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A non-fragile robust observer design
for uncertain time-delay fractional Itô
stochastic systems with input
nonlinearity: An SMC approach

Khosro Khandani1 , Majid Parvizian2 and Mehmet Önder Efe3

Abstract
This article considers the problem of non-fragile observer design for uncertain fractional Itô stochastic systems. The
design is based on a sliding surface whose reachability in finite time is guaranteed by introducing a novel sliding mode
control law. Employing the fractional infinitesimal operator and the related lemmas, the stochastic stability of the overall
closed-loop system is transformed to the problem of solving a set of linear matrix inequalities. Addressing the fragility
issue, a norm-bounded term is added to the observer gain, which prevents failure of the estimation error system. The
adverse effects of the input nonlinearity and time-varying delay are alleviated by the proposed approach. Furthermore,
the present method is investigated for the fractional Itô stochastic systems with known states. A numerical example is
presented to illustrate the effectiveness of the proposed method.
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Introduction

In many practical systems, some or all of the states of
the system are not measurable. Hence, it very impor-
tant to develop state estimation methods and observer
design strategies. Among various state estimation and
filtering methods, sliding mode observers have been
very popular due to their fast convergence, robustness
against disturbances and the ability to cope with uncer-
tainties.1,2 A class of sliding mode observers, called
non-fragile observers, have been introduced which are
resilient against perturbations of the observer coeffi-
cients.3–9 Stochastic systems have found applications in
various fields of science and numerous stochastic mod-
els have been proposed to describe real-world randomly
varying processes.10–12 For such systems, several
Sliding Mode Control (SMC) based observation strate-
gies have been introduced in the literature. For
instance, in Ma et al.13 an adaptive sliding mode obser-
ver has been proposed to estimate the states of Itô sto-
chastic jump systems. A non-fragile observer-based
adaptive SMC method has been developed for
fractional-order time-delay Markovian jump systems
with time delay in Parvizian et al.14 In Niu and Ho,15

SMC has been utilized for obtaining an observer for Itô

stochastic systems with time delay and unmatched
uncertainties. In Basin et al.,16 an integral SMC filter-
ing approach has been proposed for linear stochastic
systems, and employing the approach, the disturbances
in the observation equation are successfully suppressed.
For a class of nonlinear stochastic systems, an
observer-based adaptive SMC design method has been
proposed in Jiang et al.17 and the approach has been
applied on a single-link robot arm model. In Li et al.,18

an augmented sliding mode observer has been proposed
for a class of stochastic systems for the sake of eliminat-
ing the effects of sensor faults and disturbances. In Kao
et al.,19 a non-fragile sliding mode observer for uncer-
tain Markovian neutral-type stochastic systems has
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been introduced, where the estimation error system is
stochastically asymptotically stabilized with a certain
disturbance attenuation level. In the aforementioned
works, the stochastic models are driven by Brownian
motion. Such systems can be modeled in the stochastic
Itô form and also can be analyzed utilizing classical sto-
chastic calculus and Itô‘s formula. A generalization of
such models, which are called fractional Itô stochastic
systems, have gained increasing attention in the recent
years. Such stochastic systems are driven by fractional
Brownian motion (fBm), which is characterized by a
special parameter called Hurst index (H). For
0:5\H\ 1, fBm represents a self-similar, non-semi-
martingale process with long range dependence.20

Finding solutions for fractional Itô stochastic differen-
tial equations has been investigated in a few articles
such as Zeng et al.,21 Nguyen,22 Arthi et al.23 and
Khandani et al.24 For stability analysis of such systems,
a mathematical tool has been proposed in Khandani
et al.,25 where the fractional infinitesimal operator has
been introduced and a Lyapunov stability theorem has
been proposed for linear Itô-type fractional stochastic
models. In Tamilalagan and Balasubramaniam,26 the
approximate controllability of a class of fractional sto-
chastic differential equations has been proposed. Very
few control methods for fractional Itô stochastic sys-
tems have been developed. For example, an SMC strat-
egy for linear fractional Itô stochastic systems driven
by fBm has been developed in Khandani et al.25,27

where it has been assumed that the states are available
for the controller design. In addition, Shi and Zhang28

addressed H‘ filtering and control problem of linear
fractional stochastic systems. In fractional stochastic
systems driven by fBm, estimating the states of systems
is even more critical since the system inherently features
fractional stochastic perturbations, which complicate
the observer design methods. There are numerous sys-
tems with fractional stochastic perturbations in which
obtaining the estimates of states is of great importance,
to name a few, wind turbine models,29 network traf-
fic,30 fluids models,31 and super-diffusion and sub-dif-
fusion.32 Estimation of the states of fractional
stochastic systems is vital for developing a successful
control approach. This is the motivation of the current
study.

