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Adaptive Fault-Tolerant Control of a Probe-and-Drogue Refueling
Hose Under Varying Length and Constrained Output
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Abstract— This brief deals with an adaptive barrier-based
fault-tolerant control of a probe-and-drogue refueling hose
(PDRH) under varying length, actuator fault, and constrained
output. First, we consider the actuator working normally, and
a model-based control law with barrier function is developed to
stabilize the elastic vibration and ensure the endpoint vibration
without violating the restriction of the flexible hose. Second,
an adaptive fault-tolerant control scheme is proposed to cope with
partial effectiveness loss of the actuator. Subsequently, the direct
Lyapunov method is adopted to derive the uniformly bounded
stability in the closed-loop system. Finally, simulation results
demonstrate the validity of the obtained schemes.

Index Terms— Adaptive control, fault-tolerant control, output
constraint, probe-and-drogue refueling hose (PDRH), vibration
control.

NOMENCLATURE

ρ Linear density of the refueling hose.
C Specified boundary constraint of the

refueling hose.
d(t) Boundary disturbance at the endpoint

position of the refueling hose.
dd(z, t) Distributed disturbance along the refueling

hose, where 0 < z < E(t).
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E(t) Length of the refueling hose varied along
time t .

fh(z, t) Surface friction of the refueling hose in the
tangential direction, where 0 < z < E(t).

fdrog(t) Resistance of the drogue.
fn(z, t) Pressure exerted on the refueling hose along

the normal direction, where 0 < z < E(t).
g Gravitational acceleration.
L Maximum length of the refueling hose.
m Weight of the drogue.
T (E(t), t) Endpoint position tension of the refueling

hose with respect to time t ,
where 0 < E(t) ≤ L.

T (z, t) Tension of the refueling hose at position z for
time t , where 0 < z < E(t).

v(t) Advancing velocity of the tanker.
w(E(t), t) Endpoint position displacement of the

refueling hose with respect to time t ,
where 0 < E(t) ≤ L.

w(z, t) Displacement of the refueling hose at position
z for time t , where 0 < z < E(t).

I. INTRODUCTION

W ITH the increasing popularity of unmanned aerial vehi-
cles in the military field, autonomous aerial refueling

as an important means of endurance has come into being
and aroused wide interests of many researchers over the
last few years. Among them, the probe-and-drogue system
with its unique advantages, such as lightweight and simple
operation, occupies the mainstream position. Vibration and
deformation may arise in the hose due to the complicated
air environment and its structural characteristics. However,
the excessive irregular vibration of the hose would make
docking difficult. Moreover, excessive vibration may lead to
disastrous consequences of premature of the hose and even
the destruction of the whole system. Therefore, great attention
should be paid to vibration control of the refueling hose
system. Recently, many scholars have extensively studied the
control design for flexible hose systems. However, the exist-
ing studies only focused on probe-and-drogue refueling hose
(PDRH) modeled as lumped parameter systems, and these
control schemes cannot be directly used for a flexible hose
system modeled as distributed parameter systems (DPSs) in
which partial differential equations (PDEs) need to be adopted.

In recent decades, much attention has been paid to infinite-
dimensional DPS [1]–[3], and several control schemes have
been proposed, such as reduced order model-based con-
trol [4], distributed control [5], and boundary control [6], [7].
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Fig. 1. Drawing of the PDRH system.

Compared to other methods mentioned above, the boundary
control is nonintrusive in the process of sensing and actuation;
thus, it is extensively adopted in the vibration suppression of
DPS [8]–[10]. The input nonlinearities problem of flexible
riser systems was handled through adaptive robust vibration
control established in [11]. Iterative learning control schemes
were introduced for coping with spatiotemporally varying dis-
turbances for a flexible micro aerial vehicle in [12]. Especially,
for flexible refueling hose systems, many boundary control
schemes have been exploited to control the vibration based
on PDEs recently. A novel dead-zone compensation method
was developed for unknown dead-zone nonlinearity in [13].
In order to further research, the variable length of the flexible
refueling hose was considered in our previous result [14].
A new boundary control law based on the back-stepping
method was developed to regulate hoses vibration, where
a Nussbaum function was adopted to solve the problem of
input saturation. However, the abovementioned research about
boundary control of refueling hose systems was restricted
to suppressing vibrations or handling nonlinear constraints,
the approaches of which were invalid when taking actuator
failures [15] and output constraints [16] into account. The
occurrence of actuator failure may bring additional uncer-
tainty and destroy the stability of the system [17]. Moreover,
performance degradation, even system corruption, may break
out once the specified constraints are violated [18], [19].
Therefore, it is necessary to incorporate actuator failures and
output constraints into flexible hose systems when designing
the boundary controller.

