed there exists a bounded positive constant p h such that 

p h ‖ z h ‖ 2 ≥ | z 3 � f h | , ∀ t ≥ 0 
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This assumption is valid as � f h ( x 2 , x 3 , x 4 , u v ) is bounded. Moreover, the first term in the
parenthesis on the right of Eq. (61) vanishes at the origin, the second term has a low upper
bound (owing to J mr ) and the third term is exponentially decaying. 

Theorem 1. If min ( c h ) > p h then the HS of the TRMS will be globally asymptotically stable
for the control law proposed in Eq. (33) and with λ1 defined by Eq. (60) for the outer and
inner boundary layers μ1 and δ1 , respectively. 

Proof. For the simulation case of a constant reference signal with unmatched disturbances, 
λ1 = 0 and the controller is reduced to a backstepping controller with no integral action.

Calculating the derivative of V h along the closed loop trajectories of the HS yields 

˙ 
 h ≤ − min ( c h ) ‖ z h ‖ 2 + 

| z 3 � f h | < 0 (66) 

Thus the system is exponentially stable for the proposed control input in Eq. (33) . In the
case of a sinusoidal reference signal, integral action is provided conditionally as expressed 

by Eq. (60) and the system is analysed in three regions of interest: 
Region 1: | z 1 | > μ1 > δ1 

The tracking error lies in the exterior of the outer boundary layer and λ1 = 0. This leads
to the same controller as in the case of a constant reference signal and the magnitude of the
tracking error | z 1 | will decrease exponentially into region 2. 

Region 2: μ1 ≥ | z 1 | > δ1 

The tracking error lies between the two boundary layers and the integral gain λ1 = λr1 .
The derivative of V h along the closed loop trajectories of the HS now becomes 

˙ 
 h ≤ − min ( c h ) ‖ z h ‖ 2 + 

| z 3 � f h | ≤ 0 (67) 

which is only negative semi-definite. Since ˙ V h is nonpositive, it can be concluded that 
z 1 , z 3 , z 5 and χ1 are bounded. This implies that the derivatives of the error signals are also
bounded i.e. ˙ z 1 , ̇  z 2 , ̇  z 3 ∈ L ∞ 

. Also, from the expression of the Lyapunov function derivative
in Eq. (32) z 1 , z 3 , z 5 , ∈ L 2 and it can be deduced from Barbalat’s lemma that the closed-loop
system will be asymptotically stable for the proposed control input u h in Eq. (33) . That is
lim →∞ 

z 5 , z 3 , z 1 = 0. 

Region 3: | z 1 | ≤ δ1 

In this region, the integral law in Eq. (60) prevents λ1 from changing instantaneously and 

the same argument for region 2 applies. The integrator χ1 is reset to zero once in this region
at time instant t = t p . The Lyapunov function for the system at this instant is 

 5 r (t ) = 

1 

2 

z 1 
2 + 

1 

2 

z 3 
2 + 

1 

2 

z 5 
2 < V h (t ) 

This leads to a negative jump in the Lyapunov function which ensures ˙ V 5 r ≤ 0 and not
only preserves the stability of the system [33] but also improves the transient performance 
after the integrator reset [34] . 

5.2. Stability of the VS 

The Lyapunov derivative ˙ V 6 in Eq. (58) for the nominal VS as expressed in Eq. (34) is
rendered negative definite by the proposed control law in Eq. (59) with no integral action.
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s such, the origin of the VS is also exponential stable. The uncertainty in the VS from Eq.
1) is given as 

f v = J −1 
v 

(
−0. 0252 x 3 

2 sin ( 2 x 2 ) + 

J tr 

T tr 
( u h − x 5 ) 

d ω t ( x 5 ) 

d x 5 

)
(68)

The closed loop dynamics of the VS in the z coordinates from Eqs. (45) , (53) and
55) with the uncertainty in Eq. (68) can be expressed as 

