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ABSTRACT
A novel composite three-dimensional (3D) guidance law based on
an adaptive integral sliding mode (AISM) control utilizing a nonlin-
ear disturbance observer (NDOB) technique is proposed for missiles.
First, an integral sliding mode control is selected as the guidance
law to get rid of the reaching phase of sliding mode control. Sec-
ond, the switching gains are adjusted by designing an adaptive law.
Finally, the NDOB is designed to estimate and compensate for the
unknown target accelerations that are consideredas thedisturbance.
Thus the NDOB and AISM law are combined into a novel composite
guidance law to improve performance and to reduce the chatter-
ing phenomenon. Finally, to verify the effectiveness and robustness,
numerical simulations are performed in different scenarios and these
results are presented comparatively with the augmented propor-
tional navigation (APN) and the AISM guidance law. Moreover, the
proposed law outperforms the other schemes regarding the miss
distance and interception time.
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1. Introduction

Guidance law design, which is used to determine the appropriate acceleration commands
that will reduce the distance to the target to zero or to an acceptably small value in a finite
time, has continued to attract the attention of many researchers. Proportional navigation
(PN) guidance law is commonly used by many scholars and engineers due to its high per-
formance and simplicity of implementation (Murtaugh and Criel 1966; Dhananjay, Lum,
and Xu 2012). In addition, its variants, which are ideal proportional navigation (IPN), pure
proportional navigation (PPN), augmented proportional navigation (APN), true propor-
tional navigation (TPN) etc., are proposed to display better performance. However, PN
guidance and its variants may not perform sufficiently well against the target with high
maneuverability and they may introduce some disadvantages, such as a large miss distance
and overload saturation. In recent years, different guidance methods have been proposed
for nonlinear control methods, such as H∞ guidance (Yaghi and Efe 2020), finite-time
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guidance (Zhang et al. 2016), sliding mode guidance (Harl and Balakrishnan 2011; Hu,
Han, and Xin 2019), etc.

Slidingmode control (SMC) is an effective and robust nonlinear controlmethodbecause
of the ability to eliminate matched external disturbances and parameter uncertainties
(Utkin 1977). Up to now, this method has been used for a wide range of scientific and
industrial problems, such as robotics (Jia et al. 2019), electro-mechanical systems (Utkin,
Guldner, and Shi 2009; Wang et al. 2020), stochastic Markovian jumping systems (Chen,
Jia, and Niu 2016) and so on. Despite its prominent features, there are two major prob-
lems when using SMC. These problems are the emergence of reaching phase, which causes
unnecessarily large control signals, and the chattering phenomenon. Researchers have
proposed various SMC strategies to overcome these deficiencies and to improve the perfor-
mance of control. Moreover, several researchers have used traditional SMCs together with
other control algorithms. Some of thesemethods are high-order SMC, terminal SMC, inte-
gral SMC, fuzzy SMC (Mehmet Önder 2011; Chen et al. 2019; Hou et al. 2016; Chen et al.
2020).

The integral sliding mode control method (Utkin and Shi 1996) is one of the sophisti-
cated SMC methods and its literature that addressed both linear and nonlinear systems in
a variety of control fields has been growing rapidly (Nair, Behera, and Kumar 2017; Wang
et al. 2019). This method intends to eliminate the reaching phase to ensure the invariance
of the SMC from the initial instant of time according to the traditional SMCmethod. Thus
the system can guarantee robustness throughout the entire response. However, there is a
significant shortcoming concerning the ISMC method. Determining the switching gain is
always a troublesome process, such that the upper bound of the external disturbance needs
to be known and this gain should be chosen larger than this upper bound. Most of the
research outcomes on the ISMCmethod are based on assumptions about the upper bound
disturbance knowledge. However, this is not always possible in practical applications. To
overcome the above-mentioned problem, the adaptive law is proposed in the previous stud-
ies and this has enabled the development of an adaptive integral sliding mode control (Li
et al. 2019; Song and Song 2016).

The chattering phenomenon is the major disadvantage in the use of the SMC and its
proposed variants. This problem, referred to as high-frequency oscillations in the control
signal, results in unnecessary wear and tear of the actuator. To date, various techniques
have been used to remedy the chattering phenomenon, such as the saturation function,
the boundary layer, the high order SMC and so on. To overcome this phenomenon,
the above-listed methods need the upper bound of the disturbance as well. Therefore, a
new scheme called the disturbance observer-based control is designed. The disturbance
observer (DOB) is an efficient technique to observe parameter uncertainties and external
disturbances in the system (Sariyildiz, Oboe, and Ohnishi 2019; Luo et al. 2021). Although
this technique appears in different names and prospects in terms of design, all of them
have the same idea, which estimates the disturbance or uncertainties of the system and
then compensates by making use of the estimate. This technique has been applied in many
different fields in the literature since it was designed by Ohishi (1983).

