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A B S T R A C T

There are three main approaches related to cryptanalysis of Authenticated Encryption with Associated Data
(AEAD) algorithms: Simulating the encryption oracle (universal forgery attack), simulating the decryption
oracle (plaintext recovery attack) and producing the valid tag of a given ciphertext (tag guessing attack).
In this work, we analyze the security of COLM in these approaches. COLM is one of the AEAD algorithms
chosen in the final portfolio for defense-in-depth use case of the CAESAR competition. The ciphers in this
portfolio are supposed to provide robust security with their multiple layered defense mechanisms. The main
motivation of this work is to examine if COLM indeed satisfies defense-in-depth security. We make cryptanalysis
of COLM, particularly in the chosen ciphertext attack (CCA) scenario, once its secret whitening parameter
𝐿 = 𝐸𝐾 (0) is recovered. To the best of our knowledge, we give the first example of querying an EME/EMD
(Encrypt-linearMix-Encrypt/Decrypt) AEAD scheme in its decryption direction for arbitrary ciphertexts, not
produced previously by the oracle, namely either a forgery or tag guessing attack. We construct SEBC/SDBC
(Simulation models of the Encryption/Decryption oracles of the underlying Block Cipher) of COLM, thereby
forming the first examples of these models of an authenticated EME scheme simultaneously. The combination of
our SEBC/SDBC is a powerful tool to mount a universal forgery attack, a tag guessing attack and a plaintext
recovery attack. All of these attacks have polynomial time complexities once 𝐿 is recovered in the offline
phase, indicating that the security of COLM against plaintext recovery and tag guessing attacks is limited by
the birthday bound. Apart from exploiting SEBC/SDBC, we mount a pair of plaintext recovery attacks and
another universal forgery attack. Finally, we make some suggestions to prevent our attacks.
. Introduction

In information security, confidentiality is protected by an encryp-
ion algorithm while authenticity is provided by a digital signature or

Message Authentication Code (MAC). An Authenticated Encryption
ith Associated Data (AEAD) [1] scheme provides both confidentiality
nd authenticity of a message with a single key, simultaneously. It
roduces a ciphertext (𝐶𝑇 ) and a tag from an input consisting of
n associated data (𝐴𝐷) and a plaintext (𝑃𝑇 ). Note that the 𝑃𝑇 is
ot released unless the tag is verified in the decryption. Advanced
ncryption Standard - Galois/Counter Mode (AES-GCM) [2] is one of
he leading AEAD algorithms. It has a wide range of usage across
he Internet applications such as Transport Layer Security (TLS) and
nternet Protocol Security (IPsec).
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E-mail addresses: erdem.ulusoy@tubitak.gov.tr (S.E. Ulusoy), orhunkara@iyte.edu.tr (O. Kara), onderefe@hacettepe.edu.tr (M.Ö. Efe).

The design of secure AEAD schemes is one of the most popu-
lar topics in cryptography nowadays. ‘‘The Competition for Authenti-
cated Encryption: Security, Applicability, and Robustness’’ (CAESAR)
was launched by the International Cryptologic Research Community
in January 2014 [3]. Also, the algorithms submitted to the ongoing
lightweight cryptography competition organized by National Institute
of Standards and Technology are supposed to be AEAD schemes [4].
Besides the algorithms submitted to CAESAR or the NIST competition,
there have been several AEAD schemes in the literature such as [5–8]
for the last five years.

The ciphers selected for the final portfolio of the CAESAR com-
petition are expected to become possible alternatives of AES-GCM,
outperforming it in either performance or security. The final portfolio
is classified in three categories as lightweight, high-performance and
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Table 1
Attacks against COPA, ELmD and COLM. EF: Existential Forgery, UF: Universal
Forgery, TagG: Tag Guessing, PtR: Plaintext Recovery, SEBC/SDBC: Simulations of
Encryption/Decryption Oracles of the Underlying Block Cipher, QDOAC: Querying
AEAD Decryption Oracle for Arbitrary Ciphertexts. As can be seen from the table,
for the first time TagG, PtR and decryption of AEAD attacks are mounted.

AEAD EF UF TagG PtR SEBC/SDBC QDOAC

[9] COPA No Yes No No None No
[10] ELmD No No No No SDBC No
[11] COLM No No No No None No
[12] COLM Yes Yes No No SEBC No
This work COLM Yes Yes Yes Yes SEBC/SDBCa Yes

aThis SDBC is the only simulation model built by querying an AEAD decryption (itself
a forgery attack).

defense-in-depth use cases. The competition has attracted the cryp-
tography community worldwide and 57 candidate algorithms were
submitted. The ciphers have been analyzed extensively (e.g.[9–20]).
There are also various studies related to efficient implementations of
the candidates (e.g. [21–26]).

Two AEAD schemes which qualified for the second round of the
CAESAR competition, COPA [27] and ELmD (Encrypt-Linear mix-
Decrypt) [28], are merged to one cipher, COLM [29], to inherit their
best properties (see Table 2 in Section 2). It is an authenticated Encrypt-
linearMix-Encrypt (EME) scheme whose underlying block cipher is
AES-128 [30].

COLM and Deoxys [31] are the winners of the CAESAR competition
in the defense-in-depth use case [32]. The both ciphers chosen in
this use case are supposed to provide highly robust security services
by utilizing multiple layers of security mechanisms. So, even if some
of the defense layers of such a cipher fail, the cipher is expected to
sustain performing its functions without depriving of the authenticity
level or the security strength. The most critical mechanism is stated as
providing authenticity against nonce misuse attacks where the attacker
can control the nonce, [33].

Three main approaches for cryptanalysis of an AEAD algorithm can
be listed as universal forgery attack, plaintext recovery attack and tag
guessing attack. The encryption oracle of an AEAD scheme is simulated
to construct both the ciphertext and the tag of any given plaintext in a
universal forgery attack while the simulation model of the decryption
oracle of an AEAD scheme is built to compute the plaintext of a given
ciphertext in a plaintext recovery attack. As for a tag guessing attack,
the goal is to compute the valid tag of a given ciphertext.

In this work, we analyze the security of COLM in these three
approaches under the assumption that the whitening mask 𝐿 = 𝐸𝐾 (0)
is known, which can be recovered by Lu’s method in 265 nonce misuse
queries [9,11]. We build Simulation models of the Encryption/Decr-
yption oracles of the underlying Block Cipher (SEBC/SDBC), yielding
attacks in all three approaches. These two simulations together provide
a powerful tool to an attacker so that she can query the COLM decryp-
tion oracle even for ciphertexts that have no tags. Unlike the previous
simulation models in [10,12], our simulation model queries the AEAD
scheme in decryption direction. Any decryption query of an AEAD is
itself either a forgery or a tag guessing attack. To the best of our
knowledge, our SDBC is the first example of querying an authenticated
EME/EMD scheme in the decryption direction for arbitrary ciphertexts.
We compare our results with the previous works in Table 1. COLM can
still be considered secure against collision based forgeries. However,
we show that the security of COLM against plaintext recovery and
tag guessing attacks is limited by the birthday bound. On the other
hand, the security level of an AEAD is expected to be the minimum of
the key length or the block length against these attacks. In particular,
this must be a strict security requirement for a cipher chosen in a
2

defense-in-depth portfolio.
1.1. Related work

As a member of the final portfolio, COLM has drawn significant
interest of the cryptography community both in security analyses and
implementations. Several cryptanalysis works related to COLM and its
ancestors have been published for half a decade. In [9], Lu suggests
a nonce misuse method to recover the whitening mask 𝐿 = 𝐸𝐾 (0), the
encryption of the zero-vector with the underlying block cipher using the
key 𝐾, for COPA [27] and Marble [34] and the author mounts almost
universal forgery attack against COPA and Marble. In [11], Forler et al.
mount a semi-universal forgery attack against COLM once they recover
𝐿 by Lu’s method. In [10], Bay et al. also recover the 𝐿 parameter of
LmD and then use it for mounting some forgery attacks. In addition
o forging ELmD, they adapted Demirci and Selcuk Meet-in-the-Middle
MitM) Attack [35] for the key recovery of 6-round AES-128, one of
he underlying block cipher options in ELmD. Their attacks cannot go
eyond forgery attacks against the full-round AES option of ELmD.

In [13], Datta et al. introduce three INT-RUP (integrity under re-
ease of unverified plaintext) attacks to mount an existential forgery
gainst COLM and they state that the attack is no more applicable if
he intermediate tags are used. In [36], the CAESAR finalists along
ith AES-GCM are assessed in terms of security and performance.
onsequently, COLM is listed as one of the most resilient ciphers.

n [12], Vaudenay and Vizár mount various forgery attacks against
he candidates selected for the 3rd round of the CAESAR competition.
heir existential forgery and semi-universal forgery attacks against
OLM are based on the birthday bound. Both of the attacks exploit a
ollision deduced from 𝐴𝐷s whose corresponding 𝑃𝑇 s are chosen by

the attacker. Moreover, Vaudenay and Vizár mount a semi-universal
forgery attack by permuting two 𝐴𝐷 blocks as a special case of the
attack given in [11]. Finally, they introduce an SEBC by arranging the
𝐴𝐷 so that the first 𝐶𝑇 block is produced as the encryption of a given
input. We introduce another SEBC which is a chosen plaintext query
for COLM instead of arranging the AD.

There are SDBC or SEBC constructions of some AEADs in the litera-
ture. The difficulty level and the structures of these attacks may differ
completely according to the AEAD scheme. Bay et al. build an SDBC for
ELmD [10]. One should note that constructing an SDBC is much easier
than an SEBC on ELmD since it is an Encrypt-mix-Decrypt scheme
and requires only chosen plaintexts for an SDBC. On the other hand,
constructing an SEBC of ELmD is still an open problem. However, the
situation is converse for COLM. That is, there is an SEBC construction
of COLM by Vaudenay and Vizár [12]. It is much more difficult to
construct an SDBC for COLM and has been an open problem so far.

