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Abstract
In this article, an analysis and synthesis of widely used linear disturbance observer based robust control approaches are
presented. The main objective of this article is to provide an exhaustive comparison of disturbance observer based
robust control approaches and to handle the structural details of each approach for gaining insight about the complexity
of each approach. Toward this goal, nine performances and robustness equations portraying useful insights for under-
standing and analyzing control systems are derived by examining their common and equivalent block diagrams. Four of
them are selected as gang of four equations, namely complementary sensitivity function, sensitivity function, disturbance
sensitivity function and noise sensitivity function. Robustness and disturbance rejection performance analysis of all linear
disturbance observer based control schemes and classical feedback control scheme are done using gang of four equa-
tions. With these representations, two tables discussing all prime issues and facilitating the selection of the best
approach are obtained. Our research stipulates critical facts and figures of each scheme by considering the derived gang
of four equations, which can be used for choosing the most appropriate disturbance observer based control approach
for a given robust control problem. It is concluded that the uncertainty disturbance estimator approach is superior when
time delay type uncertainty is involved in the model. Unfolding this is critical as time delay is an inevitable fact in most
industrial control systems. The findings also emphasize that time domain disturbance observer based control approach is
proficient if there is no process time delay.

Keywords
Robust control, disturbance observer based control, robustness and performance analysis, time domain disturbance
observer based control, uncertainty disturbance estimator

Date received: 23 February 2021; accepted: 12 July 2021

Introduction

The aim of the robust control is to deal with plant
uncertainties and disturbances that widely exist in all
realistic feedback systems. Since 1970s, significant num-
ber of linear and nonlinear robust control methods
eliminating the adverse effects of disturbances and
uncertainties has been presented in the literature.
Disturbance observer based control (DOBC) is one of
the most popular and powerful robust control tech-
niques. DOBC actually is a patch over existing classical
feedback controller, which has good stability and track-
ing performance yet it is vulnerable to external distur-
bances and uncertainties. The main idea of DOBC
approaches is to estimate the lumped disturbances,
including both unknown dynamics and external distur-
bances, and to achieve robustness of the overall system
through cancelation/rejection/attenuation of estimated

disturbances by considering a number of design issues
(e.g. nominal plant, reference model, low pass filter
(LPF) design, etc.) with their two degrees of freedom
(2-DoF) control structures. 2-DoF control structure
adds an inner loop that is activated in the presence of
the uncertainties and disturbances to classical feedback
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control (CFC) that includes a baseline controller. While
the baseline controller specifies the performance and
stability of the control system, the inner loop deter-
mines the disturbance rejection and uncertainty han-
dling capabilities.1

The algorithm was first proposed by Ohnishi to
estimate the external disturbances and structural
uncertainties.2–4 Extended state observer (ESO), so
called active disturbance rejection control (ADRC)
that was proposed by Han,5,6 appears as another pop-
ular robust control scheme. Thanks to Ohnishi’s and
Han’s inspirations to other researchers, in the last few
decades, several DOBC structures are reported in the
literature.1,3,7–19

The first general DOBC scheme, abbreviated as con-
ventional disturbance observer based control (CDOBC),
was proposed by Ohishi et al.3 Chang et al.7 have rec-
ommended a disturbance observer design and analysis
toolbox for MATLAB to find acceptable Q-Filter for
CDOBC approach. They have also studied the robust
stability and nominal performance recovery analyses,
which help engineers to construct CDOBC approach. A
discussion on discrete implementation of CDOBC
approach has been presented for motion control sys-
tems.8 Efe and Kasnakoğlu9 have inserted a signum
function into CDOBC loop and obtained an enhanced
bandwidth CDOBC scheme. A disturbance attenuation
problem for a missile system using a recently proposed
disturbance observer based robust control method is
presented in the work of Yang et al.,10 which is called
time domain disturbance observer based control
(TDDOBC). Lazim et al.11 have applied TDDOBC
approach to the formation flights of the multiple quad-
rotors in the presence of the external disturbances. In
the study of Kürkcxü et al.,12 authors have proposed the
novel DOBC method combining integral sliding mode
control (ISMC) with an H‘ controller named as output
error-based disturbance observer based control
(OEBDOBC). The works of She et al.13,14 are the moti-
vating studies for the equivalent input disturbance
(EID) approach to improve disturbance rejection per-
formance of control systems. An improved EID
approach is presented and validated on position control
of a ball-and-beam system experimentally.15 Zhong and
colleagues16,17 have proposed uncertainty disturbance
estimator (UDE) method that is an alternative control
strategy to time delay control (TDC) scheme. Aharon
et al.18 have presented a guideline including the analysis
of UDE approach considering actuator dynamics and
applied it to power control of a multimode bidirectional
non-inverting buck–boost converter. The recent and
advanced DOBC approaches addressing both linear and
nonlinear cases can be found in the works of Chen
et al.1 and Li et al.19 Moreover, the reader may refer to
the article of Sariyildiz et al.20 for a detailed overview of
DOBC from origin to present.

