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Abstract
This paper presents a robust control method combining the conventional proportional–integral–derivative (PID) scheme and the sliding mode fuzzy

control scheme for a second-order non-linear system having uncertainties in the system dynamics. The goal of the proposed scheme is to force the

response of the uncertain plant to follow that of the nominal model. The first phase of the design approach is to obtain a nominal PID controller for

the nominal plant model. The poor performance of the sole PID scheme on the uncertain non-linear system motivates the proposal of the technique

discussed here. To compensate for the deficiencies in the unit step response of the uncertain system, a fuzzy compensation scheme based on sliding

mode control (SMC) is proposed and the PID loop is augmented by the proposed approach. It is shown that the performance with the proposed

scheme is better than the sole PID-based control system. With the proposed technique, the response of the uncertain system converges to of the

nominal system with admissible controller outputs. Furthermore, simulation results show that the proposed method produces consistent results even

with noisy measurements.
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Introduction

Robust control has been one of the most interesting areas of

control engineering during the last 40 years and until now has

successfully been used in many engineering applications. It

still maintains its popularity due to the increasing complexity

of contemporary system models, and due to the continuous

demand for precision and robustness. A robust control sys-

tem provides desirable results in the presence of structural

and parametric uncertainties. Determining controller struc-

ture and adjusting the parameters of the controller constitute

two fundamental issues of designing a robust control system

to obtain an acceptable system performance.
Robust control system design for non-linear systems with

uncertainty is one of the most challenging tasks in control

design methods because most of the processes have challen-

ging non-linearities and uncertainties. There are a number of

robust control methods in the literature, among which a pro-

minent robust control scheme is fuzzy logic control (FLC),

which was first proposed by Mamdani (1974), using the fuzzy

sets theory of Zadeh (1965). FLC is based on human experi-

ence, which means FLC is an expert knowledge-oriented and

rule-based control algorithm in contrast to classical transfer

function-based control schemes. It consists of a set of rules

that are described linguistically and the source of a descriptive

rule base is an expert human. Because of this advantage, FLC

has been used in many industrial applications as a control

algorithm exploiting the knowledge of the expert.
The proportional–integral–derivative (PID) controller is

another design alternative that may yield a robust closed loop

if the gains are tuned well. It is widely used in industrial appli-

cations because of its advantages such as robust performance,

simple structure, low cost in manufacturing and easy under-

standing in principle. However, the PID control method has

some drawbacks in the control systems that are subject to

uncertainty and imprecision. The reason for this is the coeffi-

cients for P, I and D actions are tuned for a nominal model

and there may be severe deviations from the nominal

response. In Aström and Hägglund (1995) and Papadopoulos

(2014), PID control theory fundamentals and PID tuning

issues are elaborated and an overview of the advances and

applications in PID control has been presented in Vilanova

and Visioli (2012). Recent studies in the literature demon-

strate that the popularity of PID control is in progress for all

fields and it should be emphasized that there are more than

100 industrial patents focusing on PID and its parameter tun-

ing issues, indicating the continuous interest to PID scheme.
Another robust control scheme, SMC, which is a discon-

tinuous non-linear control approach, was postulated in the

early 1950s by Emelyanov, and evolved from the pioneering

works cited in Itkis (1976), Utkin (1977, 1992) and Edwards

and Spurgeon (1998). The purpose of the approach is to
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optimize the controller to obtain an acceptable closed-loop
performance in the presence of uncertainties. To accomplish
this, the design engineer needs to tackle two fundamental
phases of the system response, namely the reaching mode and
the sliding mode. The most important advantage of SMC is

its robustness feature against uncertainties, external distur-
bances and variations in the parameters. However, a remark-
able disadvantage of SMC is the chattering phenomenon
caused by noisy measurements, limited sampling rate and
switching delay in practice. The chattering is the high-
frequency oscillating component of the control signal. To
overcome this phenomenon, a common way is to introduce a
boundary layer around the sliding hypersurface (Chen et al.,
2014; Slotine and Li, 1991). Introducing a boundary layer
gives concessions to the performance. An undesired result is
the steady-state error. As a remedy, some researchers com-
bined fuzzy logic systems and SMC to obtain a better SMC
performance. As a result, two novel control structures
emerged, namely fuzzy sliding mode control (FSMC)
(Barrero, 2002; Bouarroudj et al., 2015; Mohammadi and
Nafar, 2013; Özkop et al., 2015; Piltan et al., 2013; Roopaei
et al., 2009; Saghafinia et al., 2014; Wong, 2001) and sliding
mode fuzzy control (SMFC) (Lhee, 2001; Tu et al., 2000; Wai
et al., 2002). The former is an adaptive control algorithm,
and is used to form the equivalent control of SMC for
unknown system dynamics identified by FLC. The latter is
FLC based on SMC rules. There are numerous research out-
comes about SMC in the literature, and it is still a state-of-
the-art topic in the field of robust control (Ahmad and Zhu,
2015).