In this brief, we investigate a PDRH system subjected to
variable length, actuator fault, and output constraints. The
major contributions of this brief compared to existing research
are summarized as follows.

1) An adaptive fault-tolerant control scheme is developed
to tackle partial effectiveness loss of the actuator.

2) The barrier Lyapunov function is applied to guarantee
no violation of output constraints in the PDRH system.

3) With presented control schemes, the closed-loop system
stability is demonstrated via the Lyapunov theory, and
the system state can be guaranteed to converge to an
arbitrarily small neighborhood of the origin.

II. PROBLEM FORMULATION

Fig. 1 depicts the diagram of the PDRH system; three
coordinate systems are established to describe the location

of physical variables in the system. The inertial reference
coordinate system is expressed by Zg − Wg . As the tanker
advances at speed v(t), a coordinate system Z − W is estab-
lished to describe the relative position of the variables with the
tanker as the origin. Also, a coordinate system z −w based on
the displacement of the hose w(z, t) is established, the angle
between it and the Z − W coordinate system is ϕ, and the
actuator u(t) is installed on the drogue at location of (E(t), t)
on the z-axis.

A. Equations of Motion for the System

Remark 1: For partial differential operations, notations
(∗)z = ((∂(∗))/∂z), (∗)zz = ((∂2(∗))/∂z2), (∗)t = ((∂(∗))/
∂ t), and (∗)tt = ((∂2(∗))/∂ t2) are used throughout this brief.

Considering the following flexible hose system in [14] with
boundary and distributed disturbances, the equations of motion
are described as.

ρ[wtt(z, t) + 2Ė(t)wzt (z, t)+ Ë(t)wz(z, t)+ Ė2(t)wzz(z, t)]
= Tz(z, t)wz(z, t)+ T (z, t)wzz(z, t)+ Q(z, t) (1)

where

T (z, t) = [m + ρ(E(t)− z)](g sin ϕ − Ë(t)− v̇(t) cosϕ)

+ fdrog(t) cosϕ + fh(z, t) (2)

and the auxiliary term Q(z, t) is defined as

Q(z, t) = dd(z, t)− fn(z, t)+ ρ(g cosϕ − v̇(t) sin ϕ) (3)

with boundary conditions

m[2Ė(t)wzt (E(t), t) + Ë(t)wz(E(t), t) + Ė2(t)wzz(E(t), t)]
+ mwtt (E(t), t)+ mv̇(t) sin ϕ + T (E(t), t)wz(E(t), t)

− mg cosϕ = − fdrog(t) sin ϕ + u(t)+ d(t) (4)

w(0, t) = 0. (5)

Remark 2: It is noted that, for the differential operation
of moving material, the concept of material derivative was
introduced in [20], which is described as D(·)/Dt = ∂(·)/∂ t+
Ė(t)∂(·)/∂z.

Remark 3: In the following derivation, we assume that the
travel speed v(t) of tanker is constant so that v̇(t) = 0 and
v̈(t) = 0.

An ideal actuator should be able to output the same amount
of control as the input. However, in practice, loss of effective-
ness may occur on the actuator, which will lead to the system
cannot obtain ideal control input and even reduce stability.
In this brief, we focus on one of the actuator failures, that is,
partial loss of effectiveness, which can be modeled as

u(t) = ηui(t) (6)

where u(t) represents the actual output of the actuator,
0 < η ≤ 1, which represents the uncertain gains of the actuator
during working, and ui(t) is the input value of actuator to be
designed. The following two cases are discussed in this brief.

Case 1: η = 1, i.e., u(t) = ui(t), which is regarded as a
failure-free actuator.

Case 2: 0 < η0 ≤ η < 1, which denotes that the
actuator is suffering partial effectiveness loss, where η0 is
a certain constant, which implies the maximum degree of
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effectiveness loss. Specifically, η = 80% indicates a 20% loss
of efficiency on the actuator.

Remark 4: The degree of effectiveness loss of the actuator
can theoretically be any constant between 0 and 1. However,
when the degree of effectiveness loss is very large, i.e., when
η is very small, the system will become uncontrollable. At that
point, the adaptive fault-tolerant control law designed in this
brief can no longer meet the need to make the system stable.
One of the solutions is to introduce redundant actuators into
control design [21].

B. Preliminaries

In this part, we put forward some reasonable assumptions
and necessary lemmas that are very helpful in carrying on the
following study.

