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ABSTRACT This paper introduces a machine learning assisted disturbance/uncertainty estimator based
control scheme. The aim of the proposed method is to update the nominal model directly used by the
conventional disturbance observer based control architecture and approximate it to the perturbed/uncertain
system using machine learning approaches. This enhances the disturbance rejection performance of the
system remarkably. The performance deterioration capacity of lumped disturbances, which are the mixed
effect of disturbances entering through the control channels and modeling uncertainties, are decomposed in
our approach and handled separately. For this study, harmonic disturbance model and constant unstructured
uncertainty model are considered, and ε-Support Vector Regression approach is used together with an online
adaptation algorithm. A numerical example is given to demonstrate the merits and effectiveness of the
proposed approach. Simulation results show that the proposed method outperforms the conventional dis-
turbance/uncertainty estimator based control architecture by increasing disturbance estimation performance
of the system.

INDEX TERMS Disturbance/uncertainty estimator, disturbance observer, machine learning, robust control,
robustness, ε-Support Vector Regression.

I. INTRODUCTION
Disturbance/Uncertainty Estimator (D/UE) based control,
or in other words, disturbance observer based control
(DOBC) that compensates the external disturbances and
system uncertainties is one of the efficient robust control
approaches and they are frequently used in modern control
systems. Numerous research outcomes have been reported
on DOBC so far, which increases the robustness of the sys-
tem by estimating the total difference between the nominal
model and the perturbed/uncertain system without affecting
the system performance, and a certain level of closed loop
performance has been reached [1].

DOBC was first proposed by Ohnishi in the 1980s [2].
Following this, in the 1990s, extended state observer (ESO)
was proposed byHan [3]. DOBC that rejects not only external
disturbances but also unknown uncertainties has received a
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great deal of attention with the active disturbance rejection
control (ADRC) including extended state observer (ESO)
that was proposed by Han [4]. Simultaneously, the equiv-
alent input disturbance (EID) approach was presented and
discussed from a theoretical standpoint, and applied to many
practical systems [5], [6]. In [7], the two-degrees-of-freedom
nature ofUDE-based controllers was presented and compared
with time delay control (TDC). The authors of [8] presented
a robust autopilot design including a newly proposed time
domain disturbance observer approach for bank-to-turn mis-
siles. In [9] and [10], an output error based D/U estimator
based control scheme is proposed and themethod is applied to
a high precision gimbal control system and a pan-tilt system.
Robust stability, performance and bandwidth requirements of
newly proposed scheme is derived. The works in [11], [12],
and [1] present a comprehensive explanation of the studies
on this subject. Especially, [1] and [12] provide a broad
perspective and analysis about DOBC from the past to the
present.
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FIGURE 1. Disturbance/Uncertainty estimator based control scheme proposed by Kürkçü et al., [9].

The most DOBC structures reported in the literature gener-
ally assume the existence of an equivalent input disturbance
on the control input and estimate mixed effect of disturbance
and uncertainty as a lumped signal, [13]. Utilizing the dis-
turbance observer’s dynamical description, it becomes nearly
impossible to figure out howmuch of the lumpedD/U estima-
tions are associated to the disturbance and how much is asso-
ciated to uncertainty. This sets up our motivation.We propose
a new adaptivemethod based onmachine learning approaches
that increases disturbance estimation performance by approx-
imating to the amount of system uncertainty. To our best
knowledge, unmixing the lumped disturbances via an adap-
tive scheme is first attempted in the current study. Adaptive
DOBC structures in the literature include generally compos-
ite controller design, data driven and nonlinear controller
based augmented structures [14], [15], [16], [17]. In [14],
a novel control scheme combining nonlinear DOBC with
H∞ control structure was presented for complex multiple-
input-multiple-output (MIMO) flight control system. The
authors in [15] designed an adaptive multi-variable finite-
time disturbance observer (FDO) to estimate model uncer-
tainties, external disturbances, and actuator faults for reusable
launch vehicles (RLV). For piezoelectric ultrasonic actuator
(PUA)-based surgical device, an enhanced adaptive robust
DOBC scheme including sliding mode was proposed in [16].
In [17], a data driven disturbance observer based control
scheme including ADRC approach is discussed. However,
the cited body of literature estimates the lumped D/U and
remedies are based on the lumped effect of the disturbances
and plant uncertainties.