In addition to the aforementioned robust control schemes,
blending of the techniques can also be considered among the
robust control schemes. PID and SMFC combination is an
example of this (Piltan et al., 2011), which propose a PID
FLC method with a minimum rule base and the method is
combined with SMC to adjust the gain updating factor and
the slope of the sliding line. Results are discussed on a three-
degrees-of-freedom robotic manipulator.

It is possible to extend the list of research outcomes that
utilize the powerful aspects of SMC, fuzzy control and PID
schemes. In spite of the alternatives available in the literature,
the structure of the control system, the role of fuzzy inference
mechanism and the availability of adaptation mechanism
make the designs different from each other. To our best
knowledge, this paper considers a novel combination of the
mentioned approaches to obtain a stable and good perfor-
mance closed-loop response.

The contribution of this paper is the combination of SMC
and FLC, in such a way that the nominal controller is first
obtained and is kept active in the closed loop. With this set-
up, the FLC is responsible for the removal of performance
degradations utilizing the robustness properties of SMC
scheme. This paper advances the subject area by introducing
an approach that adjusts the magnitude of the SMC gain,
which is a critical design parameter significantly influencing
the overall performance. Results support the theoretical
claims, as discussed throughout the paper.

This paper is organized as follows: the second section
describes the mathematical model of the system under con-
trol. Then, classical PID controller design for nominal plant

is explained. In the fourth section, classical SMC design and

the proposed method are elaborated, and stability proof is
provided. The fifth section is devoted to simulations and dis-
cussions, and then we provide a critical discussion considering
the recent works. Finally, in the last section, concluding

remarks are presented.

The dynamic model of the plant

The second-order uncertain non-linear system under control,
which is studied in this paper, is described as in (1)–(2).
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where x1p and x2p are the state variables, and the variable up

and yp are the control input and the output of the uncertain
model, respectively.a, b, c are the known process parameters
that embody the nominal model of the system. In (1), D1 and

D2 are the bounded uncertainties with D1 x1p, x2p

� ��� ��\Bf and
0\D2 x1p, x2p

� �
\Bg\c.

PID control scheme for nominal plant

The nominal model, which is the known linear part of the

uncertain system in (1)–(2), can be given as in (3)–(4).
Figure 1 shows the block diagram of the nominal control sys-
tem including the nominal process model denoted by Gn(s).
The controller acting on the process is a classical PID con-

troller and for the approach presented in this paper, its gains
are tuned once and kept constant throughout the runtime.
The designer’s assumption is that the closed loop in Figure 1
is stable, and the response of the system shown in Figure 1

will be considered the reference signal when the design
advances to the control of the uncertain process, which is to
be discussed. Stability of the nominal control loop is not a
stringent demand, as there are many alternatives available in

the framework of classical designs. The nominal model is
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c
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where x1 and x2 are the state variables, and the variable u and
yn are the input and the output of the nominal model, respec-

tively. Assuming zero initial conditions, the transfer function

Figure 1. Proportional–integral–derivative (PID) control structure for

the nominal system.
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of the nominal model is obtained as given in (5), where we

have certain assumptions, i.e. c . 0, a, b 6¼ 0, and nominal
model is stable.

Gn sð Þ= c

s2 + bs+ a
ð5Þ

During the design phase, we will choose reference signals

such that _r1 = r2, where r2 is the desired velocity profile.
Further to this, the position and velocity errors are defined as
e1 :¼ r1 � x1 and e2 :¼ r2 � x2, respectively. Using the error

term e1, the ideal PID controller can be given as in (6), where
E1(s) is the Laplace transform of e1(t):

uPID sð Þ= kp +
ki

s
+ kds

� �
E1 sð Þ ð6Þ

where kp, ki and kd are coefficients of the PID controller.