Although there are a number of DOBC schemes,
robust stability and robustness performance analysis

are still the problems that worth studying in this
field.19,21,22 In the studies of Sariyildiz and Ohnishi,21,22

analysis and design of CDOBC approach is presented.
However, there is not a common way to synthesize and
analyze the other DOBC approaches. The only com-
mon issue known is that the designed LPF dynamics
directly affects the disturbance rejection capability of
the control system. Reference signal tracking capabil-
ity, rejection of external disturbances, measurement
noise and process variations are the basic requirements
for a robust control system design. In this article, per-
formance and robustness analysis equations of the
DOBC approaches described above are derived under
the presence of a number of requirements. The main
contributions of this article can be summarized as
follows:

� This article gives an exhaustive comparison of dis-
turbance observer based robust control approaches.
Toward this goal, nine relations between the input
and the output signals, including both the baseline
controller and the inner loop, are derived from the
CFC for all DOBC schemes described above.
Spectra of these nine transfer functions (TFs) can
provide useful insights for understanding and ana-
lyzing control systems under DOBC approaches.
However, in this article, the only gang of four
(GoF) equations are considered, these are comple-
mentary sensitivity function (CSF), sensitivity func-
tion (SF), disturbance sensitivity function (DSF),
and noise sensitivity function (NSF).

� This study stipulates the critical facts and figures of
each scheme by considering the derived GoF equa-
tions, which can be used for choosing the most
appropriate DOBC approach for a given robust
control problem, including both minimum-phase
uncertain and time-delay systems, from disturbance
rejection capability to design challenges.

� In this article, the one finds the structural details of
each approach and gains insight about the com-
plexity of each approach, which is undoubtedly
essential in practice. Therefore, a discussion, which
is not specific to a particular plant model, is pre-
sented and a second order plant model with some
uncertainty in the form of time delay is considered.
Although the studied plant model is an abstract
one, this makes it possible to compare the most
critical aspects peculiar only to DOBC algorithms.

� After reading this work, one would have a clear
understanding of which approach to choose and
what to expect. From this point of view, one can
extend the results seen here to a large class of
dynamic systems, especially the second order ones
appearing typically in mechanics.

The remaining sections of the article are organized
as follows: In ‘‘Analysis and Synthesis’’ section, nine
relations between the input and the output signals,
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including both baseline controller and inner loop, are
derived from the CFC to five DOBC approaches
described above and GoF equations are presented.
‘‘Simulation Results’’ section presents the operating
conditions, performance and robustness analyses. The
last section is devoted to the concluding remarks.

Analysis and synthesis

This section describes the derivation of the nine TFs
between the input and the output signals from CFC to
five DOBC approaches. Let uc, x, y denote the control-
ler output, the noiseless plant output and the noisy
plant output, respectively. Let r, d, n denote the external
influences on the closed loop systems stand for the ref-
erence signal, disturbance input and the measurement
noise, respectively. We will derive the nine TFs to
understand the effect of each input on each output.

CFC

Figure 1 shows CFC block diagram, including two
blocks, namely, the feedback block C and the feedfor-
ward block F. In the figure, Gp is the disturbed uncer-
tain plant. Let e denotes the reference tracking error
and utot denotes the manipulated total control signal.
Consider the diagram shown in Figure 1, assume that
the capital letters denote the Laplace transform of the
relevant variables.

From Figure 1, the following equations can be
written

E=FR� Y ð1Þ

Uc =CE ð2Þ

Utot=Uc +D ð3Þ

X=GpUtot ð4Þ

Y=X+N ð5Þ

The nine TFs for a CFC system can be obtained
using equations (1)–(5) as follows

Uc =
CF

1+GpC
R� GpC

1+GpC
D� C

1+GpC
N ð6Þ

X=
GpCF

1+GpC
R+

Gp

1+GpC
D� GpC

1+GpC
N ð7Þ

Y=
GpCF

1+GpC
R+

Gp

1+GpC
D+

1

1+GpC
N ð8Þ

CDOBC approach

Let dl denotes the lumped disturbances and d̂ denotes
the estimation of lumped disturbances. Let u denotes
the corrected control signal. Let Gn,G

�1
n and Q are the

nominal model of plant, the inverse of nominal plant
and disturbance observer filter, respectively. Figure 2
illustrates the original form of CDOBC.3 Its equivalent
block diagram can be obtained by replacing Gp with Gn

and d with dl. The difference between the original form
and the equivalent form is that the equivalent form
employs Gn as the plant, whereas the original form
employs Gp, the uncertain model. As a consequence of
this, d̂ variable directly equals to lumped disturbance.
However, d̂ variable in the original form is the estima-
tion of the lumped disturbances, obtaining which is the
ultimate goal in any DOBC mechanism. Lumped dis-
turbances include both the external disturbances and
the internal disturbances caused by model uncertainties.