The lumped estimation uses the difference between the
nominal model and the perturbed/uncertain plant. Our pur-
pose is to update the nominal model iteratively to match its
response to that of the perturbed/uncertain system by using
machine learning approaches thereby leading to an improve-
ment in the disturbance rejection performance of the system.
The proposed method is applicable to all DOBC schemes that
exploit the nominal plant information. In order to exemplify

the efficacy of the proposed technique, we use the algorithm
proposed in [9].

This paper advances the subject area towards decomposi-
tion algorithms that handle the adverse effects of input distur-
bances and plant uncertainties separately. Machine learning
offers a framework based on numerical data & optimization
algorithms and we exploit the observed quantities towards
unmixing a mixed signal in a feedback control framework.
The contribution of the current study is to postulate an algo-
rithm for handling the input disturbances by adaptively mod-
ifying the nominal plant dynamics.

The remainder of this paper is organized as follows.
Section II handles the conventional D/UE based control
scheme and the proposed method. The third section presents
a numerical example and set of simulation studies to show
the effectiveness of the proposed method. Finally, concluding
remarks are presented.

II. METHODOLOGY
A. DISTURBANCE/UNCERTAINTY ESTIMATOR BASED
CONTROL SCHEME
For an LTI system, the general equivalent input disturbance
representation of it can be given as

ẋ(t) = Ax(t)+ B(u(t)+ d(t)), y(t) = Cx(t), (1)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, x(t) ∈ Rn×1, y(t) ∈
R, u(t) ∈ R and d(t) ∈ R.
Fig. 1 illustrates the disturbance/uncertainty based control

scheme proposed in [9], where, K is the main controller,
u(t) ∈ R is the output of the main controller, η(t) ∈ R is
the observer error, Kobs is the observer controller, d(t) ∈ R
is the equivalent input disturbance and d̂(t) ∈ R is the mixed
estimations of disturbance/uncertainty. The perturbed plant P̂
is as follows:

P̂ ∈ P(1+1WT ) | ∀‖1‖∞ ≤ 1, (2)

where P,WT and1 are the nominal plant, robustness weight
function and unstructured uncertainty function, respectively.
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FIGURE 2. Proposed ML assisted disturbance/uncertainty estimator based control scheme-learning
phase.

FIGURE 3. Learning phase steps.

The transfer function of the nominal plant (P) is given as
below.

P = C(sI− A)−1B. (3)

B. PROPOSED SCHEME
Controller design procedures ofK andKobs in Fig. 1 are given
in [9] and [10] for equivalent LTI systems (1). Robustness fig-
ures of the closed loop system can be generated for designed
K and Kobs using the following co-sensitivity and sensitivity
expressions.

T =
P̂K (1+ PKobs)

1+ P̂K + P̂Kobs + PP̂KKobs
. (4)

S = 1− T . (5)

After designing the main controller and observer controller
structures, we implemented an adaptive method using sup-
port vector machine approach, which is a powerful machine
learning technique for regression and classification problems,
presented in Figs. 2-4. While Figs. 2-3 illustrate the learning
phase of proposed scheme, Fig. 4 shows the overall online

adaptation scheme after learning phase. According to the
figure, one understands that the adaptive scheme matches the
plant uncertainty iteratively usingML techniques and the new
nominal system is used in the lowest disturbance prediction
loop to cancel out the disturbance d .
Supervised learning process in the block diagram pre-

sented in Fig. 2 consists of four steps and is depicted in Fig. 3.
Receiving and saving data periodically constitute the first step
of this process. An important issue in this step is to save data-
sets that contain as much variation as possible in the time-
domain using different disturbance and uncertainty models.
This is critically important to distinguish the components of
a mixed signal. In this paper, we consider harmonic distur-
bance model and constant unstructured uncertainty model,
i.e. |1| ≤ 1, 1 ∈ R. Time-domain sinusoidal disturbance
model is defined as

d(t) = A sin(2π ft). (6)

For constant unstructured uncertainty model, while weight
function WT in (2) is i th-order transfer function with poles
and zeros in a Butterworth pattern to meet the specified gain
constraints, 1 ∈ (1min,1max).
The data-sets constitute the crux of the approach. We per-

form several experiments to collect the numerical data. In the
first set, input disturbances (d(t)) are available yet there is no
plant uncertainty (1 ≡ 0). In the second set, we have plant
uncertainty (1) yet no disturbance (d(t) ≡ 0) in the control
channel. Such a data-set describes the decoupled effect of
each factor on the output signal and constitutes a labeled
input to a learning agent. Each data-set contains a certain
duration time-domain D/U estimation signal sampled at a
certain period the system is in the steady regime. In a real
scenario, the experiments without plant uncertainty might not
be conducted and the best known nominal model could be
used to generate the training data to execute the proposed
algorithm.

