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The effects of time varying parameters and external disturbances on a flexible system may
badly degrade the control performance resulting in excessive induced vibrations/oscilla-
tions. For an overhead crane, the oscillation can be even worse when both factors occur
simultaneously. This paper proposes a novel swing control approach for an underactuated
overhead crane having payload hoisting and external disturbance simultaneously. The pro-
posed scheme is designed based on a predictive unity magnitude shaper and an adaptive
feedback control which efficiently suppress payload swing to handle both effects.
Furthermore, the control parameters can be updated online in real time to progressively
suppress the payload swing. To evaluate the effectiveness of the proposed method, exper-
iments are carried out with a simultaneous payload hoisting and external disturbances
including a non-zero initial condition, persistent disturbance (wind) and instant distur-
bance. The developed controller achieves higher robustness under all testing conditions
with significant swing reductions of at least 45% and 69% in the overall and residual swing
responses, respectively over a comparative control method. It is envisaged that the pro-
posed method can be very beneficial as an anti-swing controller for various cranes under
the influence of disturbance and hoisting simultaneously.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Cranes offer transportation services of heavy loads that are widely utilized in many sectors around the globe such as in
constructions, factories and marine industries. However, owing to its flexible structure, it may suffer from excessive swing
due to incompetence of human operator to handle the crane and the existence of unexpected external disturbances. In addi-
tion, payload hoisting which is an essential crane operation might also lead to higher payload swing, bouncing and twisting.
Hence, it is crucial to design efficient controllers that can eliminate the excessive swing subjected to these factors to achieve
a fast operation, a safe workplace, and to avoid damage to the load quality and neighbouring facilities. Various vibration con-
trol algorithms for crane systems have been widely designed for a single pendulum crane system [1–3], a double pendulum
crane system [4,5] and a dual crane system [6]. In addition, numerous types of controllers comprising feedforward and feed-
back control for crane systems have been reviewed in [7].
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Input shaping is a feedforward control technique that has beenutilizedpervasively to reduce the inducedoscillations/vibra-
tions of the flexible systems [4,8–10]. A shaper that can effectively eliminate the oscillations whilst producing a fast response
witha shorter shaperduration is desirable for a crane control system.Oneof the shapers that canmeet these criteria is knownas
a unitymagnitude zero vibration (UMZV) which resembles a finite actuated oscillatory system [11]. In crane operations, vary-
ing cable length during payload hoisting and using different payload masses cause system’s natural frequency and damping
ratio to change. Since the shaper’s design is highly dependent on these parameters, the performance of the shaper based on
fixed systemparameters becomesweak and incompetent to handle the effects. To tackle this issue, recently a predictive UMZV
shaper using a neural network (NNUMZV) approach was proposed [12]. Using the NNUMZV, the parameters of the shaper can
be updated in real-time considering the change in payloadmass and cable length to yield an accurate shaper design. However,
when thepayloadexperiencinga large swingdue to theexistenceof externaldisturbances, operatingcranebecomesmore chal-
lenging. These include the effects of non-zero initial condition [13], wind disturbance [14,15] and several other external distur-
bances [16,17] that have been considered for crane systems. Consequently, the performance of NNUMZV tends to deteriorate
implying its incapability in handling these disturbances. Recently, a robust control has been implemented as it can handle the
effect of disturbances effectively for crane [18], vehicle systems [19,20] and DC motor [21].

Several works have been reported for payload swing control of cranes with payload hoisting and disturbance. These
include feedforward, feedback and a combined feedforward and feedback controllers. Within the combined controller, a pro-
portional integral derivative plus proportional derivative control (PIDPD) [22] and an optimal PID controller [23] were pro-
posed as an anti-swing control for a gantry crane system. However, these control schemes only considered a case with
changing cable length. A combined control utilizing a feedback and feedforward schemes was also designed as an anti-
swing control to eliminate the excessive oscillations resulted from the external disturbance [14,15]. However, the feedback
control was not designed to aggressively eliminate the oscillation to avoid from unexpected motions that would surprise the
human operator [14]. Numerous control schemes were designed to tackle the effects of payload hoisting in various cranes
[24–32]. Similarly, control schemes to cater both the external disturbances and payload hoisting effects were also developed
[16,33–38]. However, it was found that most of the work considered them separately. It is worthwhile to point out that the
crane control challenge increases under both effects simultaneously.