The following equation can be written using the
noiseless plant output in Figure 2 and CDOBC equiva-
lent block diagram

(U+D)Gp =(U+Dl)Gn ð9Þ

As a consequence, the lumped disturbances are
obtained as follows

Dl =G�1n GpD+(G�1n Gp � 1)U ð10Þ

From CDOBC equivalent block diagram, we have

D̂=Q(Dl +G�1n N) ð11Þ

When we write the plant output, X(s) as
X=Pn(s)Uc �Q(s)N� Pn(s)(1�Q(s))D following can
be said: To suppress the effects of noise, Q should go
to zero. However, to avoid the adverse effects of the
disturbance, Q should go to unity. These two require-
ments are conflicting and this fact leads to the design
of

Figure 1. General block diagram of CFC.
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the LPF denoted by Q. We know that disturbance
(D(s)) has low frequency components, and noise (N(s))
has high frequency components; this fact entails choos-
ing an appropriate pass band for the LPF.

From Figure 2, it can be seen that the CDOBC struc-
ture contains the CFC structure. Therefore, the first five
equations in CFC section can be used with the follow-
ing correction for derivation of the nine relations

Utot=U+D ð12Þ

Corrected control signal U is as follows

U=Uc � D̂ ð13Þ

Having these in mind, the nine relations for a
CDOBC system can be obtained as below. From equa-
tions (2), (10), (11) and (13), we have

U=
CF

1+GpC+Q(G�1n Gp � 1)
R

� Gp(C+QG�1n )

1+GpC+Q(G�1n Gp � 1)
D

� C+QG�1n

1+GpC+Q(G�1n Gp � 1)
N

ð14Þ

From equations (4), (12) and (14), we have

X=
GpCF

1+GpC+Q(G�1n Gp � 1)
R

+
Gp(1�Q)

1+GpC+Q(G�1n Gp � 1)
D

� Gp(C+QG�1n )

1+GpC+Q(G�1n Gp � 1)
N

ð15Þ

From equations (5) and (15), we have

Y=
GpCF

1+GpC+Q(G�1n Gp � 1)
R

+
Gp(1�Q)

1+GpC+Q(G�1n Gp � 1)
D

+
1�Q

1+GpC+Q(G�1n Gp � 1)
N

ð16Þ

OEBDOBC approach

Figure 3 illustrates the original form of OEBDOBC.12

Its equivalent block diagram can be obtained by
replacing Gp, d pair with Gn, dl pair, respectively. Kobs

block requires an observer design. Let yn denotes the
nominal plant output and yobs denotes the observer
output.

The following equation can be written using the
noiseless plant output in Figure 3 and OEBDOBC
equivalent block diagram

(U+D)Gp =(U+Dl)Gn ð17Þ

As a consequence, the lumped disturbances are
obtained as below

Dl =G�1n GpD+(G�1n Gp � 1)U ð18Þ

From OEBDOBC equivalent block diagram, we
have

D̂=QkGnDl +QkN ð19Þ

Figure 2. General block diagram of CDOBC.

Figure 3. General block diagram of OEBDOBC.
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where Qk is as follows

Qk =
Kobs

1+KobsGn
ð20Þ

From Figure 3, it can be seen that the OEBDOBC
structure contains the CFC structure. The nine relations
for the OEBDOBC system can be obtained as follows.
From equations (2), (13) and (18)–(20), we have

U=
CF

1+GpC+QkGn(G�1n Gp � 1)
R

� Gp(C+Qk)

1+GpC+QkGn(G�1n Gp � 1)
D

� C+Qk

1+GpC+QkGn(G�1n Gp � 1)
N

ð21Þ

From equations (4), (12) and (21), we have

X=
GpCF

1+GpC+QkGn(G�1n Gp � 1)
R

+
Gp(1�QkGn)

1+GpC+QkGn(G�1n Gp � 1)
D

� Gp(C+Qk)

1+GpC+QkGn(G�1n Gp � 1)
N

ð22Þ

From equations (5) and (22), we have

Y=
GpCF

1+GpC+QkGn(G�1n Gp � 1)
R

+
Gp(1�QkGn)

1+GpC+QkGn(G�1n Gp � 1)
D

+
1�QkGn

1+GpC+QkGn(G�1n Gp � 1)
N

ð23Þ

It can be seen that Q=QkGn from equations (21)–
(23). If Kobs is chosen as given below, OEBDOBC and
CDOBC approaches display identical performances

Kobs =
Q

Gn(1�Q)
ð24Þ

EID approach

Figure 4 illustrates the original form of EID struc-
ture.13,14 Its equivalent block diagram can be obtained
by replacing Gp, d pair with Gn, dl pair, respectively. In
the figure, Qe is the disturbance filter. In the diagram
depicted in Figure 4, An,Bn,Cn are system matrix, con-
trol matrix and output matrix of nominal plant in con-
trollable canonical form (CCF), respectively. Le block
is the observer gain. Furthermore, x̂, ŷ denote the
observer plant state and its output, respectively.