˙  v = 

⎡ 

⎢ ⎣ 

−c 2 1 0 

−1 −c 4 
l m S f 

J v 

0 − l m S f 
J v 

−c 6 

⎤ 

⎥ ⎦ 

z v + 

⎡ 

⎣ 

−λ2 χ2 

� f v 
0 

⎤ 

⎦ (69)

here z v = [ z 2 z 4 z 6 ] T 

Let 

 v = 

λ2 

2 

χ2 
2 + 

1 

2 

z v 
T z v (70)

The derivative of V v along the dynamics of z v is obtained as 

˙ 
 v = −

∑ 

i=2, 4, 6 

c i z i 
2 + z 4 � f v ≤ − min ( c v ) ‖ z v ‖ 2 + 

| z 4 � f v | (71)

here c v = [ c 2 c 4 c 6 ] 
It is assumed there exists a bounded positive constant p v such that 

p v ‖ z v ‖ 2 ≥ | z 4 � f v | , ∀ t ≥ 0 

This assumption is justified as � f v ( x 2 , x 3 , u h ) is bounded. 

heorem 2. If min ( c v ) > p v then the VS of the TRMS will be globally asymptotically stable
or the control law proposed in Eq. (59) and with λ2 defined by Eq. (60) for the outer and
nner boundary layers μ2 and δ2 , respectively. 

roof. For the simulation case of a constant reference signal λ2 = 0 and the controller is
educed to a backstepping controller with no integral action. Also, the pitch angle is physically
estrained to −π/ 2 < x 2 < π/ 2. Calculating the derivative of V v along the closed loop
rajectories of the VS yields 

˙ 
 v = − min ( c v ) ‖ z v ‖ 2 + 

| z 4 � f v | < 0 (72)

Thus the system is exponentially stable for the proposed control input in Eq. (59) . For a
inusoidal reference signal, conditional integral action is provided by the gain law expressed
n Eq. (60) and the system is analysed in three regions as below: 

Region 1: | z 2 | > μ2 > δ2 

The tracking error | z 2 | is external the outer boundary layer and λ2 = 0. This leads to the
ame stable controller as in the case of a constant reference signal and the magnitude of the
racking error z 2 will decrease exponentially into region 2. 

Region 2: μ2 ≥ | z 2 | > δ2 

The tracking error is situated between the two boundary layers and the integral gain
2 = λr2 . The derivative of V v along the systems trajectories becomes 

˙ 
 v = − min ( c v ) ‖ z v ‖ 2 + 

| z 4 � f v | ≤ 0 (73)
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Since ˙ V v is nonpositive, it can also be concluded from Barbalat’s lemma that the closed-
loop system will be asymptotically stable for the proposed control input in Eq. (59) . That is
lim →∞ 

z 6 , z 4 , z 2 = 0. 

Region 3: | z 2 | ≤ δ2 

In this region, the integral law in Eq. (60) prevents λ2 from changing abruptly and the
same argument for region 2 applies. The integrator χ2 is reset to zero once in this region
at time instant t = t p . The Lyapunov function for the system now becomes 

 6 r (t ) = 

1 

2 

z 2 
2 + 

1 

2 

z 4 
2 + 

1 

2 

z 6 
2 < V v 

This leads to a negative jump in the Lyapunov function which ensures ˙ V 6 r ≤ 0 thereby 

preserving system stability and improving the transient performance after the integrator reset. 

6. Simulation results 

The designed controllers for the HS (yaw) and VS (pitch) are tested by simulation in
2-DOFs using three different reference inputs. Step, square-wave and sine-wave inputs are 
applied to each subsystem for a duration of 50 s. Tracking error and control signal indices
are used to assess the performance of the controllers. Both indices are defined as the sum of
their absolute values from 0 to 50 s and computed at a sample time of 0.05 s. Lower indices
indicate better tracking performance and less control energy. For assessing the transient 
response characteristics, the rise time is defined as the time the response takes to rise from
10% to 90% of the steady-state value and a threshold of 5% for the settling time. The closed
loop system is implemented in Simulink using the ode5 solver with a fixed-step size of 0.01 s.