Motivated to overcome the issue, this paper proposes a novel control scheme for efficient swing control of an overhead
crane with simultaneous payload hoisting and external disturbances. The main difference between the current paper and the
previously developed predictive NNUMZV [12] involves hybridization of the predictive NNUMZV and an adaptive PID like
neural network (APIDLNN) controller. The control scheme is implemented on an overhead crane experimental testbed
and tested under three experimental cases involving payload hoisting, a non-zero initial condition, persistent disturbance
(wind) and instant disturbance. A PID-based PSO (PIDPSO) controller is also designed as a comparative method to verify
the effectiveness of the proposed controller in terms of the overall payload swing and residual swing. The merits of the paper
can be summarized as:

1. The proposed hybrid control scheme involves the NNUMZV shaper that can predict and update the shaper parameters in
real-time to handle payload hoisting, and the APIDLNN which are adapted online based on the gradient descent method
to cater the effect of external disturbances. Furthermore, to achieve a faster convergence, the weights initialization of
APIDLNN is optimized using the particle swarm optimization (PSO).

2. This paper contributes in the control structure that combines the predictive input shaping and the APIDLNN control for
swing suppression under the effect of simultaneous payload hoisting and external disturbance. Within crane control, only
limited work has been reported in control of both effects simultaneously, especially in the real-time implementation
involving several types of disturbances. A series of hardware experiments are carried out to verify the effectiveness
and robustness of the proposed swing control.

3. Most of the existing control methods for the overhead crane were designed under a small swing assumption which
requires linearization of the nonlinear model. However, in real application, the effects of payload hoisting and existence
of external disturbances such as wind or collision could induce a large swing which increase the difficulty to guarantee
the control performance. In this paper, the proposed hybrid controller is designed based on a nonlinear model with learn-
ing capability and strong robustness features to handle the effects. A sufficient closed-loop stability analysis is proven,
implying the effectiveness of the learning algorithm and varied learning rates.

The rest of the paper is organized as follows. Section 2 describes the mathematical model of a 2-degree-of-freedom
overhead crane with hoisting, and hardware descriptions of the overhead crane testbed. Section 3 presents the previously
developed controller that needs to be enhanced whereas Section 4 explains the structure of the proposed
NNUMZV-APIDLNN, together with the details of adaptation algorithm. Section 5 demonstrates the experimental results to
show the superiority of the proposed controller, and finally concluding remarks are given in Section 6.
2. Model description

Fig. 1 illustrates a plane model of a two-dimensional (2-D) overhead crane. A distance r indicates a path taken by the
trolley from the origin, up to the suspension point of the cable on the trolley. l, m and h represent the hoisting cable length,



Fig. 1. A plane model of a two-dimensional overhead crane with hoisting payload.
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payload mass and swing angle, respectively. u1 and u2 denote the driving forces for r and l motions, respectively. The equa-
tions of motion of the crane system are given as [39]
mr þmð Þ€r þml cos h€hþm sin h€lþ bx _r þ 2m cos h_l _h�ml sin h _h2 ¼ u1 ð1Þ

m€lþm sin h€r þ bl
_l�ml _h2 �mg cos h ¼ u2 ð2Þ

ml2€hþml cos h€r þ 2ml_l _hþmgl sin h ¼ 0 ð3Þ

where mr is the travelling components of crane mass that includes the equivalent masses of the rotating parts, g is the grav-
itational acceleration, and bx and bl represent the viscous damping coefficients for the r and lmotions, respectively. The mass
and stiffness of the cable and the viscous damping in the payload swing are neglected and the payload is assumed as a point
mass.

3. Unity-magnitude zero vibration (UMZV) input shaping

Input shaping is an effective feedforward control for suppressing vibrations of a flexible system. By using input shaping,
the system’s vibration is reduced by convolving the command input signal with a sequence of impulses of which produces
zeros over each of the flexible pole [40]. Apart from utilizing zero vibration-type shapers that contain positive impulse
amplitudes, a shorter shaper could be obtained if negative impulse amplitudes are considered [11,41]. The impulse ampli-
tudes are constrained to be 1 or �1 to achieve a time-optimal command. One of the negative input shapers is the UMZV and
is given as [11,41]
Ai

ti

� �
¼ 1

0
�1
t2

1
t3

� �
ð4Þ
where Ai and ti are the amplitude and time location of the impulse respectively. ti can be defined as
t2
t3

� �
¼

2p
xd 1=6þ0:272fþ0:203f2ð Þ

2p
xd 1=3þ0:005fþ0:179f2ð Þ

2
4

3
5 ð5Þ
where xd ¼ xnð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
). xn and f represent natural frequency and damping ratio of the system respectively.