Once determined, the coefficients of the PID controller will
be assumed constant.

Classical SMC and proposed method

Defining s as the switching variable, the objective of the

SMC scheme is to push the error vector toward the sliding
hypersurface denoted by the loci s(em, _em)= 0, which is a
particular subspace of the phase space that is attractive. The

trajectories trapped to it are driven toward the origin of the
phase space and the system states follow the reference trajec-

tories. To accomplish this, the designer must handle two
important phases of the SMC design, namely the deployment

of the sliding hypersurface, governed by the switching func-
tion, and the selection of a control law, which makes the
selected sliding subspace attractive. For second-order systems,

the switching subspace is a line, a plane for third-order sys-
tems and a hypersurface for systems of order four or more.

The plant considered here is a second-order one and the
aforementioned switching variable is as described as

s :¼ _em +lem, l . 0 ð7Þ

where l is positive slope parameter and em :¼ yn � yp is the
model-following error. If for some time, say th, s(th)=0, then

the solution of the differential equation in (7) is
em(t)=em(th)exp(2l(t2th)) for t�th. This is valid if and only

if the loci characterized by s =0 is a global attractor of the
space spanned by the variables em and its time derivative.

This is ensured by introducing a corrective term that uses the
sign of the switching variable, s, defined as uSMC :¼ Msgn sð Þ.
In this representation M . 0 is a gain yet to be determined.

The practice of the SMC scheme has shown that the choice
above is quite vulnerable to noise and the smoothing scheme

described below is adopted in most cases.

uSMC :¼ Msgn sð Þ’ s

sj j+ e
, e . 0 ð8Þ

The approximation above removes the chattering effect to
some extent while introducing a significant robustness against

uncertainties. Here, e is a parameter determining the slope
around s=0. When e=0, the above function becomes the

original sign function, whereas larger values of e soften the

sign function and a smooth transition from the origin is

obtained. In the sequel, we will discuss how the signal in (8)

joins the proposed solution in detail.
In Figure 2, the structure of the proposed control system

is shown. The bottom part of the diagram is a standard unity

feedback loop containing the nominal plant model and the
PID controller, yielding the desired stability and performance

results on the nominal model. The uncertain system, which is

under control, is installed on the overall mechanism as also

shown in the figure. The input to the uncertain system is a

combination of the nominal control signal and a correction

term, which is derived using the model-following error,
defined as the difference between the nominal model output

and the uncertain plant output. The discontinuous compo-

nent of the control signal is computed by the block named

SMFC, which runs a fuzzy inference mechanism to synthesize

a gain multiplying the discontinuous term. Having these in

mind, the control signal is stated as in (9), where uPID and

uSMFC are the components shown in Figure 2.

up = uPID + uSMFC ð9Þ

The second term above, which is used to guarantee the

robustness of the controller, does not interfere in the control

of the nominal system and a conservative control signal is

avoided. While computing the control signal of the SMC
part, a prime challenge in (8) is the selection of the SMC gain

parameter denoted by M. As the value of M gets larger, the

locus characterized by s=0 becomes more attractive and the

robustness of the closed-loop system is improved. However,

in such a case, high-frequency dynamics are provoked and

the control signal is dominated by highly fluctuating terms

that require costly actuation periphery. On the other hand,
when the value of M is kept small, high-frequency compo-

nents in the control signal disappear, yet the robustness prop-

erty of the closed loop is lost to a certain extent. To offer a

remedy to this problem, in this section, a SMC magnitude

parameter (M) selection mechanism based on fuzzy logic is

proposed.
Figure 3 illustrates the general structure of a fuzzy infer-

ence system. The designed fuzzy logic selection mechanism

has two inputs and one output. The model-following error

(em) and its derivative are the inputs to the fuzzy logic system,

Figure 2. Architecture of the proposed control system.
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and the SMC magnitude parameter M is the output.

Membership functions used in this work are triangular mem-

bership functions and for each input, three linguistic labels

are employed to distinguish Negative (N), Zero (Z) and

Positive (P) labels. These are shown in Figure 4 and Table 1
lists the fuzzy rule base. The consequent sets corresponding

to Very Small (VS), Small (S), Large (L) and Very Large

(VL) are determined based on the deployment of the error

vector according to the origin and the switching subspace.

Properly implemented, the fuzzy logic system will produce the

gain of the signum function and the loop will be as shown in

Figure 2. A critical question here is: does there exist such a

value of M that ensures the attractiveness of the loci s=0?