In this article, we consider uncertain fractional Itô
stochastic systems with time-varying delay. We also
consider the effects of input nonlinearity in the system,
which is a practical issue. An SMC observer is devel-
oped to obtain the states of the system. Since the sto-
chastic system is driven by fractional Brownian motion
and the dynamics of the closed-loop system cannot be
analyzed by traditional stochastic calculus, we utilized
fractional infinitesimal operator to obtain the error sta-
bility conditions in terms of LMIs, which can be
straightforwardly checked for feasibility. It has also
been shown that the proposed SMC approach can be

applied to control a fractional Itô system with known
states. Briefly, the novelties of this article lie in the fol-
lowing directions:

� A novel non-fragile observer system, which is
robust against parameter variations, is proposed.
The system can handle the mentioned issues in esti-
mating the states of Itô-type fractional stochastic
systems driven by fractional Brownian motion.

� The overall stability of the closed-loop system is
proven via generalized infinitesimal generator and
novel Lyapunov functionals.

The rest of the article is organized as follows: In
Section 2, the problem is defined and the preliminaries
are given. In Section 3, the main results of the article
are proposed and proven. In Section 4, a numerical
example is given. In Section 5, we present the
conclusion.

The problem statement and preliminaries

Consider the following fractional Itô stochastic system
with input nonlinearity and time-varying delay

dx tð Þ= A+DA tð Þð Þx tð Þ+ A1 +DA1 tð Þð Þx t� h tð Þð Þð
+B; uð Þ+ f x, tð ÞÞdt+Gx tð ÞdBH tð Þ

y tð Þ=Cx tð Þ
x tð Þ=u tð Þ, t 2 �h, 0½ �

8>>>><
>>>>:

ð1Þ

where x tð Þ, u tð Þ and y tð Þ are the state variables, input
and measured output vectors, respectively; u tð Þ is a
continuous vector-valued initial function; A, A1, B, G,
and C are real constant matrices of appropriate dimen-
sions and B is a full-column-rank matrix.BH tð Þ is the
fractional Brownian motion with Hurst parameter (H)
0:5\H\ 1; ; uð Þ is a continuous function vector;
f x, tð Þ is the mismatched function satisfying f 0, tð Þ=0
and

f x1, tð Þ � f x2, tð Þk kł r x1 � x2k k ð2Þ

where r is a known positive constant. h tð Þ denotes the
time-varying delay and satisfies

0ł h tð Þł h, _h tð Þł �h\ 1 ð3Þ

DA tð Þ and DA1 tð Þ are the uncertainties in the form of

DA tð ÞDA1 tð Þ½ �=DF tð Þ EE1½ � ð4Þ

where D, E and E1 are real constant matrices and F :ð Þ
is an unknown time-varying matrix function satisfying
the following inequality
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FT tð ÞF tð Þł I ð5Þ

Assumption 1. The matrix pairs A,Bð Þ and A,Cð Þ are
stabilizable and detectable, respectively.

Assumption 2. The mismatched function f x, tð Þ satisfies

f x, tð Þ=X tð Þx tð Þ+X1 tð Þx t� h tð Þð Þ ð6Þ

where X tð Þ and X1 tð Þ are matrix functions of appropri-
ate dimensions.

Assumption 3. The nonlinear input ; uð Þ applied to the
system satisfies

uT; uð Þø xuTu ð7Þ

where x is a positive constant and ; 0ð Þ=0.