As a conventional shaper is designed based on a linear plant, the shaper’s performance tends to deteriorate for a nonlinear
system. Recently, to handle nonlinearities and changes in the natural frequencies and damping ratio, a neural network based
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UMZV (NNUMZV) shaper was proposed. In this approach, optimal shaper parameters were obtained using the NN subjected
to varying cable lengths due to the payload hoisting and changes in payload mass as shown in Fig. 2. The NN structure used
in Fig. 2 represents a simple structure of feedforward neural network with three layers since this structure is adequate to
predict the shaper’s parameters accurately with less computational complexity. Nevertheless, other types of NN can also
be implemented to predict the shaper’s parameters.

A detailed description on the application of NN for designing a real time UMZV shaper can be found in [7]. However, the
control scheme was unable to handle payload swing due to the external disturbances which are common in industrial oper-
ation scenarios. This paper aims to enhance the work [7] to cater simultaneous payload hoisting and external disturbances,
by proposing a control structure as discussed in the following section.

4. NNUMZV-APIDLNN algorithm

In this work, an efficient swing control is designed based on the NNUMZV shaper and APIDLNN under simultaneous pay-
load hoisting and several types of external disturbances. APIDLNN offers both the simplicity of PID control and the self-
learning ability of NN [42]. Fig. 3 shows the proposed control structure where R; h, hd, uc , us, u1 and e represent the input
signal, actual swing angle, desired swing angle, APIDLNN control signal, NNUMZV shaped signal, control input and swing
error respectively. The control structure can be viewed as a combination of feedforward and feedback controllers as shown
with the dotted lines in Fig. 3.

Based on a measured cable length, the NNUMZV shaper determines optimal shaper parameters to tackle payload swing
due to the payload hoisting. This results in a shaped input, u1 which is applied to the system. At the same time, the actual
payload swing which is also affected by the external disturbances is processed using the APIDLNN and fed back to the sys-
tem. In this work, a positive feedback is utilized, as the approach was successfully implemented in [22,23] for control of
cranes.

Fig. 4 illustrates the network structure of the APIDLNN adopted in this work that consists of 3 layers known as input (i),
hidden (j) and output (k) layers. The parameters of hij and ojk represent the weights between input and hidden layers and the
weights between hidden and output layers respectively. The input layer contains one input node that will receive the error
signal, e and directly send it to the weighted sum nodes Xj j ¼ 1; ::;nj

� �
in the hidden layer. The other nodes in hidden layer

represent the proportional node Q1; the integral node Q2 and the differential node Q3, and z�1 is a unit delay operator. An
output node in the output layer will directly send the feedback control signal, u2 into the system.

The outputs of hidden layer represented by Q1, Q2 and Q3 neurons are,
Q1ðNÞ ¼ gðX1ðNÞÞ ¼ gðh11ðNÞeðNÞÞ ð6Þ

Q2 Nð Þ ¼ g X2 Nð Þð Þ ¼ g h12 Nð Þe Nð Þ þ Q2 N � 1ð Þð Þ ð7Þ

Q3 Nð Þ ¼ g X3 Nð Þð Þ ¼ gðh13 Nð Þe Nð Þ � h13 N � 1ð Þe N � 1ð ÞÞ ð8Þ

where N is the number of iteration and the error, e Nð Þ ¼ hd Nð Þ � h Nð Þ. The function g xð Þ is given as,
Fig. 2. Network structure of the NNUMZV shaper.



Fig. 3. A combined control structure.