In practice, the missile and the target relative motion that occurs in three-dimensional
geometry are described by the mathematical model consisting of second-order nonlinear
strongly coupled differential equations. In the three dimensions, themissile and the target’s
relativemotion can be decoupled into two planar relativemovements and thesemovements
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are designed by ignoring the cross-couplings between the elevation and the azimuth. Thus
far, there are many researchers who have constructed guidance laws in 2D geometry as
such simplificationsmake itmuch easier to design and analyze guidance laws. During these
simplifications, however, some guidance information can be lost, and this is an undesirable
situation as it can lead to poor results about guidance accuracy.

Golestani et al. (2015) proposed a finite-time integral sliding mode scheme for the mis-
sile guidance system regarding the geometry of planar interception. In Li et al. (2019), an
adaptive ISM guidance law was presented for planar engagement geometry with respect
to impact angle constraint considering autopilot lag. A sliding surface, which was accel-
eration, the LOS angular rate and LOS angle tracking error were considered together,
was designed in that paper. In the study of Zhang et al. (2019), impact angle control
over guidance based on ISM manifold with finite-time control was proposed and also the
second-order extended state observer (ESO) was used. Besides, the missile and target were
designed with a point mass model. In Zhang, Li, and Luo (2013a), a composite guidance
law based on an ISM method and NDOB technique is proposed for missile intercepting
maneuvering targets in the geometry of the planar interception. Liang et al. (2014) pro-
posed a robust guidance law by utilizing an ISM scheme and both themissile and the target
were taken to be a point-mass model. Meng and Zhou (2018) presented a new guidance
law by using a super-twisting algorithmwith nonlinear ISM by considering missile autopi-
lot dynamics for planar missile-target engagement. Besides, the finite time disturbance
observer was utilized herein to handle the disturbances resulting from the acceleration of
the target. Zhang, Li, and Luo (2013) designed the terminal guidance law by using both the
linear andnonlinear ISMcontrolmethods and theNDOB technique by considering impact
angle constraints. In addition, point-mass model was used in the missile and target design
in that paper. Song and Song (2016) proposed the guidance law in three-dimensional space
by using the ISMC. Then, an adaptive guidance law based on ISMC improved to estimate
the target acceleration’s upper bound. Wang and He (2016) proposed a guidance law for
intercepting targets that are maneuvering with LOS angle constraints. They used an opti-
mal SMCguidance law and developed the equivalent control part of the SMCmethod using
the model predictive control to satisfy terminal angle constraint in that paper. Moreover,
the missile and target were taken to be a point-mass and this law was designed for planar
missile–target engagement.

The guidance laws designed so far and based on the ISM method in the literature have
been examined and presented above. In this paper, the novel composite guidance law based
on the AISM control technique as well as the NDOB is proposed for three dimensional
engagement geometry and the main contributions of this study are threefold. First, the
AISM guidance law is developed by being considered three-dimensional missile-target
interception geometry. Thus the reaching phase of the sliding mode is eliminated and also
the designed guidance law has made it possible for the system response to be robust from
the very beginning. Second, the adaptive law is designed to tune the switching gain and
so the upper bound information of the target accelerations does not need to be known. In
addition, this law guarantees the LOS angular rates converge to zero in finite time. Third,
motivated by the work of Zhang et al. (2016), the NDOB technique is presented to estimate
and compensate the target acceleration, which is tackled as the disturbance without the
upper bound information. Thanks to the NDOB technique, the chattering phenomenon,
which is the major problem of the SMC method, is alleviated. Thus a novel guidance law
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consisting of a combination of the AISM guidance law and the NDOB technique is pre-
sented. Finally, inmissile guidance systems, it is very important to overcome the deviations
in the LOS angles and to be able to create high guidance accuracy under the influence of
noise and uncertainties. In this case, a novel composite guidance law was designed in the
simulation environment, and the efficacy and robustness of the new proposed guidance
law are investigated using a 6-DOF nonlinear model via simulation studies.

The rest of this paper is structured as follows. Missile-target engagement geometry is
formulated in Section 2. In Section 3, the design procedure of the proposed compos-
ite guidance law is presented comprehensively. In Section 4, numerical simulations and
their results are presented to verify the effectiveness of the proposed guidance law and the
concluding remarks are constituted in Section 5.

2. Missile-target engagement geometry

In this section, the missile-target relative motion in three-dimensional environment is
briefly explained and is presented in Figure 1.