There are some other studies related to implementations of COLM.
In [37], Zhang et al. endorse the designers of COLM about its perfor-
mance and potential for parallel implementation. In [21], Jahanbani
et al. implement COLM in a differential power analysis (DPA) protected
manner. In [22], Bossuet et al. present pipelined hardware implemen-
tation and in [14], Gruber et al. perform a persistent fault analysis.
In [15], Khairallah et al. mount adapting differential fault attacks
against COLM along with some other CAESAR finalists.

1.2. Our contributions

Our main contribution can be summarized as reducing the security
of COLM to the confidentiality of its 𝐿-parameter in all aspects, partic-
ularly in constructing SEBC/SDBC, plaintext recovery and tag guessing
attacks. We show that both the encryption and the decryption oracles
of the underlying block cipher of COLM can be simulated for any given
input. That is, it is possible to use the COLM oracle to query 𝛼 = 𝐸𝐾 (𝛽)
(SEBC) and 𝛽 = 𝐷𝐾 (𝛼) (SDBC) for any given 𝛽 and 𝛼, respectively,
where 𝐷𝐾 = 𝐸−1

𝐾 and is run only in the decryption of COLM since it is
an Encrypt-mix-Encrypt scheme.

There have been no known examples of constructing SDBC to an

authenticated EME scheme or SEBC to an authenticated EMD scheme
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in the literature yet. To the best of our knowledge, our SDBC of COLM
is the first such simulator in an arbitrarily chosen ciphertext scenario
against an authenticated EME/EMD scheme. In general, it is much more
difficult to mount an attack against an AEAD scheme in this scenario
since the attacker must generate the valid tag for her query.

As related to all of the main security approaches of an AEAD algo-
rithm, we mount generic universal forgery, plaintext recovery and tag
guessing attacks against COLM, based on SEBC and SDBC. The security
levels of exploiting the decryption oracle for arbitrary ciphertexts or
producing a valid tag are supposed to be 128 bits for COLM. Once
𝐿 is recovered in 265 offline queries (see [11]), we can decrypt any
given 𝐶𝑇 , and produce its tag in a polynomial time complexity. If the
roposed attacks are mounted within the birthday bound complexity
264 queries), the success rate would be as high as one quarter. Also,
e show how to collect chosen plaintexts and ciphertexts through
EBC and SDBC, respectively, to mount some well known key recovery
ttacks against (the round reduced) AES.

We introduce some other attacks not based on SEBC/SDBC. We
resent another plaintext recovery attack for any given ciphertext
ven though its tag is unknown by querying both encryption and
he decryption oracles of COLM once. As our third plaintext recovery
ttack, we introduce how to decrypt any given ciphertext of at least
ive blocks where only the COLM decryption oracle is queried twice.
nlike our other plaintext recovery attacks, we need the tag in this
ttack. Moreover, as another universal forgery attack, we produce the
iphertext and the tag of a given plaintext of length at least three
locks by querying the COLM encryption oracle twice and the COLM
ecryption oracle once.

In general, authenticated EME schemes have the whitening process
ith the whitening mask 𝐿, usually defined by 𝐿 = 𝐸𝐾 (0). It is possible

to mount a stand alone attack to recover 𝐿. Therefore, the attacks on
uch schemes can be separated as recovering 𝐿 and attacking the EME
tructure. Recall that 𝐿 was recovered in COLM by Forler et al. [11], but
he security levels of the EME structure against plaintext recovery and
ag guessing have been open questions. An SEBC or an SDBC itself does
ot threaten the 128-bit security of the EME structure against these
ttacks. Notice that one can mount these attacks if there exist both
n SEBC and an SDBC. By introducing them together, we show that
OLM does not satisfy 128-bit security against plaintext recovery and
ag guessing attacks. Moreover, we make some suggestions in order to
revent our attacks.

.3. Organizations

The rest of this paper is structured as follows. In Section 2, COLM
s explained. We introduce how to recover 𝑆 = 𝐷𝐾 (0) parameter
n COLM in Section 3. Then, in Section 4, the simulation models
f the encryption/decryption oracles of the underlying block cipher
re introduced. In Section 5, a universal forgery attack, a plaintext
ecovery attack and a tag guessing attack based on SEBC and SDBC are
resented. In Section 6, we explain how to decrypt a given ciphertext
ithout its tag, and an existential forgery attack. We introduce another
niversal forgery attack and the third plaintext recovery attack in
ection 7. In Section 8, we list some examples for the complexity of the
ata collection to mount CPA/CCA against (reduced-round) AES-128.
inally, in Section 9, we give our concluding remarks along with some
uggestions to prevent our attacks against COLM.

. Brief description of COLM

COLM is an Encrypt-Mix-Encrypt (EME) AEAD algorithm. COPA and
LmD are merged as COLM in the second round of CAESAR to enhance
he performance without sacrificing the security, see Table 2.

In the encryption, COLM takes a 128-bit key, an 𝐴𝐷 and a 𝑃𝑇 , both
f arbitrary length, as the inputs then outputs a 𝐶𝑇 , a tag and optionally
ntermediate tags (we ignore this option for simplicity; our attacks still
3

(

Table 2
Comparison of COPA, ELmD and COLM, [29].

COPA ELmD COLM

Simplified masking No No Yes
Fully parallelizable authentication No Yes Yes
𝑋𝑂𝑅 mixing for authentication Yes No Yes
𝜌 mixing for encryption No Yes Yes
Bottom layer encryption Yes No Yes
Intermediate tags No Yes Yes

work in this case). The encryption scheme of COLM is depicted in
Fig. 1. The last block is shown separately to emphasize the verification
process. For details see [29].

COLM uses two sorts of operations: linear mixing defined in
𝐺𝐹 (2128) and a symmetric encryption with the cipher AES-128. We
do not exploit any property of AES-128 in our attacks. Therefore,
throughout the paper, we use 𝐸𝐾 and 𝐷𝐾 to represent the encryption
and the decryption of the underlying cipher (AES-128), respectively.

Three whitening masks, 𝐿, 𝐿1 and 𝐿2, are produced as whitening
masks of 𝑃𝑇 , 𝐴𝐷, and 𝐶𝑇 , respectively. They are defined as:

𝐿 = 𝐸𝐾 (0), 𝐿1 = 3 ⋅ 𝐿, 𝐿2 = 32 ⋅ 𝐿.

In the encryption, a 𝐶𝑇 and a tag are generated whereas, in the
ecryption, a 𝑃𝑇 is generated but released only if the tag is verified.
he encryption and the decryption are denoted as (𝐶𝑇 , tag) = 𝐾 (𝐴𝐷,
𝑇 ) and (𝑃𝑇 or ⊥) = 𝐾 (𝐴𝐷, 𝐶𝑇 , tag), respectively. The data is di-
ided into 128-bit blocks and if the last block is shorter than 128 bits,
t is padded by concatenating the pattern 10∗ with one ‘‘1’’ and enough
umber of zeros. 𝐴𝐷, 𝑃𝑇 , 𝐶𝑇 and tag are denoted as:

𝐷 = (𝐴[1], … , 𝐴[𝛼 − 1], 𝐴∗[𝛼]),

𝑃 𝑇 = (𝑀[1], … , 𝑀[𝑙 − 1], 𝑀∗[𝑙]),

𝐶𝑇 = (𝐶[1], … , 𝐶[𝑙 − 1], 𝐶[𝑙]),

𝑡𝑎𝑔 = 𝐶[𝑙 + 1].

nd 𝑀[𝑙] =
⨁𝑙−1

𝑖=1 𝑀[𝑖]
⨁

(𝑀∗[𝑙]10∗).
The whitening masks are given in the equations below:

𝛥𝐴[𝑖] =

⎧

⎪

⎨

⎪

⎩

7 ⋅ 2𝑖−1 ⋅ 𝐿1 if 𝑖 = 𝛼&|𝐴∗[𝛼]| < 128,

2𝑖 ⋅ 𝐿1 otherwise.

𝑀[𝑖] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

7 ⋅ 2𝑖−1 ⋅ 𝐿 if 𝑖 ∈ {𝑙, 𝑙 + 1}&|𝑀∗[𝑙]| = 128,

72 ⋅ 2𝑖−1 ⋅ 𝐿 if 𝑖 ∈ {𝑙, 𝑙 + 1}&|𝑀∗[𝑙]| < 128,

2𝑖 ⋅ 𝐿 otherwise.

𝛥𝐶[𝑖] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

7 ⋅ 2𝑖−1 ⋅ 𝐿2 if 𝑖 ∈ {𝑙, 𝑙 + 1}&|𝑀∗[𝑙]| = 128,

72 ⋅ 2𝑖−1 ⋅ 𝐿2 if 𝑖 ∈ {𝑙, 𝑙 + 1}&|𝑀∗[𝑙]| < 128,

2𝑖 ⋅ 𝐿2 otherwise.

After whitening, the input blocks, denoted as 𝐴𝐴 for 𝐴𝐷 and 𝑀𝑀
or 𝑃𝑇 , are ready for 𝐸𝐾 . The 𝑊 ′ blocks (the encryptions of the
𝐴-blocks) are 𝑋𝑂𝑅ed (denoted ⊕) to generate 𝐼𝑉 . The AES-128
ncryption is called twice for each block of 𝑃𝑇 during encryption. The
inear operation, 𝜌, is executed between these two AES-128 encryptions.
or details, see [29] and Fig. 1 where 𝑀𝑀 , 𝑋, 𝑊 , 𝑌 and 𝐶𝐶 are the
ntermediate values and 𝐶 is the output. The 𝜌-operation and its inverse
𝜌−1) are defined as:

(𝑦, 𝑠𝑡′) = 𝜌(𝑥, 𝑠𝑡),

𝑦 = 𝑥 ⊕ 3 ⋅ 𝑠𝑡,

𝑠𝑡′ = 𝑥 ⊕ 2 ⋅ 𝑠𝑡.