The following theorem proves this.

Theorem: Let the system under control be as defined in (1)–

(2) and the uncertainties in the system dynamics are bounded

and they satisfy the inequalities D1 x1p, x2p

� ��� ��\Bf and

0\D2 x1p, x2p

� �
\Bg\c. Let the PID controller in Figure 2

meet the desired performance results when it operates only on

the nominal plant model given in (3)–(4). The switching mani-

fold defined by s=0 is a global attractor if the gain M in (8)

satisfies the inequality M .
�aem + l�bð Þ _emj j+Bf +Bg uPIDj j

c�Bg
.

Proof. Choose the positive definite Lyapunov function candi-

date as

V =V1 e1, e2ð Þ+ 1

2
s2 ð10Þ

where V1 is another Lyapunov function that is for the loop

containing the nominal plant model and the PID controller

pair. As the PID controller stabilizes this loop, without a

proof, we assume that the time derivative of V1 is negative.

With this in mind, differentiating (10) with respect to time
yields

_V = _V1 e1, e2ð Þ+ _ss ð11Þ

The question now reduces to whether _ss\0: According to
(7), the time derivative of s can be computed as below.

_s=€em +l _em ð12Þ

As em :¼ yn � yp using the nominal system dynamics in (3)–
(4) and the uncertain system dynamics in (1)–(2), we obtain
the following equality.

_s= �aem + l� bð Þ _em � D1 � D2uPIDð Þ � c+D2ð ÞMsgn sð Þ
ð13Þ

To obtain a Lyapunov stable closed loop, _ss\0 must be
ensured. To achieve that, we multiply both sides of (13) by s.
This will make us perform the following manipulations.

_ss :¼ �aem + l� bð Þ _em � D1 � D2uPIDð Þs
� c+D2ð ÞM sj j
\ �aem + l� bð Þ _em � D1 � D2uPIDj j sj j
� c� D2ð ÞM sj j
� �aem + l� bð Þ _emj j+ D1j j+D2 uPIDj jð Þ sj j
� c� D2ð ÞM sj j
\ �aem + l� bð Þ _emj j+Bf +Bg uPIDj j
� �

sj j
� c� D2ð ÞM sj j

ð14Þ

For _ss\0, the gain must satisfy the inequality in (15).

M .
�aem + l� bð Þ _emj j+Bf +Bg uPIDj j

c� Bg

ð15Þ

The choice above ensures _V = _V1 e1, _e1ð Þ+ _ss\0 and the
mechanism depicted in Figure 2 becomes a stable control
system.

Remark. Looking at (15), one sees that the lower bound is
dependent on |uPID|, which could be unbounded theoretically.
In our work, we consider a band limited differentiator, which
modifies the original derivative action to kd s

1+ ts
, where the

inverse of t determines the bandwidth of the valid
differentiation.
The inequality in (15) is a guide to determine the rule base of
the fuzzy system. Principally, the surface formed by the fuzzy

Figure 4. Selected membership functions along em and _em.

Table 1. Fuzzy logic rule base.

_em em

N Z P

N VL L S

Z L VS L

P S L VL

N, Negative; Z, Zero; P, Positive; VA, Very Small; S, Small; L, Large; VL,

Very Large.

Figure 3. Structure of a fuzzy logic system.
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system becomes higher when the (em, _em) pair is in the first or

the third quadrants of the phase space. Alternatively, the

synthesized value is small when the (em, _em) pair is in the sec-

ond or the fourth quadrants. This choice is because of the

deployment of the switching subspace. If the pair (em, _em) is

close to the s=0 subspace, then there is no need to choose a

large M value. Alternatively, the points away from s=0 loci

require a stronger attraction force and M is large in those

points. An exception of this strategy is the near origin activ-

ity. As the ultimate goal is to force the pair (em, _em) toward

the origin, the fuzzy system produces the minimum values of

M for the near origin subspace. This simply produces a bowl-

shaped structure around the origin that connects smoothly to

the aforementioned levels.
The fuzzy inference system employed in this work has the

input–output relation given in (16).