6.1. Controller parameters and reference inputs 

The backstepping controller parameters for the HS are heuristically set at c 1 = 1 . 35 , c 3 =
7 . 0 and c 5 = 2. The integral law parameters are set at λr1 = 1 . 7 , λm1 = 3 . 0, k λ1 = 20 with
the integrator χ1 and control signal saturated u h at ± 0. 1 and ± 0. 5 , respectively. The widths
of the outer and inner boundary regions are, respectively set at μ1 = 0. 3 and δ1 = 0. 03 . The
controller is implemented using state feedback for x 1 , x 3 and x 5 . However ˙ x 3 is calculated 

from the values of the feedback states according to its expression in Eq. (7) . The HS is tested
with: (i) a step setpoint of 1.0 rad, (ii) a square-wave reference with amplitude of 0.5 rad
and period of 40 s and (iii) a sine-wave with amplitude of 0.5 rad and period of 40 s. 

In the case of the VS, the backstepping controller parameters are heuristically set at
c 2 = 1 . 31 , c 4 = 6 . 45 and c 6 = 1 . 86 . The integrator χ2 is saturated at ± 0. 1 and the

control signal u v is limited between 0 and 1. The integral gain law parameters are set at
λr2 = 0. 5 , λm2 = 2. 0, k λ2 = 20 with the widths of the boundary layers set at μ2 = 0. 3 and
δ2 = 0. 03 . The controller is implemented using state feedback for x 2 , x 4 and x 6 and ˙ x 4 is

calculated from x 4 and x 6 according to its expression in Eq. (34) . The input signals applied to
the VS are: (i) a step setpoint input of 0.2 rad, (ii) a square-wave input of 0.2 rad amplitude
and period of 40 s and (iii) a sine-wave reference of amplitude 0.2 rad and period of 40 s. 

Fig. 5 shows the responses of the system to a step input. It can be observed that the
outputs of the cross coupled system settle quickly at their respective setpoints without 
overshooting. The superimposed plot of the normalised control signal also indicates smooth 
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Fig. 5. Step response of the TRMS with DBCIBC. 

Fig. 6. Square-wave response of the TRMS with DBCIBC. 

o  

i  

i
 

a  
peration and practicality of the controller. The responses to a square-wave input are shown
n Fig. 6 where it can be seen that the system responds quickly to simultaneous step changes
n the reference signals. 

The tracking responses to sine-wave reference inputs are shown in Fig. 7 . Both the HS
nd VS show excellent tracking and transient response behaviour as a result of the dual
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Fig. 7. Sine-wave response of the TRMS with DBCIBC. 

Fig. 8. Integral gains of the HS and VS with sine-wave reference. 

 

 

 

 

 

 

 

 

 

 

 

boundary conditional integral law. It can be noticed that the HS starts within the inner
boundary region and remains there for all future time after the short transient period. The
VS however has initial conditions exterior to the outer boundary region but nonetheless, the
controller acts to track the reference with a quick rise time and without overshoot. A slight
dip in the value of the control signals at 10 s in both plots is due to the integrator resets. 

Fig. 8 shows the plots of the variable integral gains for the HS and VS as a result of the
integral law which facilitates excellent tracking ability whilst maintaining a good transient 
response. Form Fig. 8 , it is seen that λ2 has an initial value of 0 as the output lies exterior to
the outer boundary layer. On reaching the outer boundary, constant integral action with a gain
of λ2 = λr2 = 0. 5 is applied which enables tracking without overshoot and helps to propel
the output into the inner boundary. Once the inner boundary is reached, the integral gain is
reduced at a rate proportional to the error signal to prevent overshoot. This continues until
the reference peaks where the integral law reverses the trend and increases the integral gain
until it reaches the allowed maximum, enabling adequate tracking after the transient period. 
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Table 2 
TRMS error indices with M-RGA, FSFISC, SOSMC and DBCIBC. 