Fig. 4. Network structure of the APIDLNN.
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g xð Þ ¼
1 x P 1
x �1 < x < 1
�1 x 6 �1

8><
>: ð9Þ
The upper and lower bounds of function g xð Þ ensure that the signal does not grow uncontrollably as it propagates from
one layer to the next. The final output of the APIDLNN can be expressed as,
c Nð Þ ¼
Xnj
j¼1

oj1 Nð ÞQj Nð Þ ð10Þ
where nj ¼ 3 is the number of neurons in the hidden layer. Based on Equations (6)-(10), Q2ðNÞ can be written as
Q2 Nð Þ ¼ h12 Nð Þe Nð Þ
1� z�1 ð11Þ
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where Eq. (11) has the relationship of integral and Q2 Nð Þ is known as an integral node. On the other hand, Q3 Nð Þ can be writ-
ten as
Table 1
Optimiz

Initi

Valu
Q3 Nð Þ ¼ h13 Nð Þe Nð Þð Þ 1� z�1� � ð12Þ

in which Eq. (12) has the relationship of differential and Q3 Nð Þ is known as a differential node.

4.1. Weight initialization

This section describes the optimization of APIDLNN initial weights (hij and ojk) using PSO, prior to the real-time imple-
mentation. Instead of assuming them randomly, these optimal initial weights were obtained offline to ensure a faster con-
vergence of the actual weights during real-time adaptation of the APIDLNN. By assuming them randomly or by using
different initial values would affect the effectiveness of training process of the APIDLNN during online adaptation, resulting
in unsatisfactory swing reduction. By optimizing these values, the training session during real-time adaptation can be
reduced since the starting point of the optimization is very close to the global minimum.

The control variables of the PSO were set as weights of the network which correspond to the position vector of the ith

particle in the search space. The range for each control variable was tuned between [�1,1] with a population size of 40. Each

particle can be assigned as a point in a D-dimensional space and the position of ith particle, xi will be updated according to the
given velocity update to finally reach an optimal solution in the search space area. Two best values were evaluated in the

population called personal best, pb and global best, gb. The velocity of the ith particle is given by
v tþ1
id ¼ xv t

id þ c1r
t
1d pbt

id � xtid
h i

þ c2r
t
2d gbt

d � xtid
h i

ð13Þ

xtþ1
id ¼ xtid þ v tþ1

id ð14Þ

where d 2 1;D½ � and i 2 1; s½ �. s and t are the number of particle and current iteration number respectively. The acceleration
coefficients, c1 and c2 were set as 1.5 and the random numbers, r1 and r2 were assigned between 0;1½ �. Inertia weight,x that
controls the momentum and the capability in terms of exploration and exploitation of the particles toward finding a good
optimal point is given as
xtþ1 ¼ xmax � xmax �xmin

tmax

� �
t ð15Þ
where xmax andxmin are the maximum and minimum values of inertia weight that were set as 0.9 and 0.4, respectively. tmax

is the maximum iteration number. All particles were evaluated based on the fitness function, J aimed to reduce the payload
swing angle which is based on mean square error (MSE), given as
J ¼
Z T

0
hd � hj j2dt ð16Þ
where T is the time of simulation. The fitness value of each particle was calculated in every iteration to finally find the opti-
mal initial weights. The optimization process was carried out by using simulation in Matlab and the results are as shown in
Table 1.

4.2. Online learning algorithm

The online learning algorithm in Fig. 3 utilized the gradient descent method to adjust weights of the network. The cost
function E is defined as,
E Nð Þ ¼ 1
2

hd Nð Þ - h Nð Þ½ �2 ¼ 1
2
e2 Nð Þ ð17Þ
The updating weights are obtained by means of minimizing the cost function, E. In the output layer, the error term to be
propagated is computed as,
do Nð Þ ¼ � @E Nð Þ
@uc Nð Þ ¼ � @E Nð Þ

@e Nð Þ
@e Nð Þ
@uc Nð Þ ¼ � @E Nð Þ

@e Nð Þ
@e Nð Þ
@h Nð Þ

@h Nð Þ
@uc Nð Þ ð18Þ
ed initial gains of APIDLNN.

al weight h11 h12 h13 o11 o21 o31

e 1 �0.0049 �0.2832 �1 �0.1670 �0.2562
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The term @h Nð Þ
@uc Nð Þ cannot be easily obtained due to uncertain dynamics of the system. Hence, to solve this problem whilst

speeding up the online learning process, do can be approximated as [43],
do ffi hd Nð Þ � h Nð Þð Þ þ _hd Nð Þ � _h Nð Þ
	 