M =

P9
j= 1 yjmj1 emð Þmj2 _emð ÞP9
j= 1 mj1 emð Þmj2 _emð Þ

ð16Þ

In this representation, mj1 emð Þ is the membership function

quantifying the membership value of em in the jth rule,

whereas mj2 _emð Þ is the membership function quantifying the

membership value of _em in the same rule.
The rule consequences are singletons denoted by yis. The

fuzzy model adopts the product inference rule and weighted

average defuzzifier to obtain the crisp output. It would of

course be possible to enhance the resolution of the proposed

mechanism, yet the goal of our paper is to postulate the sim-

plest and best performing structure. Therefore, a rule base

containing nine rules is sufficient to obtain the prescribed

properties over the four quadrants of the phase space and

around the origin. In the next section, a set of simulations are

discussed on an exemplar plant model.

Simulation studies

During the simulations, the nominal model of plant has the

following parameters: a=5, b=4 and c=25. The nominal

control loop is as shown in Figure 1, and the PID controller

parameters have been determined utilizing the Ziegler–

Nichols tuning law. A further manual modification has been

done to obtain the best possible response, which is the mini-

mum overshoot and minimum rise time response. This has

yielded kp=8.55, ki=9.22 and kd=1.84. In order not to pro-

duce unbounded control signals for discontinuous reference

signals, a modified derivative action was used. More expli-

citly, the differentiation has been implemented as kd s
1+ s=57:54

. A

good closed-loop performance for these selections has been

observed in the simulations. The full model of the plant has

the following bounded uncertainty terms.

D1 :¼
100sin x1p

� �
cos x2p

� �
1:01+ x2

1p

\100=Bf ð17Þ

D2 :¼ 10
1+ 0:99sin x1px2p

� �
1+ x2

1p

\20=Bg ð18Þ

If the uncertain plant model is used in the control loop shown

in Figure 1, the results seen in Figure 5 are obtained. For a

better comparison, the initial conditions are assumed zero.

The dashed curve is the response of the uncertain system with

the sole PID controller. Though tuned using standard

approaches, the PID controller is unable to compensate for

the deficiencies caused by the uncertainty terms. This point is

the motivating fact of this work and we introduce a mechan-

ism as shown in Figure 2, where a sliding mode-based fuzzy

compensation is added. The singletons in the consequent part

of the fuzzy inference system are yVS = 10, yS = 15, yL = 25

and yVL = 28. The value predicted by the inequality in (15) is

considered the lower bound for the defuzzifier parameters

given above. The fuzzy system generates a M value, which

multiplies the sgn(s) term, where l=12 is the slope of the

switching line and e=0.2 is the smoothing parameter for the

sign function, chosen for the simulation studies. Smoothing

of the sign function is a remedy to eliminate chattering, yet it

introduces a boundary layer around the switching subspace.

Larger values of e introduce thicker boundary layers with

supposedly poor performances, yet smaller values produce a

better approximation to the original sign function that pro-

vokes the high-frequency components in the control signal.

With the membership functions depicted in Figure 4, the pre-

diction surface formed by the fuzzy system is shown in Figure

6, where the left subplot is a 3D view and the right one

depicts how the switching subspace is located over the four

quadrants of the phase space with the surface height coloured

as shown along the colour bar.
In Figure 7, the response of the system shown in Figure 2

is shown together with the nominal plant response obtained

from Figure 1. The initial output of the nominal model is zero

whereas that of the uncertain system is chosen as 21, which is

large enough to see the performance of the proposed scheme.

It is seen that the proposed technique forces the uncertain sys-

tem response to that of the nominal control loop. Clearly, the

goal is achieved with a slight modification to the original PID

control scheme.

Figure 5. Comparison of the unit step responses of the nominal

system and the uncertain system with only proportional–integral–

derivative (PID) controller.
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Figure 8 shows the control signals produced for the nom-

inal control system and the proposed scheme. The two signals

look similar, yet the proposed technique synthesizes the

details that handle the adverse effects of the uncertainty

terms. The steady-state behaviours are also different, as seen

from Figure 8.
In Figure 9, behaviour of the SMC magnitude gain term

is illustrated. The early phase of the simulation produces a

fast change in the value of M and a gradually converging

regime is observed. The steady-state value of M is slightly

larger than 10.
The trajectory followed in the phase space is depicted in

Figure 10, where it is seen that the sliding regime emerges and

the errors converge at the origin, as prescribed by the dynami-

cal properties of the switching manifold and sign smoothing

mechanism.