Assumption 1 [14]: In a practical system, since the energy
of the disturbance is finite, therefore, we assume that d(t) and
dd(z, t) are bounded, which can be described as |d(t)| ≤ d
and |dd(z, t)| ≤ dd .

Assumption 2 [14]: It is assumed that the auxiliary term
Q(z, t) is bounded by a positive constant Qmax, which can be
expressed as |Q(z, t)| ≤ Qmax,∀(z, t) ∈ [0, E(t)] × [0,∞).

Assumption 3: We assume that T (z, t), Tz(z, t), and Tt (z, t)
are bounded by known constants, which satisfies the following
inequalities:

0 < Tmin ≤ T (z, t) ≤ Tmax (7)

−Tz max ≤ Tz(z, t) ≤ −Tz min < 0 (8)

0 ≤ Tt min ≤ Tt (z, t) ≤ Tt max (9)

∀(z, t) ∈ [0, E(t)] × [0,∞).
Lemma 1 [22]: For a real function h(t), t ∈ [t0,∞),

the following inequality can be satisfied:

0 ≤ |h(t)| − h(t) tanh

(
h(t)

ς

)
≤ σς (10)

where ς > 0 is a constant, and σ = 0.2785.
Lemma 2 [23]: Let V(t) : [t0, t) → R with t0 ∈ (0,∞); if

V̇(t) ≤ −λV(t) + g(t), then

V(t) ≤ e−λ(t−t0)V(t0)+
∫ t

t0

e−λ(t−ν)g(ν)dν (11)

where λ is a positive constant.

III. MODEL-BASED CONTROL DESIGN

WITHOUT ACTUATOR FAILURE

In this section, we consider the actuator operates in the
failure-free state, i.e., u(t) = ui (t). The control objectives are:
1) to abatement the PDRH vibration w(z, t) and 2) to keep the
boundary displacement w(E(t), t) remaining in a given space
in the situation where the length and speed of the flexible hose
are time-varying.

The model-based control law u(t) is proposed as
follows:

u(t) = −ψ(t)
{

c1 + mw(E(t), t)(Dw(E(t), t)/Dt)

C2 −w2(E(t), t)

}
/S(t)

− c2ψ(t) − mg cosϕ + T (E(t), t)wz(E(t), t)

− tanh

(
ψ(t)

ς

)
d + fdrog(t) sin ϕ − kmwzt (E(t), t)

− km Ė(t)wzz(E(t), t) (12)

where c1, c2, and ς are positive control gains, C is the given
boundary of w(E(t), t), and ψ(t) and S(t) are designed as

ψ(t) = wt (E(t), t)+ Ė(t)wz(E(t), t)+ kwz(E(t), t) (13)

S(t) = ln
2C2

C2 −w2(E(t), t)
(14)

where k is a designed positive parameter.
Remark 5: From the definition of S(t), we note that

the boundary constraint C should satisfy C > 0 because
the term 2C2/(C2 −w2(E(t), t)) must be positive. In addi-
tion, we know that the domain of definition of S(t) is
|w(E(t), t)| < C .

Remark 6: The term − tanh ((ψ(t))/ς)d in the designed
control input is continuous in its domain, such that the control
input is also continuous. Symbolic function −sign[ψ(t)]d can
also be employed to design the control law by replacing the
hyperbolic tangent function mentioned above. In that condi-
tion, because of discontinuity of symbolic function, sliding
motion may happen in control process [24], [25].

We choose the following Lyapunov candidate function for
the PDRH system:

V(t) = V1(t)+ V2(t)+ V3(t) (15)

where V1(t), V2(t), and V3(t) are the energy term, the barrier
term, and the crossing term defined as follows:

V1(t) = ζ

2

[∫ E(t)

0
ρ

(
Dw(z, t)

Dt

)2

+ T (z, t)w2
z (z, t)dz

]

(16)

V2(t) = ζ

2
mψ2(t)S(t) (17)

V3(t) = �

∫ E(t)

0
ρz

(
Dw(z, t)

Dt

)
wz(z, t)dz (18)

where ζ and � are designed positive parameters.
Remark 7: In a real system, the actuator is installed at the

end of the refueling hose, and the input of control value
is mainly realized by active controllable drogue containing
aerodynamic control surface [26]. The signals in the designed
control law can be measured by sensors or can be calculated
by the difference method. w(E(t), t) and wz(E(t), t) can
be obtained by a laser displacement and an inclinometer
mounted on the tanker, respectively. wt(E(t), t), wzz(E(t), t),
and wzt (E(t), t) can be obtained by the backward difference
method. Due to the measurement noise of sensors, the actual
acquired signals will have ineluctable errors, which will affect
the control accuracy. Therefore, the allowable error range
should be taken into account when selecting sensors.