In the feature extraction step, N -point Fast Fourier Trans-
form (FFT) is computed and the FFT magnitudes are used
in the sequel. For each data-set, a feature vector is created.
Feature vector is an m-dimensional vector consisting of the
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FIGURE 4. Proposed ML assisted disturbance/uncertainty estimator based control overall scheme.

single sided magnitude of calculated FFT (SSMoFFT), the
mean absolute value (MAV) of it and the zero crossing (ZC)
value of time-domain signal. ZC value represents the number
of signal crossings of the given input signal. The feature
vector structure is defined as

Fv = [SSMoFFT MAV ZC] ∈ Rm (7)

After feature extraction step, machine learning approaches
can be applied to the obtained data-sets. For the proposed
ML assisted disturbance/uncertainty estimator based control
scheme, we have used ε-Support Vector Regression (ε-SVR)
as the regression machine learning model. ε-SVR solves the
following primal problem:

min
w,b,ζ,ζ ∗

1
2
wTw+ C

n∑
i=1

(ζi − ζ ∗i )

subject to yi − wTφ(xi)− b ≤ ε + ζi,

wTφ(xi)+ b− yi ≤ ε + ζ ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, . . . , n (8)

where xi ∈ Rp is training input vectors (i = 1, . . . , n), y ∈ Rn

is a vector containing regression (output) values and C is a
penalty term. The value of ε defines a margin of tolerance
where no penalty is enforced over errors. In the above opti-
mization problem, φ stands for the kernel trick, [18]. The
main goal is to find w ∈ Rp and b ∈ R.
The dual problem is as given below and it is a convex

optimization problem that can be solved.

min
α,α∗

1
2
(α − α∗)TQ(α − α∗)

+ εeT (α + α∗)− yT (α − α∗)

subject to eT (α − α∗) = 0,

0 ≤ α, α∗ ≤ C, i = 1, . . . , n (9)

where e is a vector composed of all ones, Q is n× n positive
semi-definite matrix, Qij = K(xi, xj) := φ(xi)Tφ(xj) with

K being the kernel. (α − α∗) is the vector of coefficients
of the dual problem. An in-depth treatment of support vec-
tor machines and the optimization algorithms can be found
in [18] and [19].

The data-sets used for the optimization of ε-SVR contain
samples, in which the output is zero if only uncertainty is
active, one if only input disturbance is active. Input vec-
tor of the ε-SVR is m-dimensional feature vector given in
the feature extraction step. Such a data-set structure enables
us to define the boundary of disturbance-active region and
uncertainty-active region in the input space and it further
lets us interpolate between these regions if both disturbance
and uncertainty are active and mixed at different levels. The
machine learning model obtained with the minimum mean
squared error (MSE) value after the training and testing
processes is obtained first and it is used in the online plant
adaptation process as shown in Fig. 4.
Fig. 4 presents the proposed overall control scheme includ-

ing online adaptation process. The main purpose is to update
the nominal model iteratively to match its response to that of
the perturbed/uncertain system. The adjustable nominal plant
is defined as

P̂(s) = P(s)(1+ 1̂WT (s)), (10)

where 1̂ is the estimate of 1. 1̂ ∈ [1min,1max) ⊂ R and
initial 1̂ value 1̂0 = 0. As a result, initially P̂(s) = P(s).

The following items describe the modules in the proposed
scheme seen in Fig. 4.
• Data Capture: The module receives the D/U estimation
values (d̂) at a certain duration intervals and transmits
the relevant part of the received data (d̂b) to the ‘‘Fea-
ture Extraction’’ module. This operation is maintained
continuously for every new finite duration data frame.