¼ eþ _e ð19Þ
and the weight ojk can be updated by,
ojk N þ 1ð Þ ¼ ojk Nð Þ þ Dojk Nð Þ ð20Þ

where Dojk Nð Þ ¼ �gojk

@E Nð Þ
@ojk Nð Þ and gojk

is the learning rate between the hidden layer and the output layer. By applying the chain

rule of the network layers,
@E Nð Þ
@ojk Nð Þ ¼

@E Nð Þ
@ucðNÞ

@uc Nð Þ
@ojk Nð Þ ð21Þ
Eq. (21) can be written as,
@E Nð Þ
@ojk Nð Þ ¼ �do Nð ÞQj Nð Þ ð22Þ
On the other hand, the weight hij can be updated by,
hij N þ 1ð Þ ¼ hij Nð Þ þ Dhij Nð Þ ð23Þ

where Dhij Nð Þ ¼ �ghij

@E Nð Þ
@hij Nð Þ and ghij

is the learning rate between the input layer and the hidden layer. The partial derivative of

E Nð Þ with respect to hij Nð Þ is formulated as,
@E Nð Þ
@hij Nð Þ ¼

@E Nð Þ
@ucðNÞ

@uc Nð Þ
@Qj Nð Þ

@Qj Nð Þ
@Xj Nð Þ

@Xj Nð Þ
@hij Nð Þ ð24Þ
The derivative, @Qj Nð Þ
@Xj Nð Þ can be approximated by its sign function, sgn Qj Nð Þ�Qj N�1ð Þ

Xj Nð Þ�Xj N�1ð Þ

	 

as described in [44]. Eq. (24) can then be

rewritten as,
@E Nð Þ
@hij Nð Þ ¼ �do Nð Þojk Nð Þsgn Qj Nð Þ � Qj N � 1ð Þ

Xj Nð Þ � Xj N � 1ð Þ
� �

e Nð Þ ð25Þ
The online learning algorithm will keep updating the next iteration weight values (ojk N þ 1ð Þ and hij N þ 1ð Þ) in Eqs. (20)
and (23), based on the calculated values of Dhij Nð Þ and Dojk Nð Þ. These equations are important in adjusting the weights online
caused by the effects of the external disturbances. The learning rates (gojk

and ghij
Þ are calculated in the varied learning rate

block as shown in Fig. 3.

4.3. Convergence analysis

A proper design of learning rate is crucial as it determines the network performances. Hence, varied learning rates with a
guaranteed convergence of tracking error is desirable which can lead to an effective training process of the APIDLNN. One can
have a larger learning rate for a point far away from a global minimum and a smaller learning rate for a point closer to the
global minimum. To achieve this, a discrete-type Lyapunov function [45] was adopted to design the learning rate parameters
of the APIDLNN, given as
E Nð Þ ¼ 1
2
e2 Nð Þ ð26Þ
The change in the Lyapunov function can be obtained as
DE Nð Þ ¼ E N þ 1ð Þ � E Nð Þ ð27Þ

The Lyapunov function for the next iteration can be approximated as [45]
E N þ 1ð Þ � E Nð Þ þ
X3

j¼1

@E Nð Þ
@oj1 Nð ÞDoj1

� �
þ
X3

j¼1

@E Nð Þ
@h1j Nð ÞDh1j

� �
ð28Þ

¼ 1
2
E Nð Þ �

X3
j¼1

goj1

@E Nð Þ
@uc Nð Þ

@uc Nð Þ
@oj1 Nð Þ

� �2
þ 1
2
E Nð Þ �

X3
j¼1

gh1j

@E Nð Þ
@uc Nð Þ

@uc Nð Þ
@Qj Nð Þ

@Qj Nð Þ
@Xj Nð Þ

@Xj Nð Þ
@h1j Nð Þ

� �2
where Doj1 represents the weight change between the hidden and output layers, while Dh1j indicates the weight change
between the input and hidden layers. The learning rate parameters can be designed as [43,45]
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ghij
¼ E Nð Þ