Lemma 3: For the PDRH system described by (1)–(5),
the Lyapunov function (15) is positive definite and bounded

0 ≤ ϕ1[V1(t)+ V2(t)] ≤ V(t) ≤ ϕ2[V1(t)+ V2(t)] (19)

where ϕ1 and ϕ2 are positive constants.
Proof: Please see Appendix A.
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Lemma 4: Consider the PDRH system described by (1)–(5)
with the proposed control scheme (12). The time derivative
of (15) is upper bounded as

V̇(t) ≤ −λV(t)+ δ (20)

where λ and δ are positive constants.
Proof: Please see Appendix B.

Remark 8: The selection of parameter has a great influ-
ence on the system stability. On the basis of ensuring that
the inequalities (40)–(45) hold true, the parameters are cho-
sen for better control performance. The parameters con-
tained in (40)–(45) should be designed in following steps.
ρ, L, Tmax, Tmin, Tt max, and Tz max are given or can be calcu-
lated in certain systems in practice. Equation (45) always holds
true. Then, we design k, θ1, θ2, � , and ζ such that (40),
(41), (43), and (44) hold true, and � and ζ should satisfy
0 < ((2�ρL)/(ζ min (ρ, Tmin))) < 1 in order to make sure
that the vibrations of the hose w(z, t) are sufficiently small.
Finally, c1 is selected to guarantee (42) hold true. It is noted
that the arbitrarily small vibration is guaranteed by the increase
in control gains ci(i = 1, 2). However, very large control gains
ci(i = 1, 2) would result in instability of the system. Hence,
the control gains should be chosen prudently for satisfying the
certain performance indicators in a real-world application.

Then, we can give the following theorem.
Theorem 1: For the PDRH system described by (1)–(5),

under the action of the control scheme (12), provided that the
intermediate parameters are appropriately selected to satisfy
the inequalities (40)–(45), the following properties of the
closed-loop system on the premise of the bounded initial
conditions hold.

1) Uniform Ultimate Boundedness (UUB) [27]: System
state will be guaranteed to converge to �1, which is

�1 := {
w(z, t) ∈ R| lim

t→∞ |w(z, t)| ≤ D1,

∀(z, t) ∈ [0, E(t)] × [0,∞)
}

where D1 = ((2Lδ)/(ζTminϕ1λ))
1/2 will be defined in

Appendix C.
2) The boundary output of the PDRH is always within a

certain space, i.e., the variable w(E(t), t) of the system
meets C , where C is the boundary constraint predefined
in the above process.

Proof: Please see Appendix C.
The proposed model-based control can stabilize the PDRH

system and keep the boundary displacement remaining in a
given restricted boundary. However, due to the influence of
the complex air environment, the actuator of the refueling hose
system is prone to failure in operation. In order to ensure the
control effect in such a situation, the adaptive fault-tolerant
controller is designed subsequently.

IV. ADAPTIVE ACTUATOR FAULT-
TOLERANT CONTROL DESIGN

In this part, we consider the case that actuator suffers partial
effectiveness loss, i.e., u(t) = ηui (t), 0 < η0 ≤ η < 1.
The control objective is to keep the boundary displacement
w(E(t), t) remaining in a given space even if the actuator is
in the operation of a sudden partial effectiveness loss.

To motivate the following, we define:

p = 1

η
. (21)

The estimation error between estimated value and true value
of p is p̃ = p̂ − p.

Then, we design the fault-tolerant control law as

ui(t) = − p̂τ (22)

where

τ = −u(t) (23)

and the adaptive control law

˙̂p = τγ ζψ(t)S(t) − κ p̂ (24)

where γ and κ are positive constants.
Consider the following Lyapunov candidate function as:

Va(t) = V(t)+ η

2γ
p̃2. (25)

Lemma 5: For the PDRH system described by (1)–(5),
the Lyapunov function (25) is positive definite and bounded

0 ≤ ϕ1

[
V1(t)+ V2(t)+ η

2γ
p̃2

]
≤ Va(t)

≤ ϕ2

[
V1(t)+ V2(t)+ η

2γ
p̃2

]
(26)

where ϕ1 and ϕ2 are positive constants.
Proof: Please see Appendix D.

Lemma 6: Consider the PDRH system described by (1)–(5)
with the proposed control scheme (22) and the adaptive
law (24). The time derivative of (25) is upper bounded as

V̇a(t) ≤ −λ0Va(t)+ δ0 (27)

where λ0 and δ0 are positive constants.
Proof: Please see Appendix E.