Finally, simulations have been repeated in presence of zero

mean measurement noise from the interval [20.01, 0.01] with

a probability very close to unity. It is observed that the plant

with proposed method has a good tracking performance

under noisy observations. However, when the control signal

of the uncertain plant with proposed method (up) in Figure 11

is considered, the chattering problem that is a characteristic

problem of SMC is observed as high-frequency fluctuations

in the control signal. The chattering can be decreased by soft-

ening the sign function with the larger e values, yet at this

time, the system moves away from the advantageous domain

of the SMC. The phase space behaviour with the noisy mea-

surements is shown in Figure 12, where the chattering during

the sliding regime is visible.
The simulations have been repeated for a continuous refer-

ence signal. The observations are noisy and the results are

shown in Figures 13–16. In Figure 13, the response of the

nominal system is shown together with the response of the

uncertain system. Again, the initial conditions have been

taken to be zero for a better comparison. The controller is the

Figure 6. The value of M according to em and _em. Left: 3D plot, right: 2D coloured plot.

Figure 7. A comparison of the unit step responses of the nominal

system and the uncertain plant with the proposed method.
Figure 8. Nominal control signal (uPID) and the control signal produced

by the proposed approach (up).
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sole PID controller and the reference signal is a sinusoidal
with frequency 1 Hz. The solid curve is the uncertain system
response and the performance is poor, as we desire it to follow
the nominal system response. When the proposed scheme is
executed, the results change to those shown in Figure 14,

where it is seen that the uncertain system follows the output
of the nominal model precisely. The initial output of the
uncertain system for this case is now set to 21 to see how it
approaches the nominal system output. The phase space beha-
viour is illustrated in Figure 15, and the produced control sig-
nals for these conditions are shown in Figure 16. Clearly, the
presence of noise affects the smoothness of the control signal
adversely and provokes the chattering, yet the sliding mode is
successfully maintained around the switching subspace, as
shown in Figure 17.

According to the simulation results, while the closed-loop
performance without the proposed method is unsatisfactory,
the proposed method is able to eliminate disadvantages
caused by the uncertainties. Furthermore, it is observed that

the proposed method produces consistent results even in pres-

ence of the noise. An exemplar case with two different refer-

ence signals is discussed through a set of simulations and it is

concluded that the PID control loops can be enhanced by

slight modifications and a good closed-loop performance and

improved robustness against uncertainties can be achieved

simultaneously.

A critical discussion

In this section, a number of recently published works focusing

on FSMC and PID control combination are considered for

comparison. Esfahani and Azimirad (2013) and Esfahani

et al. (2014) focused on a feedback loop where the reference

tracking error is used by a PID controller, whose output is

manipulated as the switching variable. This requires a series

Figure 9. Sliding mode control (SMC) magnitude gain (M).

Figure 10. Phase space behaviour for the step reference.

Figure 11. Comparison of the control signals of the nominal system

and the plant with proposed method in presence of the noise.

Figure 12. Phase space behaviour with noisy measurements. The

reference signal is a step function.
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of differentiators and clearly makes the closed loop vulnerable

to noise and high-frequency disturbances. Our work uses the

model-following error and its first derivative in the proposed

scheme and the simulations show that the effect of noise is

admissible. In Fallahi and Azadi (2009), a PID controller is

used to produce the switching variable, and a fuzzy subsystem

is used to provide the parameters of the PID controller as well

as the coefficients of the sliding term. However, the role share

between the fuzzy part and the sole PID controller is not

explained. Our paper modifies a nominal PID controller,

which has a meaning in some practical applications. A control

law can slightly be modified to obtain a good performance

with low cost. A similar approach is adopted in Kharabian

(2014), where a PID module provides the switching variable

and a fuzzy model provides the P, I and D action coefficients.

Our approach is structurally different from the cited methods,

i.e. using the output of a PID controller as an intermediate

variable and differentiating it limits the practical domain of

the approach, as in Kharabian (2014). In Dib et al. (2015), a

PID control law containing three terms is chosen and the val-

ues of the P, I and D action coefficients are provided by a

Mamdani fuzzy system. A study of robustness against uncer-

tainties and measurement noise is not given.
We discuss the combination of PID, FLC and SMC in

such a way that our work demonstrates:

a) The role of nominal controller with several types of
reference signals;

b) The enhancing role of the fuzzy logic part and what
happens when it is on and off;

c) The alleviation of complex uncertainties with an analy-

tical proof;
d) Admissible results with measurement noise.