The following equation can be written using the
noiseless plant output in Figure 4 and EID approach
equivalent block diagram

(U+D)Gp =(U+Dl)Gn ð25Þ

As a consequence, the lumped disturbances are mod-
eled by

Dl =G�1n GpD+(G�1n Gp � 1)U ð26Þ

Performing the aforementioned substitutions, from
the equivalent structure of the EID approach, we have

D̂= k1Dl + k2U+ k3N ð27Þ

where k1 =
(B+

e Le�be)GnQe

1+ (ae�1)Qe
, k2 =

((B+
e Le�be)Gn�ae)Qe

1+ (ae�1)Qe
,

k3=
(B+

e Le�be)Qe

1+ (ae�1)Qe
, k1=Gnk3, k2=k1� aeQe

1+ (ae�1)Qe
, ae=(B+

e Le)

(Cn(HBn)), be=(B+
e Le)(Cn(HLe)), H=(sI� An +Le

Cn)
�1 and B+

e =(Bn
TBn)

�1(Bn
T). (An 2 <q3 q, Bn 2

<q3 1, Cn 2 <13 q, Le 2 <q3 1, B+
e 2 <13 q, X̂ 2 <q3 1,

H 2 <q3 q).

Figure 4. General block diagram of EID approach.
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EID approach requires an observer design and a LPF
(Qe) design independently. From Figure 4, it can be seen
that the EID structure contains the CFC structure too.

The nine relations for an EID system can be
obtained as follows. From equations (2), (13), (26) and
(27), we have

U=
CF

1+GpC+ k1(G�1n Gp � 1)+ k2
R

� Gp(C+ k1G
�1
n )

1+GpC+ k1(G�1n Gp � 1)+ k2
D

� C+ k3
1+GpC+ k1(G�1n Gp � 1)+ k2

N

ð28Þ

From equations (4), (12) and (28), we have

X=
GpCF

1+GpC+ k1(G�1n Gp � 1)+ k2
R

+
Gp(1� k1 + k2)

1+GpC+ k1(G�1n Gp � 1)+ k2
D

� Gp(C+ k3)

1+GpC+ k1(G�1n Gp � 1)+ k2
N

ð29Þ

From equations (5) and (29), we have

Y=
GpCF

1+GpC+ k1(G�1n Gp � 1)+ k2
R

+
Gp(1� k1 + k2)

1+GpC+ k1(G�1n Gp � 1)+ k2
D

+
1� k1 + k2

1+GpC+ k1(G�1n Gp � 1)+ k2
N

ð30Þ

TDDOBC approach

Figure 5 illustrates the original form of TDDOBC
structure.10 Its equivalent block diagram can be
obtained by replacing Ap,Bp,Cp, d variables with
An,Bn,Cn, dl, respectively. While An,Bn,Cn are system
matrix, control matrix and output matrix of nominal
plant in CCF, respectively, Ap,Bp,Cp are system
matrix, control matrix and output matrix of disturbed

uncertain plant in CCF, respectively. In the figure, La

stands for the observer gain, x, xn, xs denote the plant
state, its noiseless output and its noisy output, respec-
tively. The variable z in the figure denotes an auxiliary
variable.

The following equality can be written using the
noiseless plant output in Figure 5 and TDDOBC equiv-
alent block diagram, which is obtained after the above
stated substitutions

(U+D)Gp =(U+Dl)Gn ð31Þ

As a consequence, the lumped disturbances are
obtained as follows

Dl =G�1n GpD+(G�1n Gp � 1)U ð32Þ

From TDDOBC equivalent block diagram, we have

D̂= z+Laxn ð33Þ

The block labeled W in Figure 5 introduces the fol-
lowing dynamics

_z= � LaBn(z+Laxn)� La(Anxn +Bnu) ð34Þ

From equations (33) and (34), we obtain

D̂=(G1 � G2)U+G1Dl +G3N ð35Þ

where at = � (LaBn)La � LaAn +(s+LaBn)La,
bt =(sI� An)

�1Bn, G1 =
atbt

s+LaBn
, G2 =

LaBn

s+LaBn
,

G3 =
atm

s+LaBn
, m= ½1, . . . , 1�T, (at 2 <13 q, bt 2 <q3 1,

La 2 <13 q, xn 2 <q3 1, An 2 <q3 q, Bn 2 <q3 1,
m 2 <q3 1).