Reference Error index 

M-RGA [2] FSFISC [15] SOSMC [16] DBCIBC 

Step HS 54.52 35.11 45.23 31.25 
VS 27.46 28.81 23.08 24.77 

Square HS 134.03 82.11 83.70 79.61 
VS 90.21 43.16 45.80 36.25 

Sine HS 20.92 6.17 a 32.33 5.52 
VS 52.61 49.11 a 42.20 21.81 

a Given for a 50 s period reference signal. 

Table 3 
TRMS control indices with M-RGA, FSFISC, SOSMC and DBCIBC. 

Reference Control index 

M-RGA [2] FSFISC [15] SOSMC [16] DBCIBC 

Step HS 40.47 11.64 12.45 12.82 
VS 617.10 600.00 645.98 605.43 

Square HS 165.32 42.93 42.34 43.74 
VS 551.59 465.54 487.29 467.83 

Sine HS 18.93 7.27 a 10.68 13.00 
VS 501.78 488.48 a 515.42 504.44 

a Given for a 50 s period reference signal. 
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The integral gain λ1 for the HS also shows a similar pattern of behaviour only that in this
ase, it starts with an initial value of λ1 = λr1 = 1 . 7 since the HS has zero initial conditions
nd begins within the inner boundary. The integral gain reduces slightly and returns to its
nitial value as a result of the undamped HS exiting the inner boundary after about 2 s. The
S however immediately re-enters the boundary and the integral gain behaves similarly to

hat of the VS. 
Tables 2 and 3 , respectively, summarise the error and control indices of the DBCIBC for

tep, sine and square-wave inputs. Also shown are the indices of the controllers proposed
or the system in [2,15,16] for comparisons. 

It is quite clear that the DBCIBC outperforms the M-RGA PID controller, having much
etter error and control signal indices for all input waveforms. The performance of the
BCIBC also exceeds that of the SOSMC in the case of a square-wave and especially for a

ine-wave input. Although the SOSMC controller performs slightly better than the DBCIBC
or a step reference in the VS, this is achieved at the expense of a disproportionately larger
ontrol effort as shown in Table 3 . The DBCIBC also generally has much better error indices
hen compared to the FSFISC (a sliding mode controller with a fuzzy compensator) albeit
ith slightly higher control effort for step and square input waveforms. In the case of the

ine-wave input however, the DBCIBC clearly outperforms the FSFISC, reducing the error
ndex in the VS by over 50%. It is also worth mentioning that the indices for a sine-wave
nput of the FSFISC in [15] were obtained using a reference signal with a longer time period
50 s) which is easier to track and results in lower indices. The improvement in sine-wave
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Fig. 9. 2-DOF step response of the perturbed VS under backstepping with no integration, conventional integration, 
conditional integration ( μ = 0.3) and DB conditional integration ( μ2 = 0.35, δ2 = 0.03). 

Table 4 
Comparison of different integration techniques on the perturbed vs for a step input. 

Integration type Rise time Settling time Overshoot (%) Error index Control index 

None – – – 133.24 641.38 
Conventional 1.83 2.65 2.12 22.74 832.45 
Conditional 2.52 3.39 1.51 26.30 827.94 
DB Conditional 2.43 3.37 0.30 25.49 828.77 

 

 

 

 

 

 

 

tracking without degrading the transient response by the uncompensated DBCIBC is achieved 

by means of the dual boundary conditional integral law. 

6.2. Transient response improvement 

To study the effectiveness of the DBCIBC in improving the transient performance charac- 
teristics, the response of the VS (which has initial conditions exterior to the outer boundary
layer) is examined under no integration, conventional integration, conditional integration and 

the proposed dual boundary conditional integration for step and sine-wave inputs. 
For a step input, the VS is perturbed by increasing the return moment G( x 2 ) by a factor of

1.21 such that a steady state error (as will occur in a practical case) appears in the pitch angle
response which requires a minimum integral gain of λ2 = 2.0 to eliminate. Fig. 9 shows the 2-
DOF step response of the VS under backstepping control with different integration approaches. 