𝑥, 𝑠𝑡′) = 𝜌−1(𝑦, 𝑠𝑡),
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Fig. 1. Encryption and tag verification of COLM.
𝑥 = 𝑦 ⊕ 3 ⋅ 𝑠𝑡,

𝑠𝑡′ = 𝑦 ⊕ 𝑠𝑡.

Here, 𝑠𝑡 and 𝑠𝑡′ denote the previous and the next state values for
the 𝑖th block 𝑊 [𝑖 − 1] and 𝑊 [𝑖], respectively.

The 𝐼𝑉 generation is given as:

𝐴[0] = 𝑛𝑝𝑢𝑏∥𝑝𝑎𝑟𝑎𝑚,
𝐴𝐴[𝑖] = 𝐴[𝑖]⊕ 𝛥𝐴[𝑖] for 𝑖 = 1, … , 𝛼,
𝑍[𝑖] = 𝐸𝐾 (𝐴𝐴[𝑖]) for 𝑖 = 1, … , 𝛼,

𝑊 ′[0] = 𝐸𝐾 (𝐴𝐴[0]),
𝑊 ′[𝑖] = 𝑊 ′[𝑖 − 1]⊕𝑍[𝑖] for 𝑖 = 1, … , 𝛼,

𝐼𝑉 = 𝑊 ′[𝛼].

Here 𝑛𝑝𝑢𝑏 is the nonce and 𝑝𝑎𝑟𝑎𝑚 is a constant value to indicate
configuration of the cipher.

The encryption has three phases:

1. The encryption of the blocks with the underlying block cipher
(𝑋[𝑖] = 𝐸𝐾 (𝑀𝑀[𝑖]))

2. Linear mixing of the intermediate blocks ((𝑌 [𝑖], 𝑊 [𝑖]) = 𝜌(𝑋[𝑖],
𝑊 [𝑖 − 1]))

3. The encryption of the mixed blocks with the underlying block
cipher (𝐶𝐶[𝑖] = 𝐸𝐾 (𝑌 [𝑖]))

The pseudocode for the whole encryption process is as follows:

𝑊 [0] = 𝐼𝑉 ,
𝑀𝑀[𝑖] = 𝑀[𝑖]⊕ 𝛥𝑀 [𝑖] for 𝑖 = 1, … , 𝑙 + 1,

𝑋[𝑖] = 𝐸𝐾 (𝑀𝑀[𝑖]) for 𝑖 = 1, … , 𝑙 + 1
(𝑌 [𝑖], 𝑊 [𝑖]) = 𝜌(𝑋[𝑖], 𝑊 [𝑖 − 1]) for 𝑖 = 1, … , 𝑙 + 1,

𝐶𝐶[𝑖] = 𝐸𝐾 (𝑌 [𝑖]) for 𝑖 = 1, … , 𝑙 + 1,
𝐶[𝑖] = 𝐶𝐶[𝑖]⊕ 𝛥𝐶 [𝑖] for 𝑖 = 1, … , 𝑙 + 1.

A new block, 𝑀[𝑙 + 1] = 𝑀[𝑙], is concatenated to 𝑃𝑇 as the 𝑙 + 1st
block. For a padding of 𝑝 bits in a 𝑃𝑇 , the last 𝑝 bits of the 𝐶𝑇 are
removed from its last block, 𝐶[𝑙]. Notice that, for an 𝑙-block 𝑃𝑇 an
(𝑙 + 1)-block 𝐶𝑇 is produced. We consider the (𝑙 + 1st) block of 𝐶𝑇 as
the tag and call the resulting 𝐶𝑇 an 𝑙-block 𝐶𝑇 .

The pseudocode of the decryption process after the 𝐼𝑉 generation
is as follows:

𝑊 [0] = 𝐼𝑉 ,
𝐶𝐶[𝑖] = 𝐶[𝑖]⊕ 𝛥𝐶 [𝑖] for 𝑖 = 1, … , 𝑙,
𝑌 [𝑖] = 𝐷𝐾 (𝐶𝐶[𝑖]) for 𝑖 = 1,… , 𝑙,

(𝑋[𝑖], 𝑊 [𝑖]) = 𝜌−1(𝑌 [𝑖], 𝑊 [𝑖 − 1]) for 𝑖 = 1, … , 𝑙,
𝑀𝑀[𝑖] = 𝐷𝐾 (𝑋[𝑖]) for 𝑖 = 1, … , 𝑙,

𝑀[𝑖] = 𝑀𝑀[𝑖]⊕ 𝛥𝑀 [𝑖] for 𝑖 = 1, … , 𝑙,
∗

4

𝑀 [𝑙] = 𝑀[1]⊕⋯⊕𝑀[𝑙].
Pseudocode of the tag verification process apart from the padding check
is as follows

𝑀 ′[𝑙 + 1] = 𝑀[𝑙],
𝑀𝑀 ′[𝑙 + 1] = 𝑀 ′[𝑙 + 1]⊕ 𝛥𝑀 [𝑙 + 1],

𝑋′[𝑙 + 1] = 𝐸𝐾 (𝑀𝑀 ′[𝑙 + 1]),
𝑌 ′[𝑙 + 1] = 𝑋′[𝑙 + 1]⊕ 3 ⋅𝑊 ′[𝑙],

𝐶𝐶 ′[𝑙 + 1] = 𝐸𝐾 (𝑌 ′[𝑙 + 1]),
𝐶 ′[𝑙 + 1] = 𝐶𝐶 ′[𝑙]⊕ 𝛥𝐶 [𝑙 + 1],

𝐶[𝑙 + 1]
?
= 𝐶 ′[𝑙 + 1].

2.1. Our assumption on 𝐿

When 𝐿 is known, it is straightforward to calculate 𝐴𝐴s, 𝑀𝑀s and
𝐶𝐶s from 𝐴s, 𝑀s and 𝐶s, respectively or vice versa. Forler et al. show
how to recover the whitening mask 𝐿 in [11]. We assume that 𝐿 is
known and, for the simplicity, consider 𝐴𝐴s, 𝑀𝑀s and 𝐶𝐶s as 𝐴𝐷,
𝑃𝑇 and 𝐶𝑇 , respectively throughout the paper. Also, the condition
𝑀[𝑙] = 𝑀[𝑙+1] in the tag verification yields the condition 𝑀𝑀[𝑙+1] =
𝑀𝑀[𝑙]⊕ 7 ⋅ 3 ⋅ 2𝑙−1 ⋅ 𝐿 for the full last block. We use the notation 𝐶𝑇
to represent the forged ciphertexts produced by the attacker. Similarly,
we use the notation 𝑇 to represent any data 𝑇 produced during the
decryption of forged ciphertexts, 𝐶𝑇 .

3. How to recover 𝑺 = 𝑫𝑲 (𝟎) through an existential forgery

Our principal goal is to recover 𝑆 = 𝐷𝐾 (0), the decryption of
the zero-vector for the underlying block cipher of COLM, to mount
both the tag guessing and plaintext recovery attacks. Furthermore, it
is a milestone as being the first step of the simulation models of both
the encryption (see Section 4.2) and the decryption (see Section 4.1)
oracles of the underlying block cipher. To recover 𝑆, we need to
make decryption query of the AEAD-scheme. We further extend the
decryption query to a universal decryption query in Sections 5–7. Recall
that it is much more difficult to query an AEAD structure in decryption
direction since one needs the valid tag for the query. To the best of
our knowledge, this is the first work making an existential forgery that
discloses plaintext–ciphertext pair from the underlying block cipher of
an authenticated EME/EMD scheme. We remind that the simulation of
underlying block cipher attacks in [10,12] make encryption queries of
the AEAD-schemes, ELmD and COLM, respectively.

Theorem 1 states how to recover 𝑆 = 𝐷𝐾 (0) with an existential
forgery attack. Figs. 2 and 3 depict how to recover 𝑆 = 𝐷𝐾 (0). For
simplicity, we take 𝑀𝑀[1] = 0 in Fig. 2 and the tag verification is
illustrated by using 𝑀𝑀 ′[3] in Fig. 3. The proof of Theorem 1 uses
Lemma 1, Proposition 1 and Theorem 2. Therefore, we give the proof
as a separate section.

Theorem 1. Let 𝐶𝐶[1]∥𝐶𝐶[2] be the 𝐶𝑇 of 𝐴𝐴[0]∥𝐴𝐴[1]∥𝑀𝑀[1]∥
𝑀𝑀[2] where 𝐴𝐴[0] = 𝐴𝐴[1] and 𝑀𝑀[1]⊕𝑀𝑀[2] = 7 ⋅ 3 ⋅ 2 ⋅ 𝐿. Then
𝐶𝑇 = 𝐿∥𝐶𝐶[1] is a valid ciphertext with 𝐴𝐴[0]∥𝐴𝐴[1] as 𝐴𝐷 and 𝐶𝐶[2]
as the tag. Moreover, the first block of its plaintext is𝑀𝑀[1] = 𝑆 = 𝐷 (0).
𝐾
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Fig. 2. Encryption phase of obtaining 𝑆 = 𝐷𝐾 (0).

Fig. 3. Decryption phase of obtaining 𝑆 = 𝐷𝐾 (0). Note that the tag is verified since
�̃� ′[3] = 𝑀𝑀[1]⊕ 7 ⋅ 3 ⋅ 2 ⋅ 𝐿 = 𝑀𝑀[2].