TDDOBC approach requires an observer design.
From Figure 5, it can be seen that the TDDOBC struc-
ture contains the CFC structure. Therefore, the first
five equations in CFC section can be used with the fol-
lowing corrections for the derivation of the nine TFs

Xs =GpUtot ð36Þ

Figure 5. General block diagram of TDDOBC.
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Y=Xs +N ð37Þ

From equations (2), (13), (32) and (35), we have

U=
CF

1+GpC+G1G�1n Gp � G2
R

� Gp(C+G1G
�1
n )

1+GpC+G1G�1n Gp � G2
D

� C+G3

1+GpC+G1G�1n Gp � G2
N

ð38Þ

From equations (12), (36) and (38), we have

Xs =
GpCF

1+GpC+G1G�1n Gp � G2
R

+
Gp(1� G2)

1+GpC+G1G�1n Gp � G2
D

� Gp(C+G3)

1+GpC+G1G�1n Gp � G2
N

ð39Þ

From equations (37) and (39), we have

Y=
GpCF

1+GpC+G1G�1n Gp � G2
R

+
Gp(1� G2)

1+GpC+G1G�1n Gp � G2
D

+
1+Gp(G1G

�1
n � G3)� G2

1+GpC+G1G�1n Gp � G2
N

ð40Þ

UDE approach

Figure 6 illustrates the original form of the UDE
approach.16,17 UDE approach is based on a reference
model, an error feedback gain and a LPF (Gf). Unlike
other DOBC schemes, UDE structure does not contain
the CFC structure. In Figure 6, Am,Bm are system
matrix and control matrix of the reference plant model,
respectively, Ap,Bp,Cp are system matrix, control
matrix and output matrix of disturbed uncertain plant
in observable canonical form (OCF), respectively. An is
the system matrix of nominal plant in OCF. Besides,
Km is the feedback gain, xm denotes the reference model
plant state, x, xs, xn denote the disturbed uncertain
plant state, its noiseless output and its noisy output,
respectively.

The following equations can be obtained from
Figure 6

Xm =(sI� Am)
�1BmFR ð41Þ

Control signal U is as follows

U=G1(B
+
u ((sI)Xm))

�G1(B
+
u (Vm(Xm � Xn)))

�B+
u AnXn � G2B

+
u Xn

ð42Þ

Xn =X+mN ð43Þ

X=(sI� Ap)
�1Bp(U+D) ð44Þ

Xs =CpX ð45Þ

Figure 6. General block diagram of UDE approach.
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Y=Xs +N ð46Þ

where G1 =
1

1�Gf
, G2 =

sGf

1�Gf
, Vm =(Am +Km),

B+
u =(Bn

TBn)
�1Bn

T, m= ½1, . . . , 1�T, (Xm 2 <q3 1,
Xn 2 <q3 1, X 2 <q3 1, A� 2 <q3 q, B� 2 <q3 1,
C� 2 <13 q, Vm 2 <q3 q, Km 2 <q3 q, B+

u 2 <13 q,
m 2 <q3 1).

The nine relations for an UDE system can be
obtained as follows. From equations (41)–(44), we have

U=
auF

1� bu((sI� Ap)
�1Bp)

R

� �bu((sI� Ap)
�1Bp)

1� bu((sI� Ap)
�1Bp)

D

� �bum
1� bu((sI� Ap)

�1Bp)
N

ð47Þ

where au =G1(B
+
u ((sI� Vm)((sI� Am)

�1Bm))) and
bu =G1(B

+
u Vm)� B+

u An � G2B
+
u , (bu 2 <13 q). From

equations (44), (45) and (47), we have

Xs =
Cp(((sI� Ap)

�1Bp)auF)

1� bu((sI� Ap)
�1Bp)

R

+
Cp((sI� Ap)

�1Bp))

1� bu((sI� Ap)
�1Bp)

D

��Cp(((sI� Ap)
�1Bp)(bum))

1� bu((sI� Ap)
�1Bp)

N

ð48Þ

From equations (46) and (48), we have

Y=
Cp(((sI� Ap)

�1Bp)auF)

1� bu((sI� Ap)
�1Bp)

R

+
Cp((sI� Ap)

�1Bp))

1� bu((sI� Ap)
�1Bp)

D

+
P+1� bu((sI� Ap)

�1Bp)

1� bu((sI� Ap)
�1Bp)

N

ð49Þ

where P=Cp(((sI� Ap)
�1Bp)(bum)).

The gang of four equations

In the previous subsections, nine TFs of the five DOBC
approaches are derived. These nine TFs provide useful
insights for understanding and analyzing control sys-
tems employing disturbance observer sub-dynamics.
They can be reduced to six equations because some of
them are the same under certain rules (e.g. F=1). In
this article, the only GoF equations are considered as
performance and robustness equations, and they are
shown in Table 1 as a relationship TFs described in the
previous subsections.