2
P3

j¼1
@E Nð Þ
@ucðNÞ

@uc Nð Þ
@Qj Nð Þ

@Qj Nð Þ
@Xj Nð Þ

@Xj Nð Þ
@h1j Nð Þ

	 
2
þ e

� � ð29Þ

gojk
¼ E Nð Þ

2
P3

j¼1
@E Nð Þ
@uc ðNÞ

@uc Nð Þ
@oj1 Nð Þ

	 
2
þ e

� � ð30Þ
where e is a positive constant. Therefore, Eq. (28) can be approximated as [45]
E N þ 1ð Þ � e ghij
þ gojk

	 

¼ E Nð Þe

2
P3

j¼1
@E Nð Þ
@uc Nð Þ

@uc Nð Þ
@Qj Nð Þ

@Qj Nð Þ
@Xj Nð Þ

@Xj Nð Þ
@h1j Nð Þ

	 
2
þ e

� �þ E Nð Þe
2

P3
j¼1

@E Nð Þ
@uc

@uc Nð Þ
@oj1 Nð Þ

	 
2
þ e

� � <
E Nð Þ
2

þ E Nð Þ
2

¼ E Nð Þ ð31Þ

For the feedback loop, Eq. (31) shows that the output error between the desired and actual payload swing responses, e

will converge to zero gradually and the stability of the feedback controller can be assured. As the feedforward and
closed-loop controllers were designed independently, the feedforward control does not affect the stability of the closed loop
system. Furthermore, input shaping was designed outside the feedback loop as shown in Fig. 3 and thus, it has no effect on
the eigenvalues of the closed-loop system as it simply modifies the command signal to the system. Hence, the stability of the
overall system can be guaranteed. The implementation of input shaping within the feedback loop which can affect the
closed-loop stability was discussed in [46].

The varied learning rate parameters in Eqs. (29) and (30) can guarantee the convergence of the output error based on the
analysis of the discrete Lyapunov function to yield an effective training for the APIDLNN. The experimental results presented
in the section revealed the effectiveness of the online learning APIDLNNmodel based on the adaptation algorithm and varied
learning rate parameters.

5. Implementation and results

Fig. 5a shows an overhead crane experimental testbed used for the experiments. Fig. 5b and c show a GBL800E wind
blower manufactured by BOSCH that was used to generate the wind as an external disturbance and the wind force was mea-
sured using a GM816 digital anemometer. The crane is equipped with a motion mechanism driven by a DC motor and three
measuring encoders with a resolution of 4096 pulses per rotation are used for measuring the trolley position, cable length
and payload angle. The payload angle can be measured with an accuracy of 0.0015 rad. The real-time implementation
involves a Pentium-based personal computer, and a control algorithm designed using the MATLAB/Simulink. The sample
time used was set to 0.01 s. Table 2 presents the system parameters of the overhead crane experimental testbed.

Several experiments involving simultaneous hoisting and external disturbances were conducted to verify the real-time
performance of the proposed control scheme. Fig. 6 illustrates the input signal RðtÞ applied for the trolley movement. Due
to the limitation of the crane testbed, the payload was hoisted from 0.17 m to 0.59 m (Fig. 7) which involves 71% of the
Fig. 5. (a) An overhead crane experimental testbed, (b) GBL 800 E Wind blower, (c) GM 816 Digital anemometer.
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Fig. 7. Cable length hoisting.

Fig. 6. Input signal of the trolley.

Table 2
System Parameters.

System parameters Values

Hoisting cable length, l 0.17–0.59 m
Gravitational constant, g 9.8ms�2

Viscous damping, bx 82 Ns/m
Viscous damping, bl 75 Ns/m
Mass of payloads, m 0.74 kg
Mass of trolley, mr 1.155 kg

L. Ramli et al. /Mechanical Systems and Signal Processing 135 (2020) 106326 9
height of the crane. During the hoisting, the disturbance was applied by hitting the payload physically, and the disturbance is
sustained approximately the same to maintain consistency among different experiments. Furthermore, persistent wind dis-
turbance was implemented with a constant wind speed of 25 ms�1.

To conduct an extensive study, three cases involving the hoisting and disturbance were examined:

� Case 1: The payload was hoisted whilst the disturbance was exerted on the payload mass of 0.74 kg in parallel to the trol-
ley axis during the crane motion.

� Case 2: A non-zero initial condition is considered, with the initial swing angle, h(0)� �6
�
. Practically, this is a case where

the trolley and the carried payload initially are not aligned on the same axis.
� Case 3: The payload was hoisted whilst the wind disturbance with a constant speed of 25 ms�1 was applied on the pay-
load continuously.