.1. Proof of Theorem 1

Theorem 1 has two claims. The former is that 𝐶𝑇 is a valid cipher-
ext and the latter is 𝑆 = 𝐷𝐾 (0) = 𝑀𝑀[1].

We introduce three statements to prove these claims. The first
tatement is Lemma 1 where we show a method to satisfy 𝑊 [𝑙−1] = 𝐼𝑉 .

In Proposition 1, we introduce how to produce the tag of a set of
𝐶𝑇 s under the condition 𝑊 [𝑙 − 1] = 𝐼𝑉 . We combine Lemma 1 and
Proposition 1 to produce a forged 𝐶𝑇 with a valid tag in Theorem 2.

Lemma 1 exploits a property of the inverse of the linear operator,
𝜌−1, to satisfy 𝑊 [𝑙 − 1] = 𝐼𝑉 .

Lemma 1. For any 𝑙-block 𝐶𝑇 whose initial value is 𝐼𝑉 and whose 𝐶𝐶[𝑖]
blocks take any value, except 𝐿 = 𝐸𝐾 (0), even number of times for 1 ≤ 𝑖 < 𝑙
then 𝑊 [𝑙 − 1] = 𝐼𝑉 . (An example is illustrated in Fig. 4)

Proof. Let 𝐶𝑇 be a ciphertext of 𝑙 blocks such that its 𝐶𝐶[𝑖] blocks take
any value, except 𝐿 = 𝐸𝐾 (0), even number of times for 1 ≤ 𝑖 < 𝑙. That is,
for any given 𝑖 < 𝑙 if 𝐶𝐶[𝑖] ≠ 𝐿 then ∃𝑗 ≠ 𝑖 such that 𝐶𝐶[𝑖] = 𝐶𝐶[𝑗] and
the number of 𝑗 < 𝑙 satisfying this equality is odd. This simply implies
that the 𝑌 [𝑖] blocks take a value except 𝐷𝐾 (𝐿) = 0 even number of
times for 1 ≤ 𝑖 < 𝑙. On the other hand, 𝑊 [𝑙 − 1] =

⨁𝑙−1
𝑖=1 𝑌 [𝑖]

⨁

𝐼𝑉 .
Hence one can deduce 𝑊 [𝑙 − 1] = 𝐼𝑉 since nonzero 𝑌 [𝑖]s will vanish
pairwise. □

The following statement provides us a method to produce the tag of
a set of 𝐶𝑇 s where 𝑊 [𝑙 − 1] = 𝐼𝑉 by using the first two 𝐶𝑇 blocks of
a chosen 𝑃𝑇 of at least two blocks.

Proposition 1. Let a given plaintext 𝑃𝑇 be encrypted with an initial
value 𝐼𝑉 and the first two blocks of the produced 𝐶𝑇 be 𝐶𝐶[1] and 𝐶𝐶[2].
Assume𝑀𝑀[1]⊕𝑀𝑀[2] = 7⋅3⋅2𝑙−1 ⋅𝐿. Then any forged 𝑙-block 𝐶𝑇 whose
𝑊 [𝑙 − 1] = 𝐼𝑉 and 𝐶𝐶[𝑙] = 𝐶𝐶[1] has the valid tag 𝐶𝐶[𝑙 + 1] = 𝐶𝐶[2].
(See Fig. 5.)

Proof. Let a plaintext 𝑃𝑇 be given such that 𝑀𝑀[1] ⊕ 𝑀𝑀[2] =
𝑙−1
5

7 ⋅ 3 ⋅ 2 ⋅ 𝐿. Assume 𝐶𝐶[1] and 𝐶𝐶[2] are the first two blocks of the w
produced 𝐶𝑇 by encrypting the 𝑃𝑇 with 𝐼𝑉 . Let a forged 𝑙-block 𝐶𝑇
ave 𝐶𝐶[𝑙] = 𝐶𝐶[1] and 𝐶𝐶[𝑙 + 1] = 𝐶𝐶[2]. Observe that

�̃�[𝑙] = 𝐷𝐾 (𝐷𝐾 (𝐶𝐶[𝑙])⊕ 3 ⋅𝑊 [𝑙 − 1])
= 𝐷𝐾 (𝐷𝐾 (𝐶𝐶[1])⊕ 3 ⋅ 𝐼𝑉 )
= 𝑀𝑀[1]

f 𝑊 [𝑙 − 1] = 𝐼𝑉 . Similarly 𝑀𝑀[𝑙 + 1] = 𝑀𝑀[2]. Therefore the tag is
alid since 𝑀𝑀[1]⊕𝑀𝑀[2] = 7 ⋅ 3 ⋅ 2𝑙−1 ⋅ 𝐿. □

We can combine Lemma 1 and Proposition 1 to produce a forged
�̃� with the valid tag which is stated by Theorem 2.

heorem 2. Let a given plaintext 𝑃𝑇 be encrypted with the initial value
𝑉 and the first two blocks of the produced 𝐶𝑇 be 𝐶𝐶[1] and 𝐶𝐶[2].
ssume 𝑀𝑀[1] ⊕ 𝑀𝑀[2] = 7 ⋅ 3 ⋅ 2𝑙−1 ⋅ 𝐿. For any forged 𝑙-block 𝐶𝑇
hose 𝐶𝐶[𝑖] blocks take any value, except 𝐿 = 𝐸𝐾 (0), even number of
imes for 1 ≤ 𝑖 < 𝑙, if 𝐶𝐶[𝑙] = 𝐶𝐶[1] and 𝐶𝐶[𝑙 + 1] = 𝐶𝐶[2], then 𝐶𝑇
ith 𝐼𝑉 is a valid ciphertext.

roof. For an encrypted plaintext 𝑃𝑇 , assume 𝑀𝑀[1] ⊕ 𝑀𝑀[2] =
⋅ 3 ⋅ 2𝑙−1 ⋅ 𝐿. Let the first two blocks of its ciphertext be 𝐶𝐶[1] and
𝐶[2]. Let 𝐶𝑇 be a 𝑙-block forged ciphertext such that its 𝐶𝐶[𝑖] blocks

ake any value, except 𝐿 = 𝐸𝐾 (0), even number of times for 1 ≤ 𝑖 < 𝑙.
hen, we have 𝑊 [𝑙 − 1] = 𝐼𝑉 by Lemma 1. Therefore, 𝐶𝑇 is a valid
iphertext by Proposition 1. □

Now, we can give the proof of Theorem 1.

roof of Theorem 1. Let 𝐶𝐶[1]∥𝐶𝐶[2] be the 𝐶𝑇 of

𝐴[0]∥𝐴𝐴[1]∥𝑀𝑀[1]∥𝑀𝑀[2]

here 𝐴𝐴[0] = 𝐴𝐴[1] and 𝑀𝑀[1]⊕𝑀𝑀[2] = 7⋅3⋅2⋅𝐿. Then, the forged
iphertext 𝐶𝑇 = 𝐿∥𝐶𝐶[1] is valid with 𝐴𝐷 = 𝐴𝐴[0]∥𝐴𝐴[1] and the tag
𝐶[2] by Theorem 2. Note that 𝐼𝑉 = 𝐸𝐾 (𝐴𝐴[0]) ⊕ 𝐸𝐾 (𝐴𝐴[1]) = 0,

̃[1] = 𝐷𝐾 (𝐿) = 0 and 𝑋[1] = 𝑌 [1]⊕ 3 ⋅ 𝐼𝑉 = 0. Hence, we obtain the
irst block 𝑀𝑀[1] = 𝐷𝐾 (0) = 𝑆 by decrypting 𝐶𝑇 . □

.2. A method to produce 𝐴𝐷s having the same 𝐼𝑉

Similar to Lemma 1, we can manipulate any 𝐴𝐷 by inserting certain
alues by utilizing 𝑀𝑀[1] = 𝐷𝐾 (0) = 𝑆 outcome of Theorem 1.
emma 2 states this manipulation precisely. Note that instead of the
hitening mask 𝐿, the 𝑆 value is used as in Lemma 1.

emma 2. For any given 𝐴𝐷, inserting any number of the 𝑆 value or any
ven number of other values into the 𝐴𝐷 will not change 𝐼𝑉 .

roof. Let an 𝐴𝐷 = 𝐴𝐴[0]∥…∥𝐴𝐴[𝑎] be given with the blocks, its
𝑉 =

⨁𝑎
𝑖=0 𝑋[𝑖] where 𝑋[𝑖] = 𝐸𝐾 (𝐴𝐴[𝑖]). Inserting the 𝑆 value into

ny block position of 𝐴𝐷 will result 𝐼𝑉 =
⨁𝑎

𝑖=0 𝑋[𝑖]
⨁

𝐸𝐾 (𝑆) =
𝑉 . Similarly, inserting a different value, 𝑉 twice into any two block
ositions of 𝐴𝐷 will result

𝑉 =
𝑎

⨁

𝑖=0
𝑋[𝑖]

⨁

𝐸𝐾 (𝑉 )
⨁

𝐸𝐾 (𝑉 ) = 𝐼𝑉 .

herefore, by induction, inserting any number of 𝑆 or any even number
f other values into the 𝐴𝐷 will not change its 𝐼𝑉 . □

emark 1. Lemma 2 gives us a method to produce several other
𝐷s having the same 𝐼𝑉 as that of a given 𝐴𝐷. Therefore, in all our
ttacks, we can choose different associated data without changing 𝐼𝑉
hile querying the encryption/decryption oracles of COLM. For the

ake of simplicity, we query plaintexts or ciphertexts without changing
he 𝐴𝐷 throughout the paper just to mean that we use the same 𝐼𝑉 . It
s straightforward that we can easily produce different associated data,

hen necessary, for each query by Lemma 2.
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Fig. 4. An example of Lemma 1, 𝐶𝐶[2] = 𝐿 does not have any effect on state value and 𝐶𝐶[3] = 𝐴 compensates effect of 𝐶𝐶[1] = 𝐴.
c
a
𝑀
b
y
{

L

r

P
3
T
2
T

𝐸

𝐶

Fig. 5. Illustration of Proposition 1.