Simulation results

This section presents a robustness and performance
analysis approach using GoF equations for five DOBC
schemes. DOBC structures generally require a LPF
design as described in the previous sections. LPF char-
acteristics are important as they directly affect the dis-
turbance rejection performance of DOBC approaches.
If the LPF bandwidth is chosen too high, the robust-
ness and stability of the system are adversely affected.21

Therefore, the choice of LPF order and its bandwidth
is critical. In this article, the following first order LPF
is selected for all DOBC approaches to be able to com-
pare all DOBC approaches under the same conditions.
The bandwidth of the LPF is chosen wide enough for
all simulation studies. One could choose higher order
LPF structures, but this would increase the computa-
tional burden of the design

LPF(s)=
T

s+T
ð50Þ

where T is the cutoff frequency of the LPF.

Simulation parameters

It should be noted that as this study gives a comprehen-
sive comparison of disturbance observer based robust
control approaches, structural details and complexity
of each approach, instead of a particular plant model
with its own challenges, a second order plant model
with some uncertainty in the form of time delay is

Table 1. GoF equations(* Irrelevant inputs are taken as zero).

Strategy CSF � SF � DSF � NSF �

CFC Uc=D or X=N Y=N X=D Uc=N
CDOBC U=D or X=N Y=N X=D U=N
OEBDOBC U=D or X=N Y=N X=D U=N
EID U=D or X=N Y=N X=D U=N
TDDOBC U=D or Xs=N (1� U=D) or (1� Xs=N) Xs=D U=N
UDE U=D or Xs=N (1� U=D) or (1� Xs=N) Xs=D U=N

CSF: complementary sensitivity function; DSF: disturbance sensitivity function; NSF: noise sensitivity function; CFC: classical feedback control;

CDOBC: conventional disturbance observer based control; OEBDOBC: output error-based disturbance observer based control; EID: equivalent

input disturbance; TDDOBC: time domain disturbance observer based control; UDE: uncertainty disturbance estimator.
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considered. Although the studied plant model is an
abstract one, this makes it possible to compare the most
critical aspects aside from the plant-specific difficulties.

Minimum-phase uncertain plant. Nominal plant and the
uncertain plant considered in this part are as follows22

Gn(s)=
s+5

s2 +5s+6
,Gp(s)=Gn(s)(1+DWT(s))

ð51Þ

where D=0:3 and uncertainty weighting function is
WT(s)= (5s+100)=(s+500).

Minimum-phase uncertain plant with time delay. Nominal
plant and uncertain plant with time delay for this part
are considered as follows22

Gp(s)=Gn(s)(1+DWT(s))e
�ts ð52Þ

where D=0:3, WT(s)= (5s+100)=(s+500) and the
time delay t =0:01s.

CFC parameters. It is well known that cancelation of
slow or unstable poles by zeros adversely affects the
disturbance rejection performance of a controller.
Therefore, classical feedback controller equation (53) is
designed using pole placement method with the specifi-
cations given in Table 2. At the same time, for UDE
approach, reference model meeting the criteria in Table
2 is selected as given in equation (54)

C(s)=
6:75(s+12:25s+18)

s+12:25s
ð53Þ

Am =
�5 �6:25
1 0

� �
,Bm =

6:25
0

� �
,Cm = 0 1½ �

ð54Þ

CDOBC parameters. Q(s) filter is selected as follows

Q(s)=
100

s+100
ð55Þ

OEBDOBC parameters. Together with the Q in equation
(55), Kobs(s) is selected as follows

Kobs(s)=
Q(s)

Gn(s)(1�Q(s))
ð56Þ

EID parameters. Qe(s) filter is selected as follows

Qe(s)=
100

s+100
ð57Þ

Le is designed using Ackermann’s formula as follows

Le =
20
1

� �
ð58Þ

TDDOBC parameters. La is designed using Ackermann’s
formula as follows

La =
112:66
�17:33

� �
ð59Þ

UDE parameters. Gf(s) filter is selected as follows

Gf(s)=
100

s+100
ð60Þ

Performance and robustness discussion

Order of the LPF and its bandwidth directly affect the
disturbance rejection capability of a DOBC scheme.
For all DOBC approaches presented in this article, a
first order LPF for relevant approaches is used, and
bandwidths of them are set to 100 rad/s. While Figures
7–10 show the response of GoF for uncertain minimum
phase plant without time delay, Figures 11–14 illustrate
the results for uncertain minimum phase plant contain-
ing time delay.