For performance comparisons, a PSO-based PID approach was also combined with the NNUMZV shaper as shown in Fig. 8
and implemented under all the experimental cases. By adopting the same technique in optimizing the APIDLNN initial
weights, PSO was utilized to determine the optimal gains for the comparative method through simulation in Matlab. The

PSO parameters such as the velocity update of the ith particle and the inertia weight were assigned as in Eqs. (13)–(15),



Fig. 8. NNUMZV-PIDPSO control structure.
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whereas the optimal PID gains were carefully obtained by minimizing the fitness function as in Eq. (16). The proportional
gain Kp, derivative gain Kd and integral gain Ki were deduced as �0.0626, �0.6803 and 0.1387 respectively.

The performances of the controllers were evaluated based on the level of payload swing suppressions and the resid-
ual swing (RS) angles when the payload undergoes hoisting and disturbances. As the control aim is to yield a zero pay-
load swing, the mean square error (MSE) can be utilized as a performance index, where an MSE value of a payload swing
response gives a total swing angle for a particular period of time. Therefore, a lower MSE value is desirable as it indi-
cates a higher swing suppression. To evaluate the level of swing reductions in a steady state response, the RS was
obtained based on the maximum swing amplitude after 6 s of the trolley movements for all cases. A low RS is essential
for a fast placement of payload at a desired location.
5.1. Experimental results of the input shaper

The effects of hoisting and disturbance on the payload swing response of the overhead crane experimental testbed were
firstly examined for all cases using the NNUMZV shaper proposed in [12]. As the NNUMZV shaper was successfully imple-
mented on the same crane testbed, the network structure in Fig. 3 used the same sets of weights and biases as given in
Table 3.

Fig. 9 illustrates the trolley position and the input-shaped signal of the shaper when excited with the input signal in Fig. 6.
Fig. 10 shows the payload swing responses for the three cases of external disturbances using the shaper with a payload mass
Table 3
The weights and biases of NNUMZV [12].

The weights between the input and hidden layerswij The biases in the hidden layerhj

w11 w12 w13 w21 w22 w23 h1 h2 h3

�7.1048 4.8275 10 �0.1354 �0.1630 10 1.4745 5.7060 �2.2843

The weights between the hidden and output layerswjk The biases in the output
layerhk

w11 w12 w21 w22 w31 w32 h1 h2

�8.2670 �10 6.4146 10 �5.1801 �9.4777 �3.8218 �9.0687



Fig. 10. Payload swing responses of the shaper under payload hoisting and disturbance.

Fig. 9. (a) Trolley position; (b) Input-shaped signal of the shaper.
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of 0.74 kg. The time instance when the disturbance was applied for Case 1 was shown with vertical dotted lines, which was
approximately at 0.4 s. The initial swing angle of�6� is also shown in Fig. 10 for Case 2. Furthermore, the effect of continuous
wind force on the payload swing is also illustrated in Fig. 10 for Case 3.

Obviously, high swing responses were observed for all cases with high MSE values as tabulated in Table 4. Table 4 also
shows the RS values for all cases, which were high, and thus a longer time is needed for the payload to settle down. The
experimental results also imply the unsatisfactory performance of the shaper, due to its sensitivity towards the existence
of external disturbances. A swing controller scheme is proposed to enhance the NNUMZV shaper and adapt to the effects
of the disturbances.
Table 4
Performance Indices obtained using the NNUMZV shaper.

Experiment MSE RS (degree)

Case 1 11.6723 5.1556
Case 2 7.4411 4.6583
Case 3 9.4372 7.3829
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5.2. Experiment results of the NNUMZV-APIDLNN algorithm

This section examines performances of the NNUMZV-APIDLNN algorithm to reduce the payload swing subjected to the
simultaneous payload hoisting and external disturbances. The experimental results for the trolley position, swing response
and control signal using the proposed and comparative methods are shown in Figs. 11–13 for Cases 1–3 respectively.

For all cases, the trolley movement of both methods stopped approximately at 0.4 m within about 4 s. It was noted that,
the final trolley positions reached by both methods for each case were found to be slightly different depending on the type of
control method used. It is worth mentioning that the desired trolley position can be accurately achieved by adding a feed-
back control for position tracking.