In Figure 1, T and M denote the target and the missile, respectively. R is the range
between themissile and target. θ and φ are the elevation angle and the azimuth angle of the
line-of-sight. The second-order nonlinear differential equations of engagement geometry
in Guo, Li, and Zhou (2019) can be given as

R̈ − Rφ̇2 − Rθ̇2 cos2 φ = aTR − aMR (1)

Rφ̈ + 2Ṙφ̇ + Rθ̇2 sinφ cosφ = aTφ − aMφ (2)

Rθ̈ cosφ + 2Ṙθ̇ cosφ − 2Rφ̇θ̇ sinφ = aMθ − aTθ (3)

where aTR, aTθ , aTφ are the accelerations of target and aMR, aMθ , aMφ are the accelerations
of missile in the LOS frame. One of the main objectives of the guidance laws is to obtain

Figure 1. Missile-target engagement geometry.
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zero LOS angular rates, θ̇ and φ̇. Equations (4) and (5) are used in the design of the guidance
laws.

φ̈ = −2Ṙ
R

φ̇ − θ̇2 sinφ cosφ − aMφ

R
+ aTφ

R
(4)

θ̈ = −2Ṙ
R

θ̇ + 2θ̇ φ̇ tanφ + aMθ

R cosφ
− aTθ

R cosφ
(5)

3. Guidance law design

3.1. Preliminaries

Lemma 3.1 (Yu et al. 2005): Let ki for (i = 1, 2, . . . , n) are all positive numbers. Following
inequality is satisfied for 0<q<2.(

k21 + k22 + · · · + k2n
)q ≤ (

kq1 + kq2 + · · · + kqn
)2 (6)

Lemma 3.2 (Yu et al. 2005): Let V(t) be a continuous positive definite Lyapunov function
as well as t0 is the initial time. If V̇(t) ≤ −κ1V(t) − κ2V(t)ξ (∀t > t0), where κ1, κ2>0,
0 < ξ < 1. Then, V(t) converges to the equilibrium point in finite time if given by

tf � t0 + 1
κ1(1 − ξ)

ln
(

κ1V(t0)1−ξ + κ2

κ2

)
(7)

Lemma 3.3 (Bhat and Bernstein 2005): A necessary condition for a polynomial D(x) =
xn + anxn−1 + · · · + a2x + a1 of a complex variable x to be Hurwitz is a1, a2, . . . .an > 0.

For an nth-order system with input u,

ẏ1 = y2, ẏ2 = y3, . . . , ẏn−1 = yn, ẏn = u (8)

there exists an ε ∈ (0, 1) such that, for every α ∈ (1 − ε, 1) the equilibrium at origin is
reached in finite time under the following feedback law for the system given in (8).

u = −a1sgn(y1)
∣∣y1∣∣α1 − · · · − ansgn(yn)

∣∣yn∣∣αn (9)

where α1,α2, . . . ,αn satisfy αi−1 = αiαi+1
2αi+1−αi

(i = 2, . . . , n), αn = α, αn+1 = 1.

Lemma 3.4 (Khalil 2002; Man, Zhang, and Li 2019): (Input-to-State Stability Theorem,
ISS Theorem) Consider the nonlinear system of the following form:

ẋ(t) = f (x, u, t) (10)

If the system ẋ = f (x, 0, t) is globally asymptotically stable and also limt→∞ u = 0, this
system’s states converge asymptotically to zero, i.e. limt→∞ x = 0.

Assumption 3.1 (Li et al. 2019): It is assumed that the target accelerations |aTφ| ≤ ε1 and
|aTθ | ≤ ε2, where ε1 and ε2 are two positive yet unknown constants.
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3.2. Adaptive integral slidingmode approach for guidance law design

The nonlinear ISM guidance law is showed to intercept a target in three-dimensional
engagement geometry under the external disturbances in this section. However, this guid-
ance law needs the upper bound of the acceleration of the target. Therefore, the adaptive
law is designed to estimate the upper bound of the target’s accelerations denoted by ε1 and
ε2. The stability of the given system is proven by using the Lyapunov’s stability theorem.
The system dynamics in (4)–(5) can be rewritten as follows:

x1 = φ, x2 = φ̇, x3 = θ , x4 = θ̇

ẋ1 = x2

ẋ2 = −2Ṙ
R
x2 − x24 sin x1 cos x1 − aMφ

R
+ aTφ

R
(11)

ẋ3 = x4

ẋ4 = −2Ṙ
R
x4 + 2x4x2 tan x1 + aMθ

R cos x1
− aTθ

R cos x1
(12)

For the nonlinear ISM guidance law, a sliding manifold vector is described (Zhang, Li, and
Luo 2013a; Song and Song 2016) as follows:

s =
(
s1
s2

)
=

⎛⎜⎜⎝x2 − x2(t0) +
∫ t

0
(a1sgn(x1) |x1|α1 + a2sgn(x2) |x2|α2) dt

x4 − x4(t0) +
∫ t

0
(b1sgn(x3) |x3|β1 + b2sgn(x4) |x4|β2) dt

⎞⎟⎟⎠ (13)

where a1, a2, b1, b2>0, 0<α1<1, 0<β1<1, α2 = 2α1
α1+1 ,β2 = 2β1

β1+1 are the parameters to be
designed. In addition, a1, a2, b1, b2 > 0 ensure that the two polynomials λ2 + a2λ + a1 and
λ2 + b2λ + b1 are Hurwitz. Besides, it should be known that sliding mode starts from the
initial time instance since s1(t0) = 0, s2(t0) = 0 at t = t0.