. Simulation models of encryption/decryption oracles of the un-
erlying block cipher

In this section, we show how to simulate both the encryption and
he decryption oracles of the underlying block cipher (SEBC/SDBC) for
ny given input. We show that the COLM oracle can be used to query
= 𝐸𝐾 (𝛽) and 𝛽 = 𝐷𝐾 (𝛼) for any given 𝛽 and 𝛼, respectively. For both

hese tasks, We use the 𝑆 = 𝐷𝐾 (0) value besides the whitening mask
. Recall that 𝑆 = 𝐷𝐾 (0) can be recovered by Theorem 1.

.1. Simulation model of the decryption oracle of the underlying block
ipher: Computing 𝛽 = 𝐷𝐾 (𝛼)

In this section, we introduce a simulation model of the decryption
racle of the underlying block cipher (SDBC) for any given input,
.e. how to compute 𝛽 = 𝐷𝐾 (𝛼) for any given 𝛼.

Both simulation models of Bay et al. in [10] and of Vaudenay and
izár in [12] are standard encryption queries of an AEAD scheme,
LmD and COLM, respectively. We query COLM, the AEAD, in decryp-
ion direction, in our attack. An AEAD should not release the plaintext
ithout verifying the tag. Therefore, we mount a forgery against COLM
6

as part of this attack. We begin our attack with the query of the COLM
encryption twice as a precomputation to forge a valid tag for a chosen
set of ciphertexts.

In the first query, the set of {𝐸𝐾 (𝛾), 𝐸𝐾 (2 ⋅ 𝛾),… , 𝐸𝐾 (2127 ⋅ 𝛾)} is
onstructed for an arbitrary non-zero 𝛾 where both 𝛾 and 𝐷𝐾 (3−1 ⋅ 𝛾)
re known. We choose 𝛾 = 3 ⋅ 𝐿 and set 𝐼𝑉1 = 𝐿. Then, encrypting
𝑀1[𝑖] = 𝑆 for 𝑖 = 1,… , 128, we get 𝐶𝐶1[𝑖] = 𝐸𝐾 (2𝑖−1 ⋅ 3 ⋅ 𝐿),

y Lemma 3 (see Fig. 6). Taking 𝐴𝐴1[1] = 𝐴𝐴1[0] and 𝐴𝐴1[2] = 0
ield to 𝐼𝑉1 = 𝐿 (see Fig. 7). The process of constructing the set
𝐸𝐾 (3 ⋅ 𝐿), 𝐸𝐾 (2 ⋅ 3 ⋅ 𝐿),… , 𝐸𝐾 (2127 ⋅ 3 ⋅ 𝐿)} is given in Algorithm 1.

emma 3. Let 𝐴𝐴[0] = 𝐴𝐴[1] and 𝐴𝐴[2] = 𝐷𝐾 (3−1𝛾). Then the
corresponding 𝐶𝑇 of the 𝑃𝑇 where 𝑀𝑀[𝑖] = 𝑆 for 𝑖 = 1,… , 128 will
esult in 𝐶𝐶[𝑖] = 𝐸𝐾 (2𝑖−1 ⋅ 𝛾) for 𝑖 = 1,… , 128.

roof. Let 𝐴𝐴[0] = 𝐴𝐴[1] and 𝐴𝐴[2] = 𝐷𝐾 (3−1𝛾). Then 𝐼𝑉 = 𝑊 [0] =
−1 ⋅ 𝛾. For the 𝑃𝑇 if 𝑀𝑀[𝑖] = 𝑆 then 𝑋[𝑖] = 0, for 𝑖 = 1,… , 128.
herefore, the inputs of the linear operator 𝜌 will be 𝑊 [𝑖 − 1] = 3−1 ⋅
𝑖−1 ⋅ 𝛾 and 𝑋[𝑖] = 0. So the output 𝑌 [𝑖] will be 2𝑖−1 ⋅ 𝛾, for 𝑖 = 1,… , 128.
hat is, 𝐶𝐶[𝑖] = 𝐸𝐾 (𝑌 [𝑖]) = 𝐸𝐾 (2𝑖−1 ⋅ 𝛾). □

Algorithm 1 Constructing the Set of 𝐸𝐾 (3 ⋅ 𝐿), 𝐸𝐾 (2 ⋅ 3 ⋅ 𝐿), … ,
𝐾 (2127 ⋅ 3 ⋅ 𝐿)
procedure Construct the Set

𝐼𝑉 ← 𝐿
for 𝑖 ← 1, 128 do

𝑀𝑀[𝑖] ← 𝑆
end for
(𝐶𝑇 , 𝑡𝑎𝑔) ← 𝐾 (𝐴𝐷, 𝑃𝑇 )
return 𝐶𝐶 ⊳ 𝐶𝐶 = 𝐶𝐶[1]||𝐶𝐶[2]]||⋯ ||𝐶𝐶[128]

end procedure

We query another 𝑃𝑇 of at least 2 blocks during the offline phase to
construct a tag which is valid for any 258-block 𝐶𝑇 s whose 𝐶𝐶 blocks
appear even number of times. This query is depicted in Fig. 8. The first
two blocks of the resulting 𝐶𝑇 , which we denote (𝐶𝐶2[1], 𝐶𝐶2[2]), will
be used for the verification according to Theorem 2 during the online
phase.

In the decryption query, the COLM oracle is forged and 𝛽 = 𝐷𝐾 (𝛼)
for the given 𝛼 is obtained. The explicit statement and the pseudocode
of this process are given in Theorem 3 and in Algorithm 2, respectively.

Theorem 3. Let 𝐶𝐶[1] and 𝐶𝐶[2] be the first two 𝐶𝑇 blocks of a 𝑃𝑇
with 𝑀𝑀[1] = 𝑀𝑀[2] ⊕ 7 ⋅ 3 ⋅ 2257 ⋅ 𝐿 encrypted with the 2-block 𝐴𝐷
where 𝐴𝐴[0] = 𝐴𝐴[1]. Assign 𝛼𝑑 = (3 ⋅ 𝛾)−1 ⋅ 𝛼 for a given value 𝛼. Let

�̃�[𝑖] = 𝐶𝐶[𝑖 + 129] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝐾 (2128−𝑖 ⋅ 𝛾) if the 𝑖th MSB

(Most Significant Bit) of
𝛼𝑑 = 1,

𝐿 otherwise,

for 𝑖 = 1,… , 128 and 𝐶𝐶[129] = 𝐿. Let 𝐶𝐶[258] = 𝐶𝐶[1] and 𝐶𝐶[259] =
𝐶𝐶[2]. Then, the 𝐶𝑇 = 𝐶𝐶[1]‖… ‖𝐶𝐶[259] will be a valid ciphertext
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Fig. 6. Constructing 𝐸𝐾 (2𝑖 ⋅ 𝛾) for 𝛾 = 3 ⋅ 𝐿 (see Fig. 7 for setting 𝐼𝑉1 = 𝐿).
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L

Fig. 7. Setting 𝐼𝑉 = 0 or 𝐼𝑉 = 𝐿 (𝐼𝑉 = 0 when 𝐴𝐷 = 𝐴𝐴[0]∥𝐴𝐴[1], and 𝐼𝑉 = 𝐿 when
𝐴𝐷 = 𝐴𝐴[0]∥𝐴𝐴[1]∥𝐴𝐴[2]).

Fig. 8. Generating valid tag.

with the 2-block 𝐴𝐷 where 𝐴𝐴[0] = 𝐴𝐴[1] and 𝑀𝑀[129] will be equal
o 𝐷𝐾 (𝛼).

roof. Let a given plaintext 𝑃𝑇 be encrypted with the initial value
𝑉 = 0 and the first two blocks of the produced 𝐶𝑇 be 𝐶𝐶[1] and
𝐶[2]. Assume 𝑀𝑀[1]⊕𝑀𝑀[2] = 7 ⋅ 3 ⋅ 2257 ⋅𝐿. For any forged 𝐶𝑇 of

258 blocks whose 𝐶𝐶[𝑖] blocks take any value, except 𝐿 = 𝐸𝐾 (0), even
number of times for 1 ≤ 𝑖 < 258, we have

𝑊 [257] =
128
⨁

𝑖=1

(

𝑌 [𝑖]⊕ 𝑌 [𝑖 + 129]
)

⨁

𝐷𝐾 (𝐿)
⨁

𝐼𝑉

=
128
⨁

𝑖=1
0
⨁

0
⨁

0 = 0

by Lemma 1. By setting the last two blocks as 𝐶𝐶[258] = 𝐶𝐶[1] and
𝐶𝐶[259] = 𝐶𝐶[2], the tag is verified by Proposition 1.

The decision parameter 𝛼𝑑 = (3 ⋅ 𝛾)−1 ⋅ 𝛼 is calculated. Both 𝐶𝐶[𝑖]
and 𝐶𝐶[𝑖 + 129] are set to 𝐸𝐾 (2128−𝑖 ⋅ 𝛾), if 𝑖th MSB of 𝛼𝑑 = 1, or set to

, otherwise and 𝐶𝐶[129] is set to 𝐿.