In Figure 7, we illustrate the step responses of the
DSF given in equation (51). Because of our identical
LPF selections and the choice in equation (56), spectral
views of the GoF TFs are identical for CDOBC and
OEBDOBC. Clearly, CFC in this figure displays the
poorest performance. According to the figure, all
schemes produce acceptable results. Their disturbance
suppression capability ranking from best to worst is as
follows: TDDOBC, CDOBC-OEBDOBC, UDE, EID
and CFC. In this sorting, we consider the peak magni-
tude and the convergence speed as the major metrics.

Figure 8 depicts the NSF behaviors. Looking at the
results, we see some approaches produce higher sensi-
tivity at low frequencies and some in high frequencies.
Assuming the disturbances are low frequency inputs
and the chosen Q filters have a bandwidth of 100 rad/s,
the poorest performance in this picture is obtained with
UDE approach because of the ’ 15 dB gain in the low
frequency region. Other approaches have a small sensi-
tivity in the low frequencies, yet the sensitivity curves
increase as the frequency increases. Interestingly, EID
approach displays a peak around 50 rad/s and the curve
falls as the frequency approaches 100 rad/s and the
insensitivity to noise is recovered for high frequencies.

Table 2. Controller design performance criteria.

Rising time (s) Settling time (s) Max. overshoot

\ 0:3 \ 0:8 \ %5
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In terms of noise input, we desire smaller magnitudes
in high frequencies, and this is obtained best with CFC
approach. The level of insensitivity to noise from the
highest to lowest: CFC, EID, TDDOBC, CDOBC-
OEBDOBC and UDE.

In Figure 9, we show the frequency responses of the
CSFs for each approach. In this figure, we see that
EID approach is poorer than the other DOBC
schemes, which maintain the 0 dB level over a fairly
large bandwidth without displaying any resonant
peaks. EID approach is more vulnerable to waterbed
effect, which shows itself as a peak provoked in
between 6.77 and 59 rad/s, than its alternatives. We sort
the approaches according to the bandwidth, and from
the largest to the smallest bandwidth are TDDOBC,
CDOBC-OEBDOBC, UDE, EID and CFC. CSF fig-
ure recommends the TDDOBC as it displays the high-
est bandwidth.

Figure 10 presents the frequency responses of the
SFs. In the figure, all DOBC schemes fairly suppress
the components below 6.77 rad/s. The suppression
capability in the low frequency region sorted from the
strongest to the weakest is TDDOBC, CDOBC-
OEBDOBC, UDE, EID and CFC. EID approach has
a weaker disturbance attenuation performance for the
components between 6.77 and 34 rad/s than the other
schemes. In addition, EID approach amplifies the com-
ponents between 34 and 150 rad/s, which is a negative
observation. For high frequencies, all approaches fea-
ture high pass filters. In producing these results, the
weighting performance function of SF is selected as
WS(s)= (0:707s+30)=(s+2).

In the next GoF plots, we will consider the time delay
effect in the overall performance. Figure 11 illustrates the
step responses of the DSF given in equation (52). The
worst disturbance rejection performance among the

Figure 7. Step response of the disturbance sensitivity function
without time delay.

Figure 8. Frequency response of the noise sensitivity function
without time delay.

Figure 9. Frequency response of the complementary sensitivity
function without time delay.

Figure 10. Frequency response of the sensitivity function
frequency response without time delay.
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studied approaches is CFC approach, which is shown
separately in the window plot. As can be seen from
Figure 11, disturbance rejection performances can be
sorted from the best to worst as CDOBC-OEBDOBC,
UDE, TDDOBC, EID and CFC. Time delay increases
the oscillations in the step responses for almost all
DOBC schemes. However, the figure shows that it
severely affects EID and TDDOBC approaches, the
responses of which display an oscillatory initial transient.

Figure 12 shows frequency responses of the NSF
under time delay conditions. We see that the time delay
increases the sensitivity to noise for all DOBC
approaches in high frequencies except CFC approach.
The noise sensitivity responses from the strongest to
weakest can be sorted as CFC (most insensitive to
noise), EID, TDDOBC, CDOBC-OEBDOBC and
UDE (most sensitive to noise).

In Figure 13, we present the CSF behaviors under
time delay conditions. Time delay makes the EID

approach more vulnerable to waterbed effect than other
approaches. This is visible from the peak observed
between 5 and 67 rad/s. Yet, EID recovers for high fre-
quencies with a poor bandwidth. In this figure, CFC
displays the poorest performance then comes the EID
approach. This is mainly because of the bandwidth
comparison with the other approaches, which display a
resonant peak around 190 rad/s and the ordering is
done by considering the magnitude at this frequency.
This leads to the following sorting UDE, CDOBC-
OEBDOBC, TDDOBC, EID and CFC.