Then, we can give the following theorem.
Theorem 2: For the PDRH system described by (1)–(5),

under the action of the control scheme (22)–(24), provided
that the intermediate parameters are appropriately selected to
satisfy the inequalities (40)–(45), the following properties of
the closed-loop system on the premise of the bounded initial
conditions hold.

1) UUB [27]: The system state will be guaranteed to
converge to �2, which is

�2 := {
w(z, t) ∈ R| lim

t→∞ |w(z, t)| ≤ D2,

∀(z, t) ∈ [0, E(t)] × [0,∞)
}

where D2 = ((2Lδ0)/(ζTminϕ1λ0))
1/2 will be defined in

Appendix F.
2) The boundary output of the flexible hose is always

within a certain space, i.e., the variable w(E(t), t) of
the system meets |w(E(t), t)| < C∀t ∈ [0,∞), where
C is the output constraint given in the above process.

Proof: Please see Appendix F.
Remark 9: The control design procedure in this brief

derives from Lyapunov’s direct method. Therefore, compared
with the controller in [14], which is based on the back-stepping

Authorized licensed use limited to: ULAKBIM UASL - Hacettepe Universitesi. Downloaded on February 12,2022 at 17:30:49 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: ADAPTIVE FAULT-TOLERANT CONTROL OF A PDRH UNDER VARYING LENGTH AND CONSTRAINED OUTPUT 873

TABLE I

ARGUMENTS OF THE PDRH SYSTEM

method, the control strategies (12) and (22)–(24) and the
design approach are more intuitive and easier to comprehend
for engineers.

Remark 10: In the proof process of Theorems 1 and 2,
the auxiliary term ψ(t) = wt(E(t), t) + Ė(t)wz(E(t), t) +
kwz(E(t), t) plays an important role in associating the
Lyapunov function with the system boundary conditions.
By taking derivative of the Lyapunov function and sub-
stituting the designed control law and the auxiliary term
ψ(t) = wt (E(t), t) + Ė(t)wz(E(t), t) + kwz(E(t), t)
into it, we can obtain the following negative defi-
nite terms −(ζ/2)ρ(Dw(z, t)/Dt)2, −(ζ/2)T (z, t)w2

z (z, t),
−(ζ/2)mψ2(t)S(t), and −(η/2γ ) p̃2 (the last term is only used
in Appendix B). Then, we can derive (31) and (52), which
implies the boundedness of the Lyapunov functions V (t)
and Va(t), respectively. Furthermore, the conclusion stated in
Theorems 1 and 2 can be obtained.

V. SIMULATIONS RESULTS

In this section, the availability of the control laws designed
in Sections III and IV are verified by simulation results.
Several approaches have been applied to discretization and
numerical simulation of systems, such as the finite difference,
the assumed mode method, the finite element method, and the
Galerkin method, and good results can be obtained. In this
brief, the PDRH considered in (1)–(5) are solved numeri-
cally by implementing a finite difference algorithm, and PD
control (28) is also put forward for comparison. Simulations
are made using MATLAB, and the system parameters are
given in Table I. The time step size is given as 10−4 s, the space
step size is given as �z = 0.02 m, and the total simulation
time is 50 s.

The boundary and distributed disturbances are set as
d(t) = 1.5 sin(0.5t) + 1.5 cos(0.5t) and dd(z, t) = 0.2 +
0.2 sin(0.5zt) + 0.2 sin(zt) + 0.2 sin(1.5zt). The resistance
terms in system model can be expressed as

fdrog = 1

2
ρairv

2(t)Cdrog

πD2
drog

4

fn(z, t) = Cd
1

2
ρairv

2(t) sin2 ϕDs

fh(z, t) = C f
1

2
ρairv

2(t) cos2 ϕπDs .

The length the PDRH varies as E(t) = 6 + 0.5t + 0.01t2 with
initial conditions that w(z, 0) = 0.06z2 and ẇ(z, 0) = 0. The
initial condition of p̂ is p̂(0) = 0. The output constraint is
set as C = 0.6 m, which can be seen in Figs.2(b) and 4(b)

Fig. 2. Displacements of the PDRH when actuator works normally.

Fig. 3. Control inputs.

represented by blue dotted line. In order to study the algo-
rithm designed in this brief, the verification is performed in
following four cases.