• Feature Extraction: The module creates an
m-dimensional feature vector (Fv) of the d̂b signal each
time a new d̂b signal is received.
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Algorithm 1 Online Adaptation Overall Process

1: 1̂0← 0
2: 1̂p← 1̂0 //auxiliary variable
3: 1̂← 1̂0
4: λset ← ∅ //to append [1̂ λ] pair
5: Set δ1
6: Set threshold
7: Run the system
8: while true do
9: //input: time domain mixed D/U estimations-d̂

10: //output: 1 estimation value-1̂
11: //Data Capture Module
12: //input: d̂
13: //output: d̂b
14: Capture time-domain data
15: if 1̂ not found & d̂b is ready then
16: //Feature Extraction Module
17: //input: d̂b
18: //output: Fv
19: Extract feature vector
20: //ML Model Module
21: //input: Fv
22: //output: λ
23: Run the machine learning model
24: //1̂ Adaptation Module
25: //input: λ
26: //output: 1̂
27: Append [1̂p λ] to λset
28: if λ < threshold then
29: 1̂0← 1̂p
30: 1̂p← 1̂p + δ1
31: if 1̂p > 1max − δ1 then
32: 1̂p← find maximum of λset
33: 1̂ found
34: else
35: 1̂ not found
36: else// Adaptation stopping criteria
37: 1̂ found

//Update rule of nominal plant
38: 1̂← 1p × rampFunction(slope = 0.5)
39: + 10 × (1− rampFunction(slope = 0.5))
40: end

• ML Model: This module generates a regression value
(λ) related to how much of the lumped D/U estimations
are associated to the disturbance and how much is asso-
ciated to uncertainty for the given feature vector (Fv) by
using the machine learning model that has already been
obtained in the learning phase. λ ∈ [0, 1].

• 1̂ Adaptation: ‘‘1̂ Adaptation’’ module updates 1̂
valuewith δ1 step resolution according to theMLModel
output (λ) by considering a threshold value in the range
of (threshold, 1). Algorithm 1 describes the algorithmic
flow of the proposedmethod including online adaptation
processes.

FIGURE 5. Step response of the nominal closed loop system.

III. NUMERICAL EXAMPLE
In order to exemplify the proposed scheme, we consider a sec-
ond order LTI system, which allows the user to reproduce the
results. The dynamic system in (11) represents the nominal
plant transfer function of the system under consideration.

P(s) =
1

s2 + 10s+ 20
. (11)

Remark 1:The plant model is chosen deliberately simple to
demonstrate the goals of this study. We aim to devise an algo-
rithm that senses the effect of the proportions of disturbance
and uncertainty in an observed output variable. Choosing a
more complicated (possibly nonlinear and multidimensional)
model would make understanding the contributions of the
current work difficult. We avoided the plant specific difficul-
ties to discuss and unfold the algorithm-specific issues.

The main controller K is designed for the nominal plant
and it is a proportional-integral-derivative (PID) controller
meeting the performance criteria, i) 32 rad/s bandwidth and
ii) 90 degrees phase margin. These specifications indicate
that a reasonably fast response is requested. The controller
K satisfying these specifications is defined as

K (s) = Kp + Ki
1
s
+ Kd s, (12)

where, Kp = 320, Ki = 796 and Kd = 32.2 are proportional,
integral and derivative gains, respectively. Fig. 5 illustrates
the step response of the nominal closed loop system.

The perturbed plant is chosen as

P̂(s) = P(s)(1+1WT (s)), (13)

where 1 = 0.67 andWT (s) = 3s+5.774
s+28.87 .

K and Kobs can be designed together as defined in [9]
and [10] by considering weighting function (WT ) defining
performance requirements. For simplicity, we set Kobs ≡
K . We have depicted sensitivity (S) and co-sensitivity (T )
functions in Fig. 6 by using (4) and (5). When we inspect
the data in Fig 6, we see that Kobs is enough to estimate and
reject disturbance/uncertainty, yet one can pursue better Kobs
designs than the choice Kobs ≡ K .
Fig. 7 illustrates predicted mixed disturbance/uncertainty

results for the perturbed plant given in (13) and below har-
monic disturbance model is adopted.

d(t) = sin(4π t). (14)
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FIGURE 6. Sensitivity and complementary sensitivity functions.

TABLE 1. Data-set features characterizing input disturbance and plant
uncertainty.

According to Fig. 7 and its window plots, we observe
that uncertainty (1) causes steady state errors in estimating
the disturbance that enter through the control channel. The
response seen in the figure displays a fast transient and
the steady regime is reached after almost 1 second. The
window plot (a) shows the initial transient, (b) shows the
predicted disturbance and (c) demonstrates the ground truth.
It is evident that the presence of constant1 causes a constant
shift in the disturbance estimations. Our goal is to improve
the disturbance estimation performance by eliminating these
steady state errors to approximate to the true value of d(t).
Remark 2: In a general scenario, for a ML model to

distinguish the effects of input disturbances and structural
uncertainties, the design engineer is expected to perform a
number of tests that guide the ML model and develop a
reasonable decision boundary to unmix the mutual effects.
This tightly depends on the numerical data and the feature set
that embodies the ML model’s input vector.