The time derivative of the sliding surfaces given in (13) is obtained as below.

ṡ =
(
ṡ1
ṡ2

)
=
(
ẋ2 + (a1sgn(x1) |x1|α1 + a2sgn(x2) |x2|α2)
ẋ4 + (b1sgn(x3) |x3|β1 + b2sgn(x4) |x4|β2)

)
(14)

Substituting ẋ2 and ẋ4 given in (11)–(12) into (14), the following derivative is obtained

ṡ =
(
ṡ1
ṡ2

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
−2Ṙ

R
x2 − x24 sin x1 cos x1 − aMφ

R
+ aTφ

R+(a1sgn(x1) |x1|α1 + a2sgn(x2) |x2|α2)
−2Ṙ

R
x4 + 2x4x2 tan x1 + aMθ

R cos x1
− aTθ

R cos x1
+(b1sgn(x3) |x3|β1 + b2sgn(x4) |x4|β2)

⎞⎟⎟⎟⎟⎟⎟⎠ . (15)

Equation (15) can be rewritten as given by (16).

ṡ = A + B
(
aMφ

aMθ

)
+ C

(
aTφ

aTθ

)
(16)
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where

A =

⎛⎜⎜⎜⎜⎜⎝
−2Ṙ

R
x2 − x24 sin x1 cos x1 + (a1sgn(x1) |x1|α1

+a2sgn(x2) |x2|α2)
−2Ṙ

R
x4 + 2x4x2 tan x1 + (b1sgn(x3) |x3|β1

+b2sgn(x4) |x4|β2)

⎞⎟⎟⎟⎟⎟⎠

B =

⎛⎜⎝− 1
R

0

0
1

R cos x1

⎞⎟⎠ C =

⎛⎜⎝ 1
R

0

0 − 1
R cos x1

⎞⎟⎠ .

In the guidance system based on ISM, upper bounds of the target accelerations need to be
known numerically. According to Assumption 3.1, in a practical operation scenario, it is
not possible to obtain knowledge of the upper bound of the target accelerations a priori.
Thus an adaptive law and the AISM guidance law are designed as defined in Song and
Song (2016). In the presented guidance law, the adaptive law aims to estimate the upper
bound for the target accelerations.

Theorem 3.1: Let (11) and (12) denote the system dynamics and let (17) be the chosen
control law.(

aMφ

aMθ

)
= B−1

⎛⎝−A − ρ1s − ρ2

(|s1|γ sgn(s1)
|s2|γ sgn(s2)

)
−

2∑
j=1

(∣∣c1j∣∣ sgn(s1)∣∣c2j∣∣ sgn(s2)

)
ηĵεj

⎞⎠ (17)

where ρ1, ρ2 > 0, 0 < γ < 1, η1, η2 > 1 and ε̂j is an adaptive estimate of εj (j = 1, 2).
Define the estimation error as ε̃j := εj − ε̂j and the adaptive law for ε̂j as follows:

˙̂εj = ηj

( 2∑
i=1

∣∣cij∣∣ |si|) , ε̂j(0) > 0, j = 1, 2 (18)

Under these conditions θ̇ and φ̇, which are the LOS angular rates, will converge to zero in
finite time.

Proof: This guidance law can be studied in three steps. These steps are given below.
Step 1: The switching variables given in (13) and estimation errors ε̃j are bounded.
Step 2: The switching variables given in (13) converge to zero in finite time.
Step 3: The states x2 and x4 given in (11) and (12) converge to zero in finite time.
Step 1: Choose the Lyapunov function candidate as follows:

V1 = 1
2
sTs + 1

2

2∑
j=1

ε̃2j (19)

The time derivative of V1 is obtained as given below:

V̇1 = sT ṡ +
2∑

j=1
ε̃j ˙̃εj (20)
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Equation (20) along the guidance system in (17) and the adaptive law in (18) is

V̇1 = sT ṡ +
2∑

j=1
ε̃j ˙̃εj

= sT
(
A + B

(
aMφ

aMθ

)
+ C

(
aTφ

aTθ

))
+

2∑
j=1

ε̃j ˙̃εj

= sT
⎛⎝−ρ1s − ρ2

(|s1|γ sgn(s1)
|s2|γ sgn(s2)

)
−

2∑
j=1

(|c1j|sgn(s1)
|c2j|sgn(s2)