Case 1: Without control.
Case 2: The PD control is applied for the situation where

the actuator works normally, which is proposed as follows:

u(t) = −k pw(E(t), t) − kdwt (E(t), t) (28)

where the control gains k p = 200 and kd = 50 are designed.
Case 3: In this case, the proposed control law (12) is utilized

with control parameters c1 = 10, c2 = 30, and k = 30.
Case 4: In this case, we simulate the system performance by

control schemes (22)–(24). We consider the situation where the
actuator is subject to faults from 1s with the design parameters
η = 0.2, c1 = 100, c2 = 750, k = 28, γ = 1 × 10−4,
κ = 0.073, ζ = 1 × 10−4, and ζ = 30. For purpose of
showing the superiority of fault-tolerant strategies (22)–(24),
we also provide the control results of other two controllers in
the same faulty situation of actuators.

Fig. 2 shows the displacements of the flexible hose when the
actuator works normally for Case 1–4, and the control inputs
are drawn in Fig. 3. Fig. 4 depicts the displacements of the
flexible hose at the presence of an 80% effectiveness loss of
the actuator for Case 1–4, whose control inputs are displayed
in Fig. 5.

Fig. 2 compares the displacements at middle point
w(E(t)/2, t) and endpoint w(E(t), t) for Case 1–4.
In Fig. 2(b), it is shown that w(E(t), t) continuously increases
and eventually exceeds the blue dotted line without any
control, which implies poor system performance. When the PD
control is adopted, the vibration of the endpoint of the flexible
hose is effectively suppressed; however, it causes oscillation
at the middle point of the hose. Better control effect appears
when we use proposed control schemes (12) and (22)–(24)
instead. It can be seen that the displacements at both the
middle point and the endpoint of the flexible hose continue
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Fig. 4. Displacements of the PDRH when partial effectiveness loss occurs.

Fig. 5. Control inputs.

to converge to a small neighborhood around zero from the
moment the control input is applied.

Fig. 4 depicts the different control results of different
control strategies when the actuator suffers the partial loss of
effectiveness. It can be informed that the control laws (12) and
(28) cannot be used for acquiring desired control objectives
any longer. Fortunately, the convergence of displacement of
the flexible hose at both middle point and endpoint can still
be guaranteed when the control schemes (22)–(24) are applied,
which implies a satisfying control performance.

VI. CONCLUSION

In this study, we deal with adaptive fault-tolerant control
of the variable length PDRH system influenced by external
disturbances, actuator partial effectiveness loss, and output
constraint. A model-based controller and an adaptive fault-
tolerant controller are proposed for vibration control of the
flexible hose during normal operation of the actuator and
partial effectiveness loss of the actuator, respectively. In addi-
tion, the barrier Lyapunov function is employed to achieve
system output boundary satisfaction. The closed-loop stability
is demonstrated with the direct Lyapunov’s method while
ensuring the deflection eventually remaining in a small neigh-
borhood of origin. Numerical simulations are finally performed
to verify the availability and efficiency of the presented
schemes. In future work, we aim to study intelligent methods
to solve the vibration control of the PDRH system [28].

APPENDIX A
PROOF OF LEMMA 3

We can obtain that V3(t) satisfies the following inequality
from its definition:

|V3(t)| ≤ φ1V1(t) (29)

where φ1 = ((2�ρL)/(ζ min (ρ, Tmin))). Therefore, we have

−φ1V1(t) ≤ V3(t) ≤ φ1V1(t). (30)

Since � satisfies 0 < � < ((ζ min (ρ, Tmin))/(2ρL)),
we obtain that 0 < φ1 < 1, and

φ2V1(t) ≤ V1(t)+ V3(t) ≤ φ3V1(t) (31)

where φ2 = 1 − φ1 > 0 and φ3 = 1 + φ1 > 1. We further
obtain

0 ≤ ϕ1[V1(t)+ V2(t)] ≤ V(t) ≤ ϕ2[V1(t)+ V2(t)] (32)

where ϕ1 = min (φ2, 1) = φ2 and ϕ2 = max (φ3, 1) = φ3.
Thus, (15) is positive definite and bounded.

APPENDIX B
PROOF OF LEMMA 4

We take the material derivative of each part of V(t).
Using (1) with boundary conditions (4), (5), and (13), we have

V̇1(t)

≤ ζ

2θ1

∫ E(t)

0

(
Dw(z, t)

Dt

)2

dz

+ ζ

2

∫ E(t)

0
Tz(z, t)Ė(t)w2

z (z, t)dz + θ1ζ

2

∫ E(t)

0
Q2(z, t)dz

+ ζ

2

∫ E(t)

0
Tt(z, t)

[
wz(z, t)

]2
dz + 1

2k
ζT (E(t), t)ψ2(t)

+
(

1

2
ζρ − 1

2k
ζT (E(t), t)

)(
Dw(E(t), t)

Dt

)2

+
(

1

2
ζT (E(t), t) − k

2
ζT (E(t), t)

)
[wz(E(t), t)]2

− 1

2
[2ζT (0, t)Ė(t)+ ζρ Ė2(t)+ ζT (0, t)]· [wz(0, t)]2.