Figure 15. Phase space behaviour with the chosen reference signal.

The observations are noisy.

Figure 13. Responses of the nominal system and the uncertain system

with only proportional–integral–derivative (PID) controller.

Figure 14. Responses of the nominal system and the uncertain plant

with the proposed method.

Figure 16. Control signals of the nominal system and the plant with

proposed method in presence of the noise. Reference signal is sinusoidal.
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The current work advances the subject area toward the field

of minimum modification concept for feedback control sys-

tems. This is especially important, as in some cases, a totally

new controller is not advised; instead, a minor modification to

the already available controller is preferred. This paper contri-

butes a useful solution to the literature.

Concluding remarks

In this paper, by combining the classical PID scheme and the

SMFC scheme, a robust control method was presented. The

goal of the proposed method is to force the uncertain plant to

follow the response of the nominal system. In order to achieve

that, first a PID controller was designed for the nominal sys-

tem by using Ziegler–Nichols method. Then, the designed PID

controller was used with the uncertain plant and it was

observed that the tracking performance of the uncertain plant

was not satisfactory. In the following phase, a fuzzy logic deci-

sion mechanism adjusting the SMC magnitude parameter was

designed based on the SMC approach. Finally, the control sig-

nals of the designed sliding mode fuzzy controller and the PID

controller were combined. The prominent features of the pro-

posed scheme have been shown through a set of simulations

and it was seen that the loop response could be improved by

minor modifications to the original PID control loop. The use

of such a mechanism is beneficial in the cases where the nom-

inal controller is a fixed one and the process input is modifi-

able. Some processes display such properties and the solution

offered here is an alternative to obtain a good performance

without giving concessions to the quality of the output.
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Aström KJ and Hägglund T (1995) PID Controllers: Theory, Design

and Tuning. Research Triangle Park, NC: ISA.

Barrero F (2002) Speed control of induction motors using a novel

fuzzy sliding mode structure. IEEE Transactions on Fuzzy Systems

10: 375–383.

Bouarroudj N, Boukhetala D and Boudjema F (2015) A hybrid fuzzy

fractional order PID sliding-mode controller design using PSO

algorithm for interconnected nonlinear systems. Control Engineer-

ing and Applied Informatics 17(1): 41–51.

Chen Z, Cong BL and Liu XD (2014) A robust attitude control strat-

egy with guaranteed transient performance via modified Lyapu-

nov-based control and integral sliding mode control. Nonlinear

Dynamics 78(3): 2205–2218.

Dib F, Meziane KB and Boumhidi I (2015) Sliding mode control

without reaching phase for multimachine power system combined

with fuzzy PID based on PSS. WSEAS Transactions on Systems

and Control, 206–214.

Edwards C and Spurgeon SK (1998) Sliding Mode Control: Theory

and Applications. London: Taylor and Francis.

Esfahani HN and Azimirad V (2013) A new fuzzy sliding mode con-

troller with PID sliding surface for underwater manipulators.

International Journal of Mechatronics 3: 224–249.

Esfahani HN, Azimirad V and Zakeri M (2014) Sliding mode-PID

fuzzy controller with a new reaching mode for underwater

robotic manipulators. Latin American Applied Research 44:

253–258.

Fallahi M and Azadi S (2009) Robust control of DC motor using

fuzzy sliding mode control with PID compensator. In: Proceed-

ings of the International Multi Conference of Engineers and Com-

puter Scientists, vol. II, 18–20 March, Hong Kong.

Itkis U (1976) Control Systems of Variable Structure. New York:

Wiley.

Kharabian B (2014) Fuzzy sliding mode-PID control for space manip-

ulator using dynamically equivalent manipulator model. Interna-

tional Journal of Control and Automation 7: 143–158.

Lhee CG (2001) Sliding-like fuzzy logic control with self-tuning the

dead zone parameters. IEEE Transactions on Fuzzy Systems 9:

343–348.

Mamdani EH (1974) Application of fuzzy algorithms for control of

simple dynamic plant. Proceedings of the Institution of Electrical

Engineers 121(12): 1585–1588.

Mohammadi M and Nafar M (2013) Fuzzy sliding-mode based con-

trol (FSMC) approach of hybrid micro-grid in power distribution

systems. International Journal of Electrical Power & Energy Sys-

tems 51: 232–242.
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