)
ηĵεj + C

(
aTφ

aTθ

)⎞⎠+
2∑

j=1
ε̃j ˙̃εj

=
⎛⎝−ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηĵεj

⎞⎠+
( 2∑

i=1
ci1si

)
aTφ +

( 2∑
i=1

ci2si

)
aTθ

−
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηj(εj − ε̂j)

= −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 +
( 2∑

i=1
ci1si

)
aTφ +

( 2∑
i=1

ci2si

)
aTθ −

2∑
j=1

( 2∑
i=1

|cij||si|
)

ηjεj

� −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 +
2∑

j=1

( 2∑
i=1

|cij||si|
)

εj −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηjεj

= −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 +
2∑

j=1

( 2∑
i=1

|cij||si|
)

εj(1 − ηj)

� −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 (21)

According to (21), for V1 > 0, V̇1 � 0 is obtained and s and ε̃j(j = 1, 2) are bounded. This
completes the claim in the first step.

Step 2. The Lyapunov function is selected as V2 = 1
2 s

Ts and the derivative of this
Lyapunov function as follows:

V̇2 = sT ṡ = sT
(
A + B

(
aMφ

aMθ

)
+ C

(
aTφ

aTθ

))

= sT
⎛⎝−ρ1s − ρ2

(|s1|γ sgn(s1)
|s2|γ sgn(s2)

)
−

2∑
j=1

(|c1j|sgn(s1)
|c2j|sgn(s2)

)
ηĵεj + C

(
aTφ

aTθ

)⎞⎠
� −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηĵεj

+
2∑

j=1

( 2∑
i=1

|cij||si|
)

εj
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= −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 +
2∑

j=1

( 2∑
i=1

|cij||si|
)

(εj − ηĵεj) (22)

Since ε̂j(0) > 0 and ˙̂εj ≥ 0, we have ε̂j(t) ≥ ε̂j(0) ≥ 0. If ε̂j(0) is large enough, i.e. ε̂j(0) >

|ε̃j(0)| , ηj satisfies the following inequality as given in Song, Song, and Zhou (2016); Si and
Song (2019).

ηj ≥ 1 +
√

ε̂2j (0) + s2j (0)

ε̂j(0)
, j = 1, 2 (23)

Accordingly, the following inequalities can be written by considering ε̂j(t) ≥ ε̂j(0) ≥ 0.

εj(0) − ηĵεj(0) ≤ εj(0) − ε̂j(0) −
√

ε̂2j (0) + s2j (0)

≤ ε̃j(0) −
√

ε̂2j (0) + s2j (0)

≤ |ε̃j(0)| −
√

ε̂2j (0) + s2j (0)

≤
√

ε̃2j (0) −
√

ε̂2j (0) + s2j (0)

≤
√

ε̂2j (0) −
√

ε̂2j (0) + s2j (0)

≤ 0 (24)

Based on Lemma 3.1, Equation (25), given below, is obtained by using (22) and (24).

V̇2 ≤ −ρ1sTs − ρ2

2∑
i=1

|si|γ+1

≤ −2ρ1V2 − 2
γ+1
2 ρ2V

γ+1
2

2 (25)

The final inequality above stipulates that the switching variables converge to zero in finite
time according to Lemma 3.2. This completes the claim in the second step.

Step 3: Finally, the states x2 and x4 given in (11) and (12) are studied. It is clearly known
that s1 = 0 and s2 = 0, ṡ1 = 0 and ṡ2 = 0 on the sliding surface. In (15), if ẋ2 and ẋ4 are
separated, the following equations are obtained:

ẋ2 = −(a1sgn(x1) |x1|α1 + b1sgn(x2) |x2|α2) (26)

ẋ4 = −(a1sgn(x3) |x3|β1 + b1sgn(x4) |x4|β2) (27)

According to Lemma 3.3, in the closed loop, the states x2 and x4 converge to zero in finite
time, that is, the LOS angular rates θ̇ and φ̇ will converge to zero in finite time as a result
of the chosen guidance strategy. �
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4. Composite guidance law design

4.1. Design of nonlinear disturbance observer

Assumption 4.1 (Zhang et al. 2016; Man, Liu, and Li 2019): We assume that the final
values of the time derivative of target accelerations ȧTθ and ȧTφ are zero, i.e. limt→∞ ȧTθ = 0
and limt→∞ ȧTφ = 0.

The guidance system in (4)–(5) can be rewritten as follows:

ẋ2 = A1 + B1
(
aMφ − aTφ

)
(28)

ẋ4 = A2 + B2 (aMθ − aTθ ) (29)

where

A =
(
A1
A2

)
=

⎛⎜⎜⎜⎝
−2Ṙ

R
x2 − x24 sin x1 cos x1

−2Ṙ
R
x4 + 2x4x2 tan x1

⎞⎟⎟⎟⎠ B =
(
B1
B2

)
=

⎛⎜⎝ − 1
R
1

R cos x1

⎞⎟⎠ .