Lemma 1. Schur complement. Given a symmetric matrix

O=
O11 O12

O21 O22

� �
, the following three statements are

equivalent

O\ 0,

O11 \ 0,O22 � O12
TO11

�1O12 \ 0,

O22 \ 0,O11 � O12O22
�1O12

T \ 0

ð8Þ

Lemma 2. Let R, J, and P tð Þ be real matrices of appro-
priate dimensions with P tð Þ satisfying equation (5) and
scalar e . 0, then the following inequality holds

RP tð ÞJ+ JTPT tð ÞRT ł eRRT +
1

e
JTJ ð9Þ

Lemma 3. Let R, J, Z and P tð Þ be real matrices of
appropriate dimensions with P tð Þ satisfying equation
(5). Then we can write

R+ JP tð ÞZ+ZTPT tð ÞJT \ 0 ð10Þ

if and only if there exists some scalar e . 0 such that

R+ eJJT + e�1ZTZ\ 0 ð11Þ

Definition 1. Consider the stochastic differential equation25

dx tð Þ= a x, tð Þdt+ b x, tð ÞdBH tð Þ ð12Þ

where a x, tð Þ and b x, tð Þ are real-valued linear functions
and the Hurst parameter satisfies 0:5\H\ 1. From
fractional Itô’s formula, the fractional infinitesimal
operator LH is defined as

LH : =
∂

∂t
+

∂

∂x
a x, tð Þ+ b x, tð Þ ∂

2

∂x2
Du

t x tð Þ ð13Þ

where Du
t x tð Þ is the Malliavin derivative of x tð Þ defined

as

Du
t x tð Þ= x tð Þ

ðt

0

u t, sð ÞG sð Þds8t 2 0,T½ � ð14Þ

and the function u s, tð Þ is as given below:

u s, tð Þ=H 2H� 1ð Þ s� tj j2H�2 ð15Þ

Theorem 1. Consider a stochastic system driven by fBm
given in equation (12).25 Provided that there exists a
function V x, tð Þ 2 C2, 1 such that

V 0, tð Þ=0,a1 xk kłV x, tð Þ,Vx x, tð Þb x, tð Þ 2 L 0,Tð Þ
ð16Þ

for all x, tð Þ 2 Sh 3R+ and L 0,Tð Þ defined in
Definition 1 in Khandani et al.,25 and Vx x, tð Þ the deri-
vative of V x, tð Þ with respect to x, then the trivial solu-
tion of equation (12) is stochastically stable if:

LHV x, tð Þł 0 ð17Þ

where LH is defined in equation (13).

Remark 1. Note that the order of the dynamics of the
fractional stochastic system introduced in equation (1)
is integer, which is driven by fractional Brownian
motion. This should not be confused with fractional-
order systems with non-integer derivatives.

Remark 2. In Parvizian et al.,9 the problem of SMC
design for fractional-order Markovian jump systems
has been addressed, where the order of the systems is
fractional and the systems are subject to random para-
meter changes. For such systems, Itô’s formula and the
classical infinitesimal generator can be utilized to
obtain the results. However, in the present article, the
order of the systems is integer but the systems are dri-
ven by fractional Brownian motion. Such complicated
systems presented in equation (1) cannot be investi-
gated via classical tools in stochastic mathematics and
the diffusive representation approach used in Parvizian
et al.9 cannot be applied here. We have used the gener-
alized infinitesimal generator equation (13) to prove
the stability theorems. Challenging limitations are
caused by the appearance of the Malliavin derivative in
the fractional infinitesimal operator, which are dealt
with by novel Lyapunov functionals.
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Main results

Non-fragile observer design for the fractional Itô
stochastic system

We propose the following non-fragile state observer to
estimate the states of the uncertain fractional stochastic
system equation (1) as

_̂x tð Þ=Ax̂ tð Þ+A1x̂ t� h tð Þð Þ+B; uð Þ+ f x̂, tð Þ
+ L+DL tð Þð Þ y tð Þ � Cx̂ tð Þð Þ

ŷ tð Þ=Cx̂ tð Þ

8<
: ð18Þ

where L is the observer gain to be designed later and
DL tð Þ is a nonlinear function matrix satisfying

DL tð Þk kł d ð19Þ

where d is a positive constant. Defining the estimation
error as e : = x� x̂, the error system is obtained from
equations (1) and (18) as

_e tð Þ= A+DA� LC� DLCð Þe tð Þ+ A1 +DA1ð Þe t� h tð Þð Þ+DA1x̂ t� h tð Þð Þð
+DAx̂ tð Þ+ f x, tð Þ � f x̂, tð ÞÞdt+ Ge tð Þ+Gx̂ tð Þð ÞdBH tð Þ

ye tð Þ=Ce tð Þ

8><
>: ð20Þ

A switching function is chosen as follows

s tð Þ=s tð Þ+BTx̂ tð Þ ð21Þ

with

_s tð Þ=BTBKx̂ tð Þ � BTAx̂ tð Þ
� BTA1x̂ t� h tð Þð Þ � BTf x̂, tð Þ

where the matrix K is to be chosen later and BTB is
nonsingular.