(33)

The material derivative with respect to V2(t) holds

V̇2(t) = ζmψ(t)ψ̇(t)S(t) + ζ

2
mψ2(t)Ṡ(t). (34)

Substituting boundary conditions (4) and (5) and the pro-
posed control law (12), we arrive at

V̇2(t) = ζψ(t)S(t)(−ψ(t)c1/S(t)− c2ψ(t))

− ζψ(t)S(t) tanh

(
ψ(t)

ς

)
d + ζψ(t)S(t)d(t). (35)

According to Lemma 1, we have

ζψ(t)S(t)d(t) − ζψ(t)S(t) tanh

(
ψ(t)

ς

)
d ≤ ζσςdS(t)

(36)

where σ is the solution of σ = e−(1+σ).
Therefore, we can obtain that (34) becomes

V̇2(t) ≤ −ζ c1ψ
2(t)− ζ c2ψ

2(t)S(t)+ι (37)

where ι = ζσςd S(t).
Applying the governing equation (1) and boundary

conditions (4) and (5), we arrive at

V̇3(t) ≤ �

2

∫ E(t)

0
(zTz(z, t)− T (z, t)− ρ Ė2(t)+ θ2 E(t))

×w2
z (z, t)dz + � E(t)

2
(T (E(t), t) + ρ)w2

z (E(t), t)
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+ � L

2θ2

∫ E(t)

0
Q2(z, t)dz − �

2
ρ

∫ E(t)

0

(
Dw(z, t)

Dt

)2

× dz +�ρE(t)

(
Dw(E(t), t)

Dt

)2

. (38)

Combining and appropriately rearranging the above inequal-
ities, we obtain that V̇(t) satisfies

V̇(t)

≤ −1

2

∫ E(t)

0
(�ρ Ė2(t)+�T (z, t)−� zTz(z, t)−�θ2 E(t)

− ζTz(z, t)Ė(t)− ζTt(z, t))w2
z (z, t)dz

− 1

2

(
�ρ − ζ

θ1

)∫ E(t)

0

(
Dw(z, t)

Dt

)2

dz

− ζ c2ψ
2(t)S(t) − 1

2

(
2ζ c1 − 1

k
ζT (E(t), t)

)
ψ2(t)

− 1

2

[
1

k
ζT (E(t), t)− ζρ − 2�ρE(t)

](
Dw(E(t), t)

Dt

)2

− 1

2
[kζT (E(t), t) − ζT (E(t), t) −�T (E(t), t)E(t)

−�ρE(t)]w2
z (E(t), t)

− 1

2
[2ζT (0, t)Ė(t)+ ζρ Ė2(t)+ ζT (0, t)]w2

z (0, t) + ι

+ 1

2

(
θ1ζ + � L

θ2

) ∫ E(t)

0
Q2(z, t)dz (39)

where the parameters are designed to meet the following
conditions:

�ρ Ė(t)min +�Tmin +� LTz min + ζ Ė(t)minTz min

−�θ2L − ζTt max ≥ ε (40)

∀(z, t) ∈ [0, L] × [0,∞), for some constants ε > 0, and the
following inequalities hold true:

�ρ − ζ

θ1
≥ 0 (41)

2ζ c1 − 1

k
ζTmax ≥ 0 (42)

1

k
ζTmin − ζρ − 2L�ρ ≥ 0 (43)

kζTmin − ζTmax −� LTmax − L�ρ ≥ 0 (44)

2ζTmin Ė(t)min + ζρ Ė2(t)min + ζTmin ≥ 0. (45)

Then, (39) can be simplified as

V̇(t) ≤ −η1
ζ

2

∫ E(t)

0
ρ

(
Dw(z, t)

Dt

)2

dz − η3
ζ

2
mψ2(t)S(t)

− η2
ζ

2

∫ E(t)

0
T (z, t)w2

z (z, t)dz + δ (46)

where η1 = (�/ζ )− (1/ρθ1), η2 = (ε/ζTmax), η3 = (2c2/m),
and δ = (L/2)(θ1ζ + (� L/θ2))Q2

max + ι.
We further have

V̇(t) ≤ −ϕ3[V1(t)+ V2(t)] + δ (47)

where ϕ3 = min (η1, η2, η3).
Combining (32) and (47), we obtain

V̇(t) ≤ −λV(t)+ δ (48)

where λ = ϕ3/ϕ2 > 0.