Theorem4.1 (Zhang et al. 2016): Let Assumption 3.1 holds true and let the NDOB dynam-
ics is given by the following equations. The predicted target accelerations asymptotically
converge to the target accelerations if z1(0) = x2(0) and z2(0) = x4(0) hold true.

ż1 = A1 + B1
(
aMφ − âTφ

)
âTφ = ω1 (x2 − z1)

(30)

ż2 = A2 + B2 (aMθ − âTθ )

âTθ = ω2 (x4 − z2)
(31)

where ω1 > 0 and ω2 < 0.

Proof: Let eTφ and eTθ be the disturbance prediction errors and are expressed as eTφ :=
aTφ − âTφ and eTθ := aTθ − âTθ . Then, their behaviors are obtained using (28)–(31) as
follows:

ėTφ = ȧTφ − ω1 (ẋ2 − ż1)

= ȧTφ − ω1((A1 + B1(aMφ − aTφ)

− A1 − B1
(
aMφ − âTφ

)
)

= ȧTφ + ω1B1
(
aTφ − âTφ

)
= ȧTφ + ω1B1eTφ (32)

ėTθ = ȧTθ − ˙̂aTθ

= ȧTθ − ω2 (ẋ4 − ż2)

= ȧTθ − ω2((A2 + B2(aMθ − aTθ )
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− A2 − B2 (aMθ − âTθ ))

= ȧTθ + ω2B2 (aTθ − âTθ )

= ȧTθ + ω2B2eTθ (33)

According to Assumption 4.1 and Lemma 3.4, limt→∞ eTφ = 0 and limt→∞ eTθ = 0 are
obtained. Thus the predicted target accelerations, âTθ and âTφ , will converge to the actual
target accelerations asymptotically. �

4.2. Composite guidance law based on nonlinear disturbance observer

Assumption 4.2: eTθ and eTφ , which are the disturbance prediction errors, are bounded. Let
� := [�1;�2] and also �1 and �2 are two positive constants such that

|eTθ (t)| = ∣∣aTθ − âTθ

∣∣ ≤ �1∣∣eTφ(t)
∣∣ = ∣∣aTφ − âTφ

∣∣ ≤ �2
(34)

for t ≥ 0. This assumption emphasizes that the physical systems can produce finite accelera-
tions thereby ensuring their difference to be finite in magnitude.

Composite guidance law consists of the AISM guidance law in (17) and the NDOB
technique in (30) and (31).

Theorem 4.2: Let the chosen guidance system is given by (11)–(12) and let Assumption 4.2
holds true. If the switching gains satisfy ηi > �i, i = 1, 2, θ̇ and φ̇, which are the LOS angular
rates, converge to zero in finite time.

The proposed composite guidance law is indicated as below.(
aMφ

aMθ

)
= B−1

(
−A − ρ1s − ρ2

(|s1|γ sgn(s1)
|s2|γ sgn(s2)

)

−
2∑

j=1

(∣∣c1j∣∣ sgn(s1)∣∣c2j∣∣ sgn(s2)

)
ηjε̂j

⎞⎠+
(
âTφ

âTθ

)
. (35)

Proof: The stability proof is given here similar to those of Theorem 3.2. First, choose the
Lyapunov function candidate as V3 = 1

2 s
Ts + 1

2
∑2

j=1 ε̃2j .
Substituting (11)–(12) and (35) into (14) yields the following time derivative of the

Lyapunov function:

V̇3 = sT ṡ +
2∑

j=1
ε̃j ˙̃εj

=
⎛⎝−ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηĵεj

⎞⎠
+
( 2∑

i=1
ci1si

)
aTφ +

( 2∑
i=1

ci2si

)
aTθ −

( 2∑
i=1

ci1si

)
âTφ
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−
( 2∑

i=1
ci2si

)
âTθ −

2∑
j=1

( 2∑
i=1

|cij||si|
)

ηj
(
εj − ε̂j

)

=
⎛⎝−ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηjεj

⎞⎠+
2∑

j=1

( 2∑
i=1

|cij||si|
)(

aTφ − âTφ

aTθ − âTθ

)

� −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηjεj +
2∑

j=1

( 2∑
i=1

|cij||si|
)

�

� −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

(ηjεj − �)

� 0 (36)

It can be seen that V̇3 � 0. Thus V3(t) � V3(0) and V3(t) is bounded. Therefore, s and
ε̃j(j = 1, 2) are bounded.

At this stage, we will choose a new Lyapunov function to show that the sliding variables
converge to zero in finite time and this function is V4 = 1

2 s
Ts.