The control input u tð Þ in equation (1) should be
appropriately designed such that the estimated states in
system equation (18) are driven toward the sliding sur-
face even when the input nonlinearity is present. The
SMC law is derived as follows

u tð Þ=� s tð Þ
s tð Þk kc x̂ð Þ ð22Þ

where

c x̂ð Þ= 1

x
Kx̂ tð Þk k+ d BTB

� ��1
BT

��� ��� y tð Þ � Cx̂ tð Þð Þk k
�

+ BTB
� ��1

BTL y tð Þ � Cx̂ tð Þð Þ
��� ���+ j

�

where j is an arbitrarily-chosen positive scalar. The fol-
lowing theorem establishes the reachability of the slid-
ing surface.

Theorem 2. If the control input u tð Þ is designed as in
equation (22), then the trajectories of the observer sys-
tem equation (18) will converge to the sliding surface
s tð Þ=0 in finite time.

Proof. Let

V1 tð Þ=s tð ÞT BTB
� ��1

s tð Þ ð23Þ

From equations (18) and (21), we have

_s tð Þ=BTBKx̂ tð Þ+BTB; uð Þ
+BT L+DL tð Þð Þ y tð Þ � Cx̂ tð Þð Þ

ð24Þ

Then it follows from equations (23) and (24) that

_V1 tð Þ=2s tð ÞTKx̂ tð Þ+2s tð ÞT; uð Þ+2s tð ÞT BTB
� ��1

BT L+DL tð Þð Þ y tð Þ � Cx̂ tð Þð Þł

2s tð ÞT; uð Þ+2 s tð Þk k Kx̂ tð Þk k+ d BTB
� ��1

BT
��� ����

3 y tð Þ � Cx̂ tð Þð Þk k+

BTB
� ��1

BTL y tð Þ � Cx̂ tð Þð Þ
��� ���� ð25Þ

From equation (22) and Assumption 3 we obtain

uT; uð Þ=� s tð ÞT

s tð Þk kc x̂ð Þ; uð Þø x c x̂ð Þð Þ2 ð26Þ

which results in

s tð ÞT; uð Þł� xc x̂ð Þ s tð Þk k ð27Þ

Substituting equation (27) into equation (25) we
obtain

_V1 tð Þł� j s tð Þk k\ 0 for s tð Þk k 6¼ 0 ð28Þ

which proves that the error trajectories reach the sliding
surface in finite time. j

Stability analysis

From _s tð Þ=0, the following equivalent control law can
be obtained
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;eq uð Þ=

� Kx̂ tð Þ+ BTB
� ��1

BT L+DL tð Þð Þ y tð Þ � Cx̂ tð Þð Þ
� � ð29Þ

In order to obtain the sliding mode dynamics in the
state estimation space, we substitute equation (29) into
the non-fragile state observer dynamics equation (18),
which results in

x̂
:

tð Þ= A� BKð Þx̂ tð Þ+A1x̂ t� h tð Þð Þ+ f x̂, tð Þ

+ I� B BTB
� ��1

BT
� �

L+DL tð Þð Þ y tð Þ � Cx̂ tð Þð Þ

ð30Þ

In the following theorem, the sufficient conditions
for the stability of the overall closed-loop system are
presented. We will derive the results in terms of LMIs
which are straightforward to check the stability.

Theorem 3. Consider the error system equation (20), the
switching function equation (21), and the sliding mode
dynamics equation (30); The SMC law is chosen as in
equation (22). Then the overall closed-loop system
described by equations (20) and (30) is stochastically
stable (stable in probability) provided that there exist
matrices X. 0, Y. 0, Q1 . 0, Q2 . 0, and scalars ei . 0
i=1� 6ð Þ satisfying the following LMI