APPENDIX C
PROOF OF THEOREM 1

According to Lemma 3, we can obtain

V(t) ≤ V(0)e−λt + ε0 (49)

where ε0 = (δ/λ)(1 − e−λt).
We then have

ζTmin

2L
w2(z, t) ≤ ζ

2

∫ E(t)

0
T (z, t)w2

z (z, t)dz ≤ V1(t) ≤ V(t)
ϕ1

.

(50)

Then, we arrive at

|w(z, t)| ≤
√

2L

ζTminϕ1
(V(0)e−λt + ε0). (51)

From (32) and (49), we can inform that V(t) and V1(t) +
V2(t) are both positive and bounded, which indicates the
boundedness of V2(t). Therefore, we can infer that the bound-
ary output w(E(t), t) of the refueling hose is always in
a certain set through proof by contradiction, which can be
expressed as �w := {w(E(t), t) ∈ R : |w(E(t), t)| < C}.

From (51), we know that w(z, t) is also bounded. We can
infer that limt→∞ |w(z, t)| = ((2Lδ)/(ζTminϕ1λ))

1/2 ≤ D1 ∈
(0,∞), which implies that the elastic vibration of the flexible
refueling hose can be suppressed with appropriately selected
parameters.

This completes the proof.

APPENDIX D
PROOF OF LEMMA 5

Similar to Appendix A, we can obtain

0 ≤ ϕ1

[
V1(t)+ V2(t)+ η

2γ
p̃2

]
≤ Va(t)

≤ ϕ2

[
V1(t)+ V2(t)+ η

2γ
p̃2

]
(52)

where ϕ1 = min (φ2, 1) = φ2 and ϕ2 = max (φ3, 1) = φ3.
Thus, (25) is positive definite and bounded.

APPENDIX E
PROOF OF LEMMA 6

Taking derivation of Va(t) leads to

V̇a(t) = V̇(t)+ η

γ
p̃ ˙̂p. (53)

Compared to the material derivative of V(t) in the previous
process, change occurs in V̇2(t) only. Substituting (21)–(23)
into (34), we can obtain

V̇2(t) = ζψ(t)S(t)(−ψ(t)c1/S(t)−c2ψ(t))− ηκ

2γ
p̃2 + ηκ

2γ
p2

− ζψ(t)S(t) tanh

(
ψ(t)

ς

)
d + ζψ(t)S(t)d(t). (54)

According to Lemma 1, we have

ζψ(t)S(t)d(t) − ζψ(t)S(t) tanh

(
ψ(t)

ς

)
d ≤ ζσςdS(t).

(55)
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Therefore, V̇2(t) leads to

V̇2(t) ≤ −ζ c1ψ
2(t)− ζ c2ψ

2(t)S(t) − ηκ

2γ
p̃2 + ι+ ηκ

2γ
p2.

(56)

Similar to (39), substituting (33), (38), and (56) into (53),
we arrive at

V̇a(t) ≤ −λV (t)− ηκ

2γ
p̃2 + δ + ηκ

2γ
p2. (57)

We further obtain

V̇a(t) ≤ −λ0Va(t)+ δ0 (58)

where λ0 = min (λ, κ), δ0 = δ + (ηκ/2γ )p2.

APPENDIX F
PROOF OF THEOREM 2

According to Lemma 3, we can obtain

Va(t) ≤ Va(0)e
−λ0t + ε1 (59)

where ε1 = (δ0/λ0)(1 − e−λ0 t).
Then, we have

ζTmin

2L
w2(z, t) ≤ ζ

2

∫ E(t)

0
T (z, t)[wz(z, t)]2dz ≤ V1(t)

≤ V(t)
ϕ1

. (60)

Then, we arrive at

|w(z, t)| ≤
√

2L

ζTminϕ1
(V(0)e−λ0t + ε1). (61)

Therefore, we can make a conclusion that the boundary
output w(E(t), t) of the refueling hose always remains in
a certain set under the situation of actuator partial effec-
tiveness loss through proof by contradiction, which can be
expressed as �w := {w(E(t), t) ∈ R : |w(E(t), t)| < C}.
Furthermore, we can obtain that limt→∞ |w(z, t)| =
(2Lδ0/(ζTminϕ1λ0)

1/2 ≤ D2 ∈ (0,∞), which indicates that
the elastic vibration of the refueling hose can be suppressed
if the control parameters are appropriately chosen.

This completes the proof.
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