The derivative of this Lyapunov function is satisfied as follows:

V̇4 = sT ṡ

=
⎛⎝−ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηĵεj

⎞⎠
+
( 2∑

i=1
ci1si

)
aTφ +

( 2∑
i=1

ci2si

)
aTθ −

( 2∑
i=1

ci1si

)
âTφ −

( 2∑
i=1

ci2si

)
âTθ

=
⎛⎝−ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηĵεj

⎞⎠+
2∑

j=1

( 2∑
i=1

|cij||si|
)(

aTφ − âTφ

aTθ − âTθ

)

� −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

ηĵεj +
2∑

j=1

( 2∑
i=1

|cij||si|
)

�

� −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 −
2∑

j=1

( 2∑
i=1

|cij||si|
)

(ηĵεj − �) (37)

where ηi > �i, it can be obtained that

V̇4 � −ρ1sTs − ρ2

2∑
i=1

|si|γ+1 (38)

Based on Lemma 3.1, we can be rewritten as

V̇4 � −2ρ1V4 − 2
γ+1
2 ρ2V

γ+1
2

4 (39)

According to Lemma 3.2, the sliding variables converges to zero in finite time. Since the
remaining steps of the proof are similar to those in Theorem 3.1, they are not shown again
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here. Thus, in the light of all this, it is obtained that the LOS angular rates θ̇ and φ̇ converge
to zero in finite time, respectively. �

In conclusion, the novel composite guidance law is proposed in three-dimensional
engagement geometry. Compared to Theorems 3.1, 4.2 has âTθ and âTφ obtained using
the NDOB technique and these are given in the guidance system as the feedforward com-
pensation term. This composite guidance law is proposed to improve performance of
missile-target interception and to obtain robust results while the chattering is diminished.

5. Numerical simulations

This section demonstrates the results of the numerical simulation for missile-target inter-
ception in the 3D geometry. The APNG law and the AISMG law have been chosen to
compare whether the proposed composite guidance law is effective (Gürsoy-Demir and
Efe 2019). Mathematically the APNG law can be stated as

aMφ = N1Vcφ̇ + 0.5N2aTφ (40)

aMθ = N1Vcθ̇ + 0.5N2aTθ (41)

where Vc is the closing velocity andN1,N2 are positive constants. The AISM guidance law
is given in (17), Zhang, Li, and Luo (2013a) and Song and Song (2016).

5.1. Simulation scenarios setting

The initial conditions of the guidance system are chosen as follows. The initial velocity of
the missile is VM0 = 800m/s and the initial position of the missile is xM0 = 0m, yM0 =
5000m and zM0 = 0m. The initial velocity of the target is VM0 = 400m/s and the initial
position of the target is xM0 = 1100m, yM0 = 5000m and zM0 = 0m. In addition to these,
the initial flight-path angle of the missile is φM0 = 0 ◦ and the heading angle of the missile
is θM0 = 8 ◦. For the target, initial flight-path angle is φT0 = 10 ◦ and the heading angle is
θT0 = 5 ◦. g = 9.8m/s2 is used as the gravitational constant (Zhang et al. 2016).

In order to optimize the control parameters used in the presented guidance laws and to
obtain high performance, the trial and errormethodwas used. The parameters of theAISM
guidance law (17) and the proposed composite guidance law (35) are chosen as a1 = b1 =
0.005, a2 = b2 = 0.02, α1 = β1 = 0.33, α2 = β2 = 0.5, ρ1 = 0.05, ρ2 = 0.01. Moreover,
the parameters of NDOB (30) and (31) are selected as ω1 = 3000 and ω2 = −3000.

Table 1 gives three different cases that take account of target accelerations, and these
cases will be used to demonstrate the effectiveness of the presented guidance laws. Addi-
tionally, the simulations are carried out under the presence of external disturbances to
assess the performance of the guidance law fairly.

Table 1. Accelerations setting of target in interception scenarios.

Interception scenarios Azimuth acceleration Elevation acceleration

Non-maneuvering 0 0
Constant maneuvering 4g 4g
Time-varying maneuvering 3g + sin 2π t 3g + sin 4π t
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5.2. Simulation results

Case 1: Non-maneuvering target
According to the assumption in Case 1, the target has a non-maneuvering motion and

the missile aims to intercept this target. For Case 1, the final miss distance and the time

Table 2. Miss distance and interception time for all cases.

Scenario Guidance law Miss distance (m) Interception time (s)

Case 1 APNGL 0.1918 5.080
AISMGL 0.1704 5.039
NDOB-based AISMGL 0.0114 5.035

Case 2 APNGL 0.1915 4.978
AISMGL 0.2175 4.896
NDOB-based AISMGL 0.0986 4.865

Case 3 APNGL 0.1487 4.977
AISMGL 0.2116 4.975
NDOB-based AISMGL 0.0759 4.927

Figure 2. Results of Case 1 under the APN guidance law, the AISM guidance law and the NDOB-based
AISM guidance law: (a) Relative range; (b) LOS angles; (c) LOS rates; (d) Phase space behavior; (e) Target
acceleration estimation errors for aTφ and aTθ ; (f ) Missile and target trajectories.
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of interception are given in Table 2. The relative distance r, the response of LOS angle θ

and φ, the response of LOS angular rates θ̇ and φ̇, phase space behavior, target accelera-
tion estimation errors for aTφ and aTθ , missile and target trajectories are demonstrated in
Figure 2(a–f), respectively.