Figure 14 depicts frequency responses of the SF
under time delay conditions. When Figure 14 is exam-
ined, it can be seen that the time delay increases the
amplification magnitude of EID approach between 31
and 150 rad/s. The other approaches try to preserve the
high pass filter properties with some oscillations after
100 rad/s. As discussed for Figure 10, the attenuation

Figure 11. Step response of the disturbance sensitivity function
with time delay.

Figure 12. Frequency response of the noise sensitivity function
with time delay.

Figure 13. Frequency response of the complementary
sensitivity function with time delay.

Figure 14. Frequency response of the sensitivity function with
time delay.
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capability order for the low frequency components
from strongest to weakest is TDDOBC, CDOBC-
OEBDOBC, UDE, EID and CFC. EID approach has
a better suppression performance than UDE approach
below 6.77 rad/s. Considering the resonant peak magni-
tude around 190 rad/s, UDE approach produces the
smallest peak magnitude, which is a good property.

As discussed above, OEBDOBC approach produces
identical results with CDOBC approach since Kobs is
chosen as in equation (56). Although they have the
same performance, OEBDOBC proposed in Kürkcxü
et al.23 does not require the inverse of nominal plant
model and it is advisable also for non-minimum phase
systems when compared to CDOBC structure.

Table 3 gives a summary of fundamental properties
of the approaches, namely the necessity to an inverse
nominal model, vulnerability to waterbed effect, insen-
sitivity to noise and time delays, and the structural rep-
resentation are listed for each approach.

Table 4 lists the rankings given above for the practi-
cing engineers, who may give more importance to one
quality than the others. In the table, Column 1 repre-
sents the well performing approach(es), whereas the
Column 5 gives the poor performing one(s). According
to the table, if there is no time delay in the process
model, TDDOBC is a satisfactorily successful approach
with average performance in NSF measure. Under time
delay conditions, TDDOBC provides average perfor-
mance, yet, we see that the CDOBC-OEBDOBC

approaches perform well in general. The table does not
recommend a particular approach persistently, and the
contribution of this work is to unfold the approaches,
which perform well and poor for which of the measures
named DSF, NSF, CSF and SF.

Conclusion

This article comparatively discusses five DOBC
approaches, namely CDOBC, OEBDOBC, EID,
TDDOBC, UDE. Their common and equivalent block
diagram properties have been discussed, and nine per-
formance and robustness TFs that provide an in-depth
understanding of these schemes are derived. Four of
these TFs are selected as a GoF equations, and for
both uncertain minimum phase and time delay system,
robustness and disturbance rejection performance dis-
cussion have been given for five DOBC schemes and
CFC scheme. Our tests have shown that derived GoF
equations can be used for qualifying the DOBC perfor-
mances. A summary table considering performance
and robustness analysis of DOBC methods and their
design requirements are presented. In terms of robust-
ness and disturbance rejection performance under simi-
lar operating conditions, simulation results recommend
the TDDOBC scheme, which outperforms the other
DOBC approaches if there is no process time delay.
Under the time delay conditions, UDE approach is
more advisable than the others.

Table 3. Fundamental properties of the approaches.

CDOBC OEBDOBC EID TDDOBC UDE

Inverse required Yes No No No No
Waterbed effect vulnerability No No Yes No No
Insensitivity to measurement noise Poor Poor Good Poor Very poor
Insensitivity to time delay Good Good Very poor Poor Very good
Structure TF TF TF-CCF CCF OCF

CDOBC: conventional disturbance observer based control; OEBDOBC: output error-based disturbance observer based control; EID: equivalent

input disturbance; TDDOBC: time domain disturbance observer based control; UDE: uncertainty disturbance estimator; TF: transfer function;

TF-CCF: transfer function-controllable canonical form; OCF: observable canonical form.

Table 4. DOBC performance rankings for the measures DSF, NSF, CSF and SF (* denotes time delay).

1 2 3 4 5

DSF TDDOBC CDOBC-OEBDOBC UDE EID CFC
NSF CFC EID TDDOBC CDOBC-OEBDOBC UDE
CSF TDDOBC CDOBC-OEBDOBC UDE EID CFC
SF TDDOBC CDOBC-OEBDOBC UDE EID CFC
DSF � CDOBC-OEBDOBC UDE TDDOBC EID CFC
NSF � CFC EID TDDOBC CDOBC-OEBDOBC UDE
CSF � UDE CDOBC-OEBDOBC TDDOBC EID CFC
SF � TDDOBC CDOBC-OEBDOBC UDE EID CFC

DSF: disturbance sensitivity function; TDDOBC: time domain disturbance observer based control; CDOBC-OEBDOBC: conventional disturbance

observer based control–output error-based disturbance observer based control; UDE: uncertainty disturbance estimator; EID: equivalent input

disturbance; CFC: classical feedback control; NSF: noise sensitivity function; CSF: complementary sensitivity function.
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