It is clear that the integral action is required to eliminate the error in the system and
doing so by conventional means i.e. when integral action is applied at time t = 0, leads to
undesired overshoot and oscillation. Table 4 summarises the transient characteristics and error 
and control indices obtained using all the approaches. It can be observed that application 

of conditional integration with the width of the boundary μ at 0.3 is able to reduce the
overshoot from 2.12% to 1.51%. However, with the proposed dual boundary conditional 
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Fig. 10. 1-DOF sine-wave tracking response of the VS under backstepping control with different integration ap- 
proaches. 

Table 5 
Comparison of different integration techniques on the vs for a sinusoidal reference input. 

Integration type Rise time Settling time Overshoot (%) Error index Control index 

None 3.38 4.36 4.23 32.47 502.53 
Conventional 2.37 5.41 8.72 21.69 506.93 
Conditional 3.18 6.60 7.81 24.44 505.21 
DB Conditional 2.94 3.28 1.61 21.76 504.48 
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ntegration method with μ2 = 0.35 and δ2 = 0.03, the overshoot (0.3%) is virtually eliminated.
his is achieved despite that the width of the outer boundary is larger than the width of

he boundary in the case of conditional integration. In addition, Table 4 indicates that the
ise time, settling time and error index are also improved with similar control effort when
ompared to the conditional integration case. 

For a sine-wave input, the 1-DOF response of the unperturbed VS is sufficient to demon-
trate the effectiveness of the DBCIBC in improving transient performance. Fig. 10 shows the
esponses with different integration appraches with the transient characteristics and error and
ontrol indices given in Table 5 . From the responses, it can be observed that the output with
o integration attempts to track the reference but effectively has a time lag. The output with
onventional integration ( λ2 = 1 . 1) tracks the reference but displays a poor transient response
ue to overshooting and a longer settling time. The output with conditional integration
 λ2 = 1 . 0, μ = 0. 3) also tracks the reference but overshoots and has a slower rise time than
hat of conventional integration. As such, for a sinusoidal reference, conditional integration
oes not show significant improvement in the transient response as compared to conventional
ntegration. 

The output of the dual boundary conditional integration ( μ2 = 0.3, δ2 = 0.03) combines
he best of both worlds by tracking the reference with faster rise time than the conditional case
ith negligible overshoot, leading to a reduction of over 30% in the settling time as compared

o the other methods. Table 5 also shows that the dual boundary conditional method has a
omparable error index with the conventional method achieved with similar control effort. 
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Fig. 11. Step response of the TRMS with DBCIBC subjected to an external disturbance. 

Fig. 12. Sine-wave response of the TRMS with DBCIBC subjected to an external disturbance. 

 

 

 

6.3. Robustness 

The robustness properties of the system under the proposed control method are tested by
application of an external disturbance of −0.2 rad at 20 s to each subsystem. Figs. 11 and 12 ,
respectively, show the responses of system under the disturbance with step and sine-wave input
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eferences. It can be seen for both the HS and VS, the controller is able to handle the external
isturbance. This however, as expected, takes longer time in the case of the sine-wave input.

. Conclusion 

A novel conditional integration method with dual boundaries and an adaptation gain mech-
nism in combination with integral backstepping control has been described in this paper. The
esigned DBCIBC has been applied to the TRMS and guarantees the stability of the system in
he presence of uncertainties and external disturbances. The main result differentiates from the
xisting body of literature in that the proposed method achieves efficient and robust trajectory
racking while simultaneously improving the transient performance characteristics of the sys-
em under strong cross coupling effects. Comparisons with previously proposed control meth-
ds also show that the DBCIBC gives better performance in terms of tracking error and control
ignal indices especially for the more difficult task of tracking a time varying waveform. 
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