Case 2: Constant maneuvering target
According to the assumption in this case, the target has a constantmaneuvermotion and

the missile aims to intercept this target. For Case 2, the final miss distance and the time of
interception are presented in Table 2. The relative distance r, the response of LOS angle θ

and φ, the response of LOS angular rates θ̇ and φ̇, phase space behavior, target accelera-
tion estimation errors for aTφ and aTθ , missile and target trajectories are demonstrated in
Figure 3(a–f), respectively.

Case 3: Time-varying maneuvering target
According to the assumption in Case 3, the target has a time-varying maneuvering

movement, which is different from the second case, in which case the missile intercepts

Figure 3. Results of Case 2 under the APN guidance law, the AISM guidance law and the NDOB-based
AISM guidance law : (a) relative range; (b) LOS angles; (c) LOS rates; (d) switching variables; (e) the actual
and estimated target acceleration aTθ ; (f ) the actual and estimated target acceleration aTφ .
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this target. For Case 3, the final miss distance and the time of interception are given in
Table 2. The relative distance r, the response of LOS angle θ and φ, the response of LOS
angular rates θ̇ and φ̇, phase space behavior, target acceleration estimation errors for aTφ

and aTθ , missile and target trajectories are demonstrated in Figure 4(a–f), respectively.
It can be seen from Figures 2(a) to 4(a) that the relative range decreases to zero at inter-

cept time in all of the guidance laws. It can be understood from here that these guidance
laws can guarantee to intercept the target successfully. However, the APN guidance law and
the AISM guidance law approach zero over a longer period of time than the NDOB-based
AISM guidance law, resulting in additional cost in terms of convergence time. Figures
2(b)–4(b) show the response of the LOS angles. Figures 2(c)–4(c) show the response of
LOS angular rates. It has also been reported that the LOS angular rates come close to

Figure 4. Results of Case 3 under the APN guidance law, the AISM guidance law and the NDOB-based
AISM guidance law: (a) relative range; (b) LOS angles; (c) LOS rates; (d) phase space behavior; (e) target
acceleration estimation errors for aTφ and aTθ ; (f ) missile and target trajectories.
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zero for all of the guidance laws in cases where the missile is intercepting the target that
has a non-maneuvering movement. Figures 2(d)–4(d) illustrate the controlled phase space
behavior of the switching manifold defined for the elevation angle and the azimuth angle
for the proposed guidance law. Figures 2(e) and 4(e) demonstrate the disturbance estima-
tion errors obtained using theNDOB technique. The estimated accelerations by theNDOB
converge to the real target’s accelerations and so the estimation errors finally reach zero.
As are demonstrated in Figures 2(e) and 4(e), the presented all guidance laws can intercept
the target successfully. Also, with the proposed guidance law, it can be observed that the
missile has shorter trajectories.

The miss distance and the time of interception for all presented cases are tabulated in
Table 2. As can be seen from the table, the presented guidance laws guarantee the miss
distance being below 0.25m in the three cases considered. This means that the missile
successfully intercepts the targets by the hit-to-kill strategy (Shtessel, Shkolnikov, and Lev-
ant 2009). The results have shown that the proposed novel guidance law outperforms the
classical APNG law and the AISMG law and it leads to display less interception time and
less miss distance compared to other. Besides, when the missile intercepts the target which
has large maneuverability, the performance of the proposed guidance law observed to be
even better.

6. Conclusion

In this paper, a novel three-dimensional composite guidance law by using the adaptive
integral sliding mode control method and the nonlinear disturbance observer technique
is presented for missile guidance systems. At the outset, an ISM guidance law is presented
for eliminating the reaching phase of the traditional SMC method. Then, the AISM guid-
ance law is designed for the case in which the target accelerations profile’s upper bound
is unavailable. The results have shown that the reaching phase is eliminated and a robust
guidance law is obtained without the need for an upper bound information of the target
accelerations. Additionally, it is analytically demonstrated in our study that the LOS angu-
lar rates converge to zero in finite time, as expected from a guidance law. The nonlinear
disturbance observer technique has been utilized to generate an estimate by considering
the target accelerations as disturbances. The estimated accelerations of the target are pro-
vided to the system as a compensation term. Thus the chattering phenomenon that is one
of the disadvantages of SMC is eliminated by using the proposed composite guidance law.
Simulations on the missile guidance system proved the effectiveness and the feasibility of
the proposed guidance law compared to its alternatives.
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