C =

C11 XA1 + e1ETE1 0 0 N1

� e1E1
TE1 � 1� �h

� �
Q2 0 0 0

� � C33 XA1 + e2ETE1 N2

� � � e2E1
TE1 � 1� �h

� �
Q1 0

� � � � N3

2
6666664

3
7777775

\ 0

ð31Þ

with

Y= I� B BTB
� ��1

BT
� �

C11 = X A� BKð Þ+ A� BKð ÞTX
� �

+ e1E
TE+Q2 + e6r

2I

C33 =ATX+XA� YC� CTYT + e2E
TE

+ e3d2CTC+ e4d
2CTC+Q1 + e5r

2I

N1 = XY XY X 0 0 0 0 0½ �

N2 = 0 0 0 CTYT XD XD X X
	 


N3 = diag

�X �e3I �e6I �X �e1I �e2I �e4I �e5If g

and �h defined in equation (3). The state observer gain is
also obtained as:

L=X�1Y

Proof. Choose the following Lyapunov functional
candidate

V2 tð Þ= e tð ÞTXe tð Þ+
ðt

t�h tð Þ

e sð ÞTQ1e sð Þds+ x̂ tð ÞTXx̂ tð Þ

8><
>: +

ðt

t�h tð Þ

x̂ sð ÞTQ2x̂ sð Þds

1
CA3 e

�l
Ð t
0

Ð s

0
u s, tð Þdtds ð32Þ

Then, by utilizing equations (13), (20) and (30), it fol-
lows that

LHV2 tð Þ= 2e tð ÞTX A� LCð Þe tð Þ � 2e tð ÞTX DLCð Þe tð Þ
n

+2e tð ÞTX DAð Þe tð Þ+
2e tð ÞTXA1e t� h tð Þð Þ+2e tð ÞTX DA1ð Þe t� h tð Þð Þ
+2e tð ÞTX f x, tð Þ � f x̂, tð Þð Þ
+2e tð ÞTXDAx̂ tð Þ+2e tð ÞTXDA1x̂ t� h tð Þð Þ

+ e tð ÞTQ1e tð Þ � 1� _h tð Þ
� �

e t� h tð Þð ÞTQ1e t� h tð Þð Þ

+2x̂ tð ÞTX A� BKð Þx̂ tð Þ+2x̂ tð ÞTXA1x̂ t� h tð Þð Þ

+2x̂ tð ÞTX I� B BTB
� ��1

BT
� �

LC
� �

e tð Þ

+2x̂ tð ÞTX I� B BTB
� ��1

BT
� �

DLC
� �

e tð Þ

+2x̂ tð ÞTXf x̂, tð Þ+ x̂ tð ÞTQ2x̂ tð Þ

� 1� _h tð Þ
� �

x̂ t� h tð Þð ÞTQ2x̂ t� h tð Þð Þ
o

3

e�l t
0
s
0
u s, tð Þdtds

+ e tð ÞTGTXGe tð Þ+ x̂ tð ÞTGTXGx̂ tð Þ
n

+2e tð ÞTGTXGx̂ tð Þ:� le tð ÞTXe tð Þ�

l

ðt

t�h tð Þ

e sð ÞTQ1e sð Þds� lx̂T tð ÞXx̂ tð Þ�l

ðt

t�h tð Þ

x̂T sð ÞQx̂ sð Þds

9>=
>;3

ðt

0

u t, sð Þdse�l
Ð t

0

Ð s

0
u s, tð Þdtds

ð33Þ
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Provided that a sufficiently large value is chosen for
l, the last term in equation (33) will vanish, then by
employing Lemma 2, we obtain from equation (33)

LHV2 tð Þłw1 tð ÞTFw1 tð Þ3 e
�l
Ð t
0

Ð s

0
u s, tð Þdtds ð34Þ

where
w1 tð Þ= x̂T tð Þ x̂T t� h tð Þð Þ eT tð Þ eT t� h tð Þð Þ

	 
T
,

and

F=

F11 XA1 + e1ETE1 0 0

� e1E1
TE1 � 1� �h

� �
Q2 0 0

� � F33 XA1 + e2ETE1

� � � e2E1
TE1 � 1� �h

� �
Q1

2
6664

3
7775

ð35Þ

with

F11 = X A� BKð Þ+ A� BKð ÞTX
� �

+XYX�1YTX+
1

e3
XYYTX+ e1E

TE+Q2

+
1

e6
XX+ e6r

2I

F33 =ATX+XA+ e1
�1XDDTX

+CTYTX�1YC+ e2
�1XDDTX+ e2E

TE

+ e3d
2CTC� YC�

CTYT + e4
�1XX+ e4d

2CTC+Q1 +
1

e5
XX+ e5r2I

Therefore from Lemma 1, F \ 0 is resulted if LMIs
equation (31) hold, this means that LHV2 tð Þ\ 0, which
shows the closed-loop system is stochastically stable.
Then the proof is completed. j