̃[128] =
128
⨁

𝑖=1
𝑌 [𝑖]

⨁

𝐼𝑉 =
128
⨁

𝑖=1
𝛼𝑑 [𝑖] ⋅ 2128−𝑖 ⋅ 𝛾 = 𝛼𝑑 ⋅ 𝛾

nd hence

̃[129] = 3 ⋅𝑊 [128]
⨁

𝑌 [129] = 𝛼𝑑 ⋅ 3𝛾
⨁

𝐷𝐾 (𝐿) = 𝛼

hich yields 𝑀𝑀[129] = 𝛽 = 𝐷𝐾 (𝛼) (see Fig. 9). □
7

𝑊

Algorithm 2 Forging COLM to Decrypt 𝐷𝐾 (𝛼)

procedure 𝐷𝐾 (𝛼)
𝛼𝑑 ← (32 ⋅ 𝐿)−1 ⋅ 𝛼
𝐴𝐴[1] ← 𝐴𝐴[0]
for 𝑖 ← 1, 128 do ⊳ 1 is the MSB, 128 is the LSB (Least

Significant Bit)
if 𝛼𝑑 [𝑖] = 1 then

𝐶𝐶[𝑖] ← 𝐸𝐾 (2128−𝑖 ⋅ 3 ⋅ 𝐿)
else

𝐶𝐶[𝑖] ← 𝐿
end if
𝐶𝐶[𝑖 + 129] ← 𝐶𝐶[𝑖]

end for
𝐶𝐶[129] ← 𝐿
𝐶𝐶[258] ← 𝐶𝐶[1]
𝐶𝐶[259] ← 𝐶𝐶[2]
𝐶𝐶 = 𝐶𝐶[1]||⋯ ||𝐶𝐶[259]
𝑃𝑇 ← 𝐾 (𝐴𝐷,𝐶𝑇 )
return 𝑀𝑀[129] ⊳ 𝑀𝑀 = 𝑀𝑀[1]|𝑀𝑀[2]]||⋯ ||𝑀𝑀[258]

end procedure

The online cost of this attack is a single COLM decryption query for
an input consisting of a 2-block 𝐴𝐷 and a 259-block 𝐶𝑇 including the
tag.

4.2. Simulation model of the encryption oracle of the underlying block
cipher: Computing 𝛼 = 𝐸𝐾 (𝛽)

For a given 𝛽, we construct a convenient (𝐴𝐷, 𝑃𝑇 ) such that the
last 𝐶𝑇 block will be the required 𝛼 value. The explicit statement is
given in Theorem 4. We always choose 𝐴𝐷 so that 𝐼𝑉 = 0 independent
of the given 𝛽. For example 𝐴𝐷 can be taken as two blocks such that
𝐴𝐴[0] = 𝐴𝐴[1], then it is clear that 𝐼𝑉 = 0 (see Fig. 7).

Theorem 4. Let a 𝑃𝑇 be encrypted with an 𝐴𝐷 of two blocks such that
𝐴𝐴[1] = 𝐴𝐴[0]. Let 𝛽𝑑 = (3 ⋅ 𝐿)−1 ⋅ 𝛽 for a given 𝛽. Take

𝑀[𝑖] =

⎧

⎪

⎨

⎪

⎩

𝑆 if the 𝑖th MSB of 𝛽𝑑 = 0,

0 otherwise,

or 𝑖 = 1,… , 128. Let 𝑀𝑀[129] = 𝑆. Then the last block of the
orresponding 𝐶𝑇 , 𝐶𝐶[129], equals 𝛼 = 𝐸𝐾 (𝛽).

Proof. For any given 𝛽, we define the decision parameter 𝛽𝑑 = (3⋅𝐿)−1 ⋅
𝛽. Then, take 𝑀𝑀[𝑖] = 𝑆 if the 𝑖th MSB of 𝛽𝑑 is zero and 𝑀𝑀[𝑖] = 0,
otherwise. This leads to

𝑊 [𝑖] = 2 ⋅𝑊 [𝑖 − 1]⊕ 𝛽𝑑 [𝑖] ⋅ 𝐿.

Let 𝛽𝑑 = 𝛽𝑑 [1]𝛽𝑑 [2]⋯ 𝛽𝑑 [128] where 𝛽𝑑 [1] is the MSB and 𝛽𝑑 [128] is the
SB of 𝛽𝑑 . Then,

128 128−𝑖
[128] = 𝛽𝑑 ⋅ 𝐿 = ⊕𝑖=1𝛽𝑑 [𝑖] ⋅ 2 ⋅ 𝐿
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Fig. 9. Forging COLM algorithm for simulating the decryption oracle of underlying block cipher. The upper part depicts producing 𝛽 = 𝐷𝐾 (𝛼). The lower part depicts verifying
he tag.
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a

s depicted in Fig. 10. On the other hand, 𝑋[129] = 0 since 𝑀𝑀[129] =
. Hence

[129] = 3 ⋅𝑊 [128]⊕𝑋[129] = 3 ⋅ 𝛽𝑑 ⋅ 𝐿.

s a result,

𝐶[129] = 𝐸𝐾 [𝛽] = 𝛼. □

Algorithm 3 gives the pseudocode of how to construct the conve-
ient 𝑃𝑇 for given 𝛽. Then querying 𝐴𝐷∥𝑃𝑇 , the last block of the
orresponding 𝐶𝑇 will be 𝛼 by Theorem 4 (see Fig. 10). Let us remark
hat this is a different method for SEBC of COLM from Vaudenay’s
nd Vizár’s method in [12]. In [12], the authors precompute the series
𝐾 ((2𝑛−1)𝐿), where 0 ≤ 𝑛 ≤ 134 and arrange an arbitrary length 𝐴𝐷 to
btain 𝑌 [1] = 𝛽. In this attack, we precompute only 𝐷𝐾 (0) and arrange
129-block 𝑃𝑇 to obtain 𝑌 [129] = 𝛽.

Algorithm 3 Computing 𝛼 = 𝐸𝐾 (𝛽) for a given 𝛽

procedure 𝐸𝐾 (𝛽)
𝐴𝐴[1] ← 𝐴𝐴[0]
𝛽𝑑 ← (3 ⋅ 𝐿)−1 ⋅ 𝛽
for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 128 do

if 𝛽𝑑 [𝑖] = 0 then ⊳ 1 is the MSB, 128 is the LSB
𝑀𝑀[𝑖] ← 𝑆

else
𝑀𝑀[𝑖] ← 0

end if
end for
𝑀𝑀[129] ← 𝑆
(𝐶𝑇 , 𝑡𝑎𝑔) ← 𝐾 (𝐴𝐷, 𝑃𝑇 )
return 𝐶𝐶[129] ⊳ 𝛼 = 𝐸𝐾 (𝛽) is 𝐶𝐶[129]

end procedure

The cost of this attack is a single COLM encryption query for an
nput consisting of a 2-block 𝐴𝐷 and a 259-block 𝑃𝑇 .

. Universal forgery, tag guessing and plaintext recovery attacks

In a universal forgery attack, the attacker is given any (𝐴𝐷, 𝑃𝑇 )
air and required to compute the corresponding 𝐶𝑇 and the tag. The
ttacker can query the encryption and decryption oracles of COLM for
8

Fig. 10. Simulation of the encryption oracle of the underlying block cipher via COLM
oracle.

any data except for the given 𝑃𝑇 with any 𝐴𝐷 or the given 𝐴𝐷 with
ny 𝑃𝑇 .

Each ciphertext has two different tags in COLM, one for the full last
lock case and one for the incomplete last block case. In a tag guessing
ttack, the attacker is given any (𝐴𝐷, 𝐶𝑇 ) pair and required to compute

one of these two tags. The attacker can query any data except for the
given 𝐶𝑇 with any 𝐴𝐷 or the given 𝐴𝐷 with any 𝐶𝑇 in the encryption
and decryption oracles of COLM.

In a plaintext recovery attack, the attacker is given any (𝐴𝐷, 𝐶𝑇 )
pair and required to compute the corresponding 𝑃𝑇 . The attacker can
query the encryption and the decryption oracles of COLM for anything
except for the given 𝐴𝐷 or 𝐶𝑇 even with different ciphertexts or
associated data, respectively. Notice that the challenging pair (𝐴𝐷,
𝐶𝑇 ) can be given with the valid tag in another version of plaintext
recovery attacks. But we adopt the former definition in this section and
in Section 6. We introduce also a plaintext recovery attack for the latter
definition in Section 7.

All of the attacks above can be deduced easily from the SEBC and
SDBC introduced in Section 4. An attacker who can run both SEBC and
SDBC has the same capability as a legitimate user. Therefore, in such
a scenario the attacker can produce the 𝐶𝑇 and its tag for any given
𝑃𝑇 and also decrypt any given 𝐶𝑇 even if its tag is missing. In the
universal forgery attack, the state values are obtained by querying the
𝑀𝑀 blocks as in Section 4.2; on the other hand, in the tag guessing
and plaintext recovery attacks the state values are obtained by querying
the 𝐶𝐶 blocks as in Section 4.1.

In the universal forgery attack, first of all, the 𝑀𝑀[𝑙] and the

𝑀𝑀[𝑙 + 1] blocks are prepared as explained in Section 3. All 𝑍, 𝑋
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and 𝐶𝐶 blocks in an encryption process of COLM are the outputs of
the underlying block cipher encryption. Therefore, we use the SEBC
to recover all 𝑍, 𝑋 and 𝐶𝐶 blocks from the 𝐴𝐴, the 𝑀𝑀 , and the 𝑌
blocks respectively as in Section 4.2. The 𝐴𝐴 and the 𝑀𝑀 blocks are
given while the 𝑌 blocks are computed via the linear combinations of
the 𝑍 and the 𝑋 blocks. Hence, we can produce the 𝐶𝑇 of any given
𝑃𝑇 by the SEBC. We query COLM 𝑎 + 2 ⋅ 𝑙 + 2 times, where 𝑎 is the
number of the 𝐴𝐷-blocks, and 𝑙 is the number of the 𝑃𝑇 -blocks.