Noticeably, the proposed method exhibits superior performance in terms of the overall swing reduction and the levels of
residual swing when compared with the comparative method for all cases. The proposed controller was shown to be able to
handle the effects of the disturbance in Case 1, a nonzero initial swing angle in Case 2 and a wind disturbance in Case 3.
These were shown by the changes in the control signals in Figs. 11c, 12c and 13c. Table 5 tabulates the performance indices
for the proposed and comparative methods.

Analyzing the overall swing response with the MSE value, improvements of 86%, 45% and 87% were achieved when com-
pared to the NNUMZV-PIDPSO for Cases 1, 2 and 3 respectively. Furthermore, the swing responses by the proposed method
settled down faster, in which the RS for all cases were very small. This indicates the proficiency of the proposed scheme as an
anti-swing control with improvement at least by 69% over the comparative method.

Almost no residual swing was obtained in all cases resulted from an effective control signal produced by the combined
feedforward and feedback control signals. However, the NNUMZV-PIDPSO method was not able to counter the disturbance
Fig. 11. Experimental results for Case 1. (a) Trolley position; (b) Swing response; (c) Control signals of the proposed method; (d) Control signals of the
comparative method.



Fig. 12. Experimental results for Case 2. (a) Trolley position; (b) Swing response; (c) Control signals of the proposed method; (d) Control signals of the
comparative method.
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effect with a large residual swing. For Case 3, although, the trolley moved to a slightly shorter distance, this can be handled
by a position controller whereas a higher swing obtained with the NNUMZV-PIDPSO implies that an operator need to wait
for a longer time to place a payload at a desired location. The superior performance of the proposed controller is further evi-
denced in Fig. 14 that show the percentage improvements in the MSE and RS values when compared to the system with the
NNUMZV shaper (Table 4).

A successful implementation of the proposed controller relies on the capability of the weights in the APIDLNN to adapt to
the external disturbances. A real-time evaluation based on the weight adaptation of the algorithm in real-time was analysed.
The variations of weights (h11;h21;h31; o11; o12 and o13Þ are shown in Fig. 15 for the three experimental cases during the
trolley motions of 10 s (Fig. 6), which clearly showed the progressive adaptation of the controller to eliminate excessive
swing due to the disturbance effects.

For all cases, the rapid change in weight values were varied within 4 s to adapt the effect of the disturbances. For example,
in Case 1, when the disturbance was exerted on the payload at approximately 0.4 s (Fig. 11b), there is an immediate change
on the weights in Fig. 15 which occur at approximately 0.6 s to reject the effect of the disturbance. The final weight values
achieved approximately constant values after 4 s implying that the swing has significantly reduced. These weight adapta-
tions assure that the swing gradually converged towards zero. In addition, the proposed method was capable to adapt
and provide a uniform performance under various simultaneous conditions.



Table 5
Performance indices for the proposed control method and NNUMZV-PIDPSO.

Cases MSE RS (degree)

NNUMZV- APIDLNN NNUMZV- PIDPSO NNUMZV- APIDLNN NNUMZV- PIDPSO

Case 1 0.7627 5.6402 0.2301 2.1094
Case 2 1.5880 2.9133 0.3484 1.1063
Case 3 0.6665 5.0763 0.7031 4.1309

Fig. 13. Experimental results for Case 3. (a) Trolley position; (b) Swing response; (c) Control signals of the proposed method; (d) Control signals of the
comparative method.
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6. Conclusion

An efficient control based on an NNUMZV-APIDLNN algorithm was successfully designed and implemented in real-time
for swing control of an overhead crane subjected to simultaneous hoisting and external disturbances. The main contribution
of this paper is to handle both difficulties simultaneously, which has not been focused in the existing literature. Experimental
results with several practical cases showed that the proposed controller attained significant reductions in the overall and
residual swings as compared to the NNUMZV-PIDPSO controller. Using the proposed method, the appropriate controller
gains can be acquired adaptively in real time, implying that the online learning algorithm with varied learning rates is effec-
tive to handle those effects with excellent swing reductions.



Fig. 15. Weight values of the proposed control method for experimental Case 1 (solid), Case 2 (dashed) and Case 3 (dotted) with external disturbance and
non-zero initial swing.
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