In order to apply the proposed method to the D/U estimator
based control scheme in Fig 1, we first need to create a
data-set as described in the learning phase steps. In Table 1,
the data-set features are given. A total of 1000 data-sets
are created. Each data set has a size of 5-seconds time-
domain D/U estimation signal sampled at 1ms during the
steady state regime of the system and is generated. Random
numbers adopted here distribute uniformly over the ranges
determined by the maximum and minimum values given in
Table 1. Then, the feature vectors of them are created by
adding the associated MAV and ZC values. Each feature

vector is m = 40 dimensional vector and its first N values
(N = 38) come from the single sidedmagnitude of calculated
4096-point FFT. The 39th entry is the mean absolute value
(MAV) and the 40th entry is the zero crossing (ZC) value of
time-domain signal.

Fig. 8-11 show sample disturbance and uncertainty data-
sets, where the rightmost components augment the selected
N -element FFT magnitude array with MAV and ZC values.
While Fig. 8 demonstrates disturbance estimations and fea-
ture vectors of them for 1.25 Hz and 2.58 Hz harmonic input
disturbance frequencies, Fig. 9 displays the same graphics for
3.25 Hz and 4.86 Hz harmonic input disturbance frequencies.
In Fig. 10 and 11, uncertainty estimations and feature vectors
of them are given for 0.18, 0.36, 0.58 and 0.86 constant
uncertainty values. In the figures, feature vectors are shown as
log of magnitude. Fig. 12 illustrates the 3D principal compo-
nent analysis (PCA) plot of the whole data-set. PCA analysis
clearly demonstrates that the disturbance and uncertainty are
separable and the usability of data-sets with the learners of
machine learning approaches.

As the next learning phase step, we have imported ε-SVR
regression model from the support vector machine (SVM)
class of scikit-learn Python library, [20]. We have chosen
the model parameters as SVR(kernel = ‘rbf’) (with default
parameters) and reserved 75% of the data-sets for the train-
ing. After training process terminates, we observed that
the obtained model reaches a mean squared error value of
0.00708 (MSEtest ) for the testing data-set.
Remark 3: In machine learning applications, the even-

tual performance depends the critically on the available
numerical data. As the number of observations decreases,
the performance deteriorates. However, the abundance of
recorded observations enables the designer to obtain an accu-
rate model. In the current paper, the number of experiments
determines the eventual performance of the SVM based
machine learning model. Therefore, one may not assure abso-
lute success or absolute failure in such applications. In our
experiments, the number of training data is sufficient to show
the enhancement in the overall performance. If the number of
training data is increased, naturally, one should expect better
performance.

For simulation test cases, the ‘‘Data Capture’’ unit receives
the D/U estimation values (d̂) at 1ms intervals for 15 seconds
time frame and transmits the last 5 seconds of received data
(d̂b) to the ‘‘Feature Extraction’’ module to ensure that the
steady state regime is reached.

Figs. 13-21 illustrate the simulation results. Fig. 13
and Fig. 14 show the 1̂ update rule behaviors stated in
Algorithm 1 code lines 38-39 for two simulation test cases
(1 = 0.27, d(t) = sin(2.12π t))-(1 = 0.84, d(t) =
sin(4.37π t)). In Fig. 15 and Fig. 16, ML Model outputs (λ)
corresponding to 1̂ are depicted for these test cases. For the
first test case, we can see from Fig. 15 that the value of 1̂ is
correctly found above the specified threshold line. The same
can be said for the second simulation test case. However,
in Fig. 16, we see that the ML Model generates a result
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FIGURE 7. D/U (d̂ ) estimations (1 = 0.67, d (t) = sin(4πt)). Window plots show the
transient response in (a), estimation of disturbance in (b) and its ground truth in (c).

FIGURE 8. Sample disturbance data-set.

FIGURE 9. Sample disturbance data-set.

close to the threshold line when 1̂ is approximately equal to
0.13 value. From this, it can be deduced that the obtained ML
Model may find wrong 1̂ values when there is a mixed D/U
including features close to1min and fmax values in the system.
This problem can be called the early convergence problem.
The sharp drop in ML Model output after early convergence
can be used to solve this problem. In addition, increasing the
data-set size and adding the new feature extraction methods
will eliminate these problems. Fig. 17 shows the ML Model

FIGURE 10. Sample uncertainty data-set. Except for the first and 39th

dimensions of the feature vector, remaining components are zero or at
the order of 10−10. This is visible in the bottom left subplot.