The tag guessing attack and the plaintext recovery attack are similar
to our universal forgery attack. In both attacks, the SDBC introduced in
Section 4.1 is also used and the 𝐴𝐷-blocks are encrypted through the
SEBC to obtain the 𝑍 blocks as explained in Section 4.2 and the 𝐼𝑉
is calculated via 𝑋𝑂𝑅ing the 𝑍 blocks. Similarly, the 𝐶𝑇 -blocks are
decrypted through the SDBC to recover the 𝑌 -blocks. The 𝑊 and the
𝑋-blocks are calculated via the inverse linear mix. All 𝑋 blocks are
ecrypted through the SDBC to recover the 𝑃𝑇 -blocks. Furthermore, in
he tag guessing attack, 𝑀𝑀 ′[𝑙+1] is computed. It is 𝑀𝑀[𝑙]⊕7⋅3⋅2𝑙−1⋅𝐿
or the 𝑃𝑇 s whose last block is full. 𝐶𝐶 ′[𝑙 + 1] is recovered by using
𝑀 ′[𝑙 + 1] and 𝑊 [𝑙] through the SEBC. Let us remark that we do not

eed the whole 𝑃𝑇 to obtain the length of its last block. We query
OLM 𝑎 + 𝑙 + 3 times for the tag guessing and 𝑎 + 2 ⋅ 𝑙 + 2 times for
laintext recovery, where 𝑎 is the number of the 𝐴𝐷 blocks, and 𝑙 is
he number of the 𝑃𝑇 blocks.

. Another plaintext recovery without tag

In this section, we introduce another plaintext recovery attack
here we can decrypt any ciphertext without its tag. In this attack,
e use Lemmas 2, 1, Proposition 1 and Theorem 2.

Let an (𝐴𝐷, 𝐶𝑇 ) pair be a given ciphertext with its associated data.
t is possible to mount an attack to decrypt this 𝐶𝑇 even if the tag is
ot known. Let

𝑇 = 𝐶𝐶[1]‖… ‖𝐶𝐶[𝑙].

hen, query a message of two blocks satisfying Eq. (1) with the associ-
ted data 𝐴𝐷:

�̂�[1]⊕𝑀𝑀[2] = 7 ⋅ 3 ⋅ 22𝑙 ⋅ 𝐿. (1)

Let the first two blocks of the output be 𝐶𝐶[1] and 𝐶𝐶[2]. To forge
𝐶𝑇 , set 𝐶𝐶[2𝑙+1] = 𝐶𝐶[1], 𝐶𝐶[2𝑙+2] = 𝐶𝐶[2] and choose the other
�̃�[𝑖]’s such that

�̃�[𝑖] = 𝐶𝐶[𝑖 + 𝑙] = 𝐶𝐶[𝑖] for 1 ≤ 𝑖 ≤ 𝑙.

bserve that

̃[2𝑙] =
𝑙

⨁

𝑖=1

(

𝐷𝐾 (𝐶𝐶[𝑖])
⨁

𝐷𝐾 (𝐶𝐶[𝑖 + 𝑙])
)

⨁

𝐼𝑉 = 𝐼𝑉 . (2)

hen the (𝐴𝐷, 𝐶𝐶) pair will be an authenticated ciphertext with
he tag 𝐶𝐶[2𝑙 + 2] (see Fig. 11). Indeed, Eqs. (1) and (2) together
ield 𝐶𝐶[2] = 𝐶𝐶 ′[2𝑙 + 2] by Lemma 1 and Proposition 1. Therefore,
�̃�[2𝑙 + 2] = 𝐶𝐶[2] is a valid tag by Theorem 2.

It is clear that, the first 𝑙 blocks of the plaintext of the forged
iphertext (𝐴𝐷, 𝐶𝑇 ) will be the plaintext of the given ciphertext (𝐴𝐷,
𝑇 ).

Note that 𝐶𝐶[2𝑙 + 2] = 𝐶𝐶[2] is the valid tag for any forged (𝐴𝐷,
�̃� ) pair where 𝐼𝑉 = 𝐼𝑉 (see Lemma 2), 𝐶𝐶[2𝑙+1] = 𝐶𝐶[1] and 𝐶𝐶[𝑖]
locks take any value, except 𝐿 = 𝐸𝐾 (0), even number of times for
≤ 𝑖 ≤ 2𝑙. Therefore, the plaintext recovery attack can be converted to

̃

9

n existential forgery of 2𝑙 + 1-block such 𝐶𝑇 s (see Lemma 1). p
. Permuting 𝑪𝑻 -blocks

In this section, we introduce a new property for COLM. The 𝐶𝑇
locks can be permuted without any effect on the tag value. This
esults from a property of the linear operator of COLM explained in
roposition 2. This property can be exploited to mount a plaintext
ecovery attack and a universal forgery attack. During the encryption,
state value 𝑊 [𝑖] depends on all 𝑋[𝑗]-blocks, 1 ≤ 𝑗 ≤ 𝑖, through the

inear operation 𝜌. Hence 𝑊 [𝑖] can be written as a linear combination
f all 𝑋[𝑗]s along with the 𝐼𝑉 , namely 𝑊 [𝑖] =

⨁𝑖
𝑗=1 2

𝑖−𝑗 ⋅𝑋[𝑗]
⨁

2𝑖 ⋅𝐼𝑉 .
bserve that each 𝑋[𝑗] has a different coefficient in this combination.
herefore, reordering the 𝑀𝑀[𝑗] blocks changes the state value 𝑊 [𝑖].
owever, this is not true for the decryption process. Lemma 4 states

his property of COLM.

emma 4. For a given 𝑙-block ciphertext 𝐶𝑇 produced by COLM, the 𝐶𝑇
btained by swapping any two blocks 𝐶𝐶[𝑖] and 𝐶𝐶[𝑗] for 𝑖, 𝑗 < 𝑙 is still
alid with the same tag 𝐶𝐶[𝑙 + 1].

roof. Let a ciphertext 𝐶𝑇 = 𝐶𝐶[1]‖⋯ ‖𝐶𝐶[𝑙] with its tag 𝐶𝐶[𝑙+1] be
iven with the initialization value 𝐼𝑉 . During the decryption, the state
alue 𝑊 [𝑙] can be written as the accumulation of all the 𝑌 [𝑗] values
here 1 ≤ 𝑗 ≤ 𝑙 as 𝑊 [𝑙] =

⨁𝑙
𝑗=1 𝑌 [𝑗]

⨁

𝐼𝑉 since 𝑊 [𝑘] = 𝑊 [𝑘−1]⊕𝑌 [𝑘]
or any 1 ≤ 𝑘 ≤ 𝑙. By swapping 𝐶𝐶[𝑖] and 𝐶𝐶[𝑗], we swap 𝑌 [𝑖] and 𝑌 [𝑗]
or 𝑖, 𝑗 < 𝑙. The new 𝐶𝑇 has the following 𝑌 values 𝑌 [𝑘] = 𝑌 [𝑘] for any
≠ 𝑖, 𝑗; 𝑌 [𝑖] = 𝑌 [𝑗] and 𝑌 [𝑗] = 𝑌 [𝑖]. Hence,

̃[𝑙 − 1] =
𝑙−1
⨁

𝑗=1
𝑌 [𝑗]

⨁

𝐼𝑉 =
𝑙−1
⨁

𝑗=1
𝑌 [𝑗]

⨁

𝐼𝑉 = 𝑊 [𝑙 − 1]

nd

̃[𝑙] =
𝑙

⨁

𝑗=1
𝑌 [𝑗]

⨁

𝐼𝑉 =
𝑙

⨁

𝑗=1
𝑌 [𝑗]

⨁

𝐼𝑉 = 𝑊 [𝑙].

herefore, the checksum of the 𝑃𝑇 blocks 𝑀𝑀[𝑙] remains same and
ence the new ciphertext 𝐶𝐶 is valid with the tag 𝐶𝐶[𝑙 + 1]. □

We can generalize the statement in Lemma 4 by applying arbitrary
ermutation instead of a swap operation.

roposition 2. For a given 𝑙-block ciphertext 𝐶𝑇 , the 𝐶𝑇 obtained
y permuting the 𝐶𝐶[𝑖] blocks for 𝑖 < 𝑙 is still valid with the same tag
�̃�[𝑙 + 1] = 𝐶𝐶[𝑙 + 1].

roof. Let 𝐶𝑇 be a given ciphertext consists of 𝐶𝐶[1]‖⋯ ‖𝐶𝐶[𝑙] with
ts tag 𝐶𝐶[𝑙+1] and the initialization value 𝐼𝑉 . Let the new ciphertext
�̃� be obtained by permuting the 𝐶𝐶[𝑖] blocks for 𝑖 < 𝑙. On the other
and, any permutation can be written as the combination of two-cycles
swap operations). Hence, this new ciphertext 𝐶𝑇 can be obtained by
wapping certain pairs of the 𝐶𝐶 blocks. However, after each swap the
ag value remains same by Lemma 4. Therefore, the same tag 𝐶𝐶[𝑙+1]
s valid for 𝐶𝑇 . □

Proposition 2 can be used to mount a plaintext recovery attack of
ny given (𝐴𝐷, 𝐶𝑇 ) pair where 𝐶𝑇 = 𝐶𝐶[1]∥𝐶𝐶[2]∥𝐶𝐶[3]∥𝐶𝐶[4]∥
∥𝑡𝑎𝑔 of at least 5 blocks. One can recover the plaintext by querying

𝐾 (𝐴𝐷,𝐶𝐶[1]‖𝐶𝐶[2]‖𝐶𝐶[4]‖𝐶𝐶[3] ∥ … ‖𝑡𝑎𝑔)
(See Fig. 12)

𝐾 (𝐴𝐷,𝐶𝐶[2]‖𝐶𝐶[1]‖𝐶𝐶[3]‖𝐶𝐶[4]‖⋯ ∥ 𝑡𝑎𝑔)
(See Fig. 13)

ith an associated data 𝐴𝐷 and obtaining

𝑀[1]‖𝑀𝑀[2]‖𝑀𝑀[3]‖𝑀𝑀[4]‖…
�̃�[1]‖𝑀𝑀[2]‖𝑀𝑀[3]‖𝑀𝑀[4]‖…

espectively and then combining the first two blocks of the former

laintext with the rest of the latter plaintext. (see Figs. 12 and 13).
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Fig. 11. Plaintext recovery attack in Section 6. In Part A: Two 𝑃𝑇 blocks with a special difference are queried to obtain 𝐶𝐶[1] and 𝐶𝐶[2]. In Part B: 𝐶𝐶[2𝑙 + 1] = 𝐶𝐶[1] and
𝐶𝐶[2𝑙 + 2] = 𝐶𝐶[2] are verified through the special difference of 𝑀𝑀[1] and 𝑀𝑀[2] depicted in Part A.
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Fig. 12. First query to recover PT.

Fig. 13. Second query to recover PT.

Fig. 14. First query to produce CT.

Proposition 2 can be used also to produce the 𝐶𝑇 and the tag of
a given 𝑃𝑇 = 𝑀𝑀[1]∥𝑀𝑀[2]∥𝑀𝑀[3]∥… by querying the oracle as
follows:

𝐶𝐶[1]‖𝐶𝐶[2]‖𝐶𝐶[3]∥𝑡𝑎𝑔,← 𝐾 (𝐴𝐷,𝑀𝑀[1]‖𝑀𝑀[2]‖𝑀𝑀[3])

(See Fig. 14)

𝑀𝑀[1]‖𝑀𝑀[2]‖𝑀𝑀[3],← 𝐾 (𝐴𝐷,𝐶𝐶[2]‖𝐶𝐶[1]‖𝐶𝐶[3]∥𝑡𝑎𝑔)

See Fig. 15)

𝐶[2]‖𝐶𝐶[1]‖𝐶𝐶[3]‖… ‖𝑡𝑎𝑔. ← 𝐾 (𝐴𝐷,𝑀𝑀[1]‖𝑀𝑀[2]‖𝑀𝑀[3]∥… )

(See Fig. 16)

with an associated data 𝐴𝐷 (see Figs. 14–16).
The third block of the target message is modified to be an arbitrary

𝑀𝑀[3] value and the new message is encrypted to 𝐶𝐶[1]‖𝐶𝐶[2]‖
10

C

Fig. 15. Second query to produce CT.

Fig. 16. Third query to produce CT.

Table 3
Some key recovery attacks against AES-128. MitM: Meet-in-the-Middle, ID: Impossible
Differential.

Attack Rounds Data Query Time Reference

MitM 7 297 CPA 2105 299 [38]
ID 7 2105 CPA 2113 2106.88 [39]
Biclique 10 288 CCA 297 2126.18 [40]

𝐶𝐶[3]∥𝑡𝑎𝑔, whose first two blocks will be the original 𝐶𝑇 blocks. The
oracle decrypts this 𝐶𝑇 when we swap the first two blocks since the
tag is still valid by Lemma 4. The first two 𝑀𝑀 blocks will result in
random values (𝑀𝑀[1] and 𝑀𝑀[2]) but observe that 𝑊 [2] will be
equal to 𝑊 [2]. Therefore, querying this 𝑀𝑀[1]‖𝑀𝑀[2]‖𝑀𝑀[3]∥…
leads to 𝐶𝐶[2]‖𝐶𝐶[1]‖𝐶𝐶[3]‖… ‖𝑡𝑎𝑔 from which the original 𝐶𝑇 can
be obtained by just swapping the first two blocks.

𝑀𝑀[𝑙], 𝑀𝑀[𝑙 + 1] and 𝑊 [𝑙 − 1] parameters are used for the tag
erification. Permuting the first (𝑙 − 1) 𝐶𝑇 -blocks will not affect these

parameters by Proposition 2, resulting in (𝑙 − 1)! existential forgeries.

. Key recovery

In this Section, we introduce how to use COLM oracle to collect
ecessary data for mounting attacks against (reduced-round) AES-128.

There are several attacks against reduced-round AES-128. In gen-
ral, these attacks require large amount of data, as either CPA or
CA. The question is how to collect data for an AES key used in the
OLM encryption. In principle, any weakness of AES is not supposed
o be exploited in COLM oracle even in nonce misuse scenario since
OLM is chosen to the defense-in-depth final portfolio of the CAESAR
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competition. However, as explained in Section 4, we can simulate AES
encryption and decryption oracles for any given input, enabling us to
collect data required for an attack against (reduced-round) AES-128.

We give three examples of combining these oracles (see Section 4)
with published CPA/CCA attacks against reduced-round AES-128, a
meet-in-the-middle (MitM) attack [38], an impossible differential (ID)
attack [39] and a biclique attack [40]. The baseline complexities of
these published attacks are listed in Table 3. In Section 4.2, we show
that a single COLM query of a 132-block 𝐴𝐷 − 𝑃𝑇 is enough to get
the AES encryption of the any given input. Therefore, to collect the
data for MitM and ID attacks, we need to make 262 × 297 ≈ 2105 and
262×2105 ≈ 2113 AES-128 queries in COLM, respectively. In Section 4.1,
we show that a single COLM query of a 261-block 𝐴𝐷 − 𝐶𝑇 is enough
to get the AES decryption of any given input. Therefore, to collect the
data for biclique attack, we make 520 × 288 ≈ 297 AES-128 queries
in COLM. Recall that we need 2130 AES-128 encryptions (𝐿 = 𝐸𝐾 (0),
𝑍[0] = 𝐸𝐾 (𝐴𝐴[0]), 𝑋[1] = 𝐸𝐾 (𝑀𝑀[1]), 𝐶𝐶[1] = 𝐸𝐾 (𝑌 [1]) for each
key candidate) to mount a brute force attack against COLM. Therefore,
these attacks compared to brute force attacks are 4 times more time
efficient in COLM oracle scenario than in AES oracle scenario.

9. Conclusions and suggestions

In this work, we analyze COLM. We mount plaintext recovery at-
tacks, a tag guessing attack, several forgery attacks along with building
an SEBC and an SDBC. To the best of our knowledge, a forgery is
used in a simulation model for the first time in this work and hence
we are able to build both an SEBC and an SDBC together. Note that,
an attacker possessing both an SEBC and an SDBC can produce any
plaintext or ciphertext like a legitimate user, who has access to the
key. It is an open problem how to generalize our methods for mounting
plaintext recovery and tag guessing attacks to an arbitrarily formed
authenticated EME/EMD scheme.

EME algorithms have generally a whitening mask 𝐿 defined by
designers. In authenticated encryption, algorithms are supposed to have
the security level of min(|𝑘𝑒𝑦|, |𝑏𝑙𝑜𝑐𝑘|) against some attacks such as
plaintext recovery and tag guessing. Both the key and the block sizes
are 128 bits in COLM. So, the security level of recovering 𝐿 or the EME
structure must be at least 128-bit. Forler et al. illustrate that 𝐿 can
e recovered in 265 queries [11]. In this work, we show that the EME
tructure in COLM does not satisfy 128-bit security against plaintext
ecovery and tag guessing attacks. That is, neither the confidentiality
f 𝐿 nor EME of COLM satisfies 128-bit security.

We recommend that both recovering 𝐿 and the EME structure
hould have the security level of min(|𝑘𝑒𝑦|, |𝑏𝑙𝑜𝑐𝑘|) for an authenticated
ME scheme designed in defense-in-depth approach. Accordingly, if
ne of them fails to provide this security level, the authenticated EME
cheme still remains secure.

We suggest some modifications for COLM to prevent our attacks.
e propose a simple but unconventional suggestion to fulfill the secu-

ity requirement for recovering 𝐿, by producing it with another key
educed from the main key by a slight modification. Even if 𝐿 is
ecovered (note that Lu’s method is still valid), it cannot be exploited
n our attacks in Algorithm 3, Algorithm 1 and Algorithm 2 since 𝐿 is
roduced by a different key and it does not give a plaintext–ciphertext
air for the underlying block cipher. Our next suggestion is to modify
he 𝜌-operation. Note that 𝑊 [𝑖] = 𝑊 [𝑖 − 1]⊕ 𝑌 [𝑖] in the 𝜌−1 operation
nd we exploit this property in Lemmas 1, 4, Proposition 2, Theorems 1,
, 4 and Algorithm 2. Hence, in the computation of 𝑊 [𝑖] the coefficients

of 𝑊 [𝑖−1] inputs should not be 1 in both 𝜌 and 𝜌−1. This criterion should
also be adopted for 𝑊 ′[𝑖]. As an example; 𝑊 ′[𝑖] = 3 ⋅𝑊 ′[𝑖−1]⊕𝐴[𝑖] for
processing 𝐴𝐷, and 𝑊 [𝑖] = 4⋅𝑊 [𝑖−1]⊕𝑋[𝑖], 𝑌 [𝑖] = 6⋅𝑊 [𝑖−1]⊕𝑋[𝑖] for
processing 𝑃𝑇 (resulting in 𝑊 [𝑖] = 2⋅𝑊 [𝑖−1]⊕𝑌 [𝑖], 𝑋[𝑖] = 6⋅𝑊 [𝑖−1]⊕
𝑌 [𝑖]) can be used. Our last suggestion is to use different coefficients for
the 𝑀 blocks in the summation to compute the 𝑀[𝑙] and the 𝑀[𝑙 + 1]
blocks so that one cannot isolate the last two blocks when verifying the
tag. This suggestion will render Propositions 1, 2, Theorems 1, 2 and 3
invalid. Lastly, these suggestions are to prevent our attacks and COLM
is still required to be analyzed with these amendments.
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