FIGURE 11. Sample uncertainty data-set.

outputs of a different simulation test case that produces ML
Model outputs below the specified threshold line. In such
a case, 1̂ corresponding to the maximum value of λ is the
correct 1̂ value.

Figs. 18-21 illustrate the D/U estimation results for two
simulation test cases. In Fig. 18 and Fig. 20, the mixed D/U
estimations that are predicted by conventional D/U estimator
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FIGURE 12. 3D PCA plot of the whole data-set.

FIGURE 13. 1̂ update rule behavior (1 = 0.27, d (t) = sin(2.12πt),
threshold=0.95 and δ1 = 0.01).

FIGURE 14. 1̂ update rule behavior (1 = 0.84, d (t) = sin(4.37πt),
threshold=0.95 and δ1 = 0.01).

are given. Fig. 19 and Fig. 21 show the proposed ML assisted
D/UE based control simulation results. Our proposed ML
assisted D/U estimator found 1̂ = 0.26 for the first test
case and 1̂ = 0.84 for the second test case (1 = 0.84).
With the proposedmethod, the actual disturbance is estimated

FIGURE 15. ML Model outputs (1 = 0.27, d (t) = sin(2.12πt),
threshold=0.95 and δ1 = 0.01).

FIGURE 16. ML Model outputs (1 = 0.84, d (t) = sin(4.37πt),
threshold=0.95 and δ1 = 0.01).

FIGURE 17. ML Model outputs (1 = 0.87, d (t) = sin(1.49πt),
threshold=0.95 and δ1 = 0.01).

over time. However, conventional D/U estimator predicts the
disturbance with the steady state error due to uncertainty.

When the simulation results are examined, it is obvious that
the proposed approach enhances the disturbance estimation
capability of the system when compared to the classical
D/UE based control scheme. Furthermore, Table 2 presents
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FIGURE 18. D/U estimator based control conventional scheme (1 = 0.27,
d (t) = sin(2.12πt), threshold=0.95 and δ1 = 0.01).

FIGURE 19. Proposed ML assisted D/U estimator based control scheme
(1 = 0.27, 1̂ = 0.26, d (t) = sin(2.12πt), threshold=0.95 and δ1 = 0.01).

FIGURE 20. D/U estimator based control conventional scheme (1 = 0.84,
d (t) = sin(8.74πt), threshold=0.95 and δ1 = 0.01).

FIGURE 21. Proposed ML assisted D/U estimator based control scheme
(1 = 0.84, 1̂ = 0.84, d (t) = sin(8.74πt), threshold=0.95 and δ1 = 0.01).

1̂ results of 40 simulation test cases for different 1 and
disturbance values. The studied set of simulation results prove
that the proposed approach outperforms the classical meth-
ods by increasing disturbance estimation performance of the
system. To obtain more precise 1̂ predictions, the size of the
data-set can be increased and different splitting percentages
for training and testing data-sets can be adopted. As in all
ML applications, feeding the learning system by diverse data
leads to accurate spot of the decision boundary. Enhanced
input vectors may play the same role as long as the newly
added features’ roles are examined well.

TABLE 2. Proposed scheme test cases for threshold=0.95 and δ1 = 0.01.

IV. CONCLUSION
In this paper, a novel approach to unmix the disturbance and
uncertainty is presented. The classical approaches reconstruct
the disturbances entering through the control channels and
the process is subject to the presence of plant uncertainty,
which leads to the prediction of a lumped effect that do not
cancel out the input disturbance totally. The approach pre-
sented here uses an adjustable nominal model and an ε-SVR
approach to decompose the percentages of the mixture. Such
an approach distinguishes the effect of disturbance and the
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effect of uncertainty thereby leading to precise cancellation
of the input disturbances. The performance of the presented
technique is subject to that of all machine learning systems,
i.e. the amount of training data, chosen learner type, repre-
sentational diversity of the input vector, training termination
criteria and so on. The claims have been exemplified on a
second order LTI system to avoid the interference of plant
specific difficulties. Results demonstrate that numerical data-
orientedmethods can offer alternative solutions to decompose
a mixed signal and treat its components separately.
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