Full state feedback for SMC

In this section, we investigate the state-feedback SMC
problem for the fractional stochastic system equation
(1) with known states. The sliding mode switching func-
tion is chosen as

s1 tð Þ=s1 tð Þ+BTx tð Þ ð36Þ

with

ds1 tð Þ= BTBKx tð Þ � BTAx tð Þ
�
�BTA1x t� h tð Þð Þ � BTf x, tð ÞÞdt
� BTGx tð ÞdBH tð Þ

From equations (1) and (36), we have

ds1 tð Þ=BTBKx tð Þ+BTDAx tð Þ
+BTDA1x t� h tð Þð Þ+BTB; uð Þ

ð37Þ

and the SMC law is derived as follows

u tð Þ=� s1 tð Þ
s1 tð Þk kc xð Þ ð38Þ

where

c xð Þ= 1

x

Kx tð Þk k+ BTB
� ��1

BTU
��� ���: Ex tð Þk k+ E1x t� h tð Þð Þk kð Þ+ j

� �

Remark 3. In order to avoid singularity we replace s tð Þ
s tð Þk k

in equation (22) with sgn s tð Þð Þ, sgn s tð Þð Þ ¼D s tð Þ
s tð Þk k for

s tð Þ 6¼ 0 and sgn s tð Þð Þ¼D 0 for s tð Þ=0, s tð Þ 2Rq &02Rq.
With this replacement, the stability proof will not be
different from the presented proof. Also s tð Þ 2Rq is a
vector with the same dimension as u tð Þ 2Rq.

Remark 4. To avoid singularity in simulations, we

replace s tð Þ
s tð Þk k

s1 tð Þ
s1 tð Þk k

� �
with s tð Þ

s tð Þk k+m

s1 tð Þ
s1 tð Þ+mk k

� �
in the

SMC law equations (22) and (38) (m is a small con-
stant). It is also worth mentioning that since the states
slide on the sliding surface s tð Þ=0, chattering is inevi-
table. However, by taking j in equations (22) and (38)
a small constant, we can reduce this effect.

Theorem 4. If the control input u tð Þ is designed as equa-
tion (38), then the trajectories of the system equation
(1) will converge to the sliding surface s1 tð Þ=0 in finite
time.

Proof. By choosing the Lyapunov function V3 tð Þ=
1=2 sT1 tð Þ BTBð Þ�1s1 tð Þ
� �

, we can prove that the sliding

surface equation (36) is reachable. Due to space limit,
the details are omitted. j

The equivalent control law can be obtained as
follows

;eq uð Þ=

� Kx̂ tð Þ+ BTB
� ��1

BT DAx tð Þ+DA1x t� h tð Þð Þð Þ
� �

ð39Þ

From equations (1) and (39), we obtain the sliding
mode dynamics as follows
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dx tð Þ= A� BKð Þx tð Þ+A1x t� h tð Þð Þð
+Y DAx tð Þ+DA1x t� h tð Þð Þð Þ
+ f x, tð ÞÞdt+Gx tð ÞdBH tð Þ

ð40Þ

In the following, the stability conditions of the
dynamics in equation (40) are obtained in terms of
LMIs.

Theorem 5. Consider the fractional stochastic system
equation (1) and the switching function equation (36).
The SMC law is chosen as in equation (38). This system
is robustly stable in probability if there exist matrices
X. 0, Q. 0, K and scalars ei . 0 i=1� 5ð Þ that sat-
isfy the following:

Y=

Y1 A1 + e3ETE1 XB XB XU X 0 0 0 0
� Y2 0 0 0 0 0 0 0 0
� � �e1BTB 0 0 0 0 0 0 0
� � � �e2BTB 0 0 0 0 0 0
� � � � �e3 0 0 0 0 0
� � � � � �e4 0 0 0 0
� � � � � � �e1 0 e1U 0
� � � � � � � �e2 0 e1U
� � � � � � � � �e5 0
� � � � � � � � � �e5

2
666666666666664

3
777777777777775

\ 0 ð41Þ

with

Y1 = X A� BKð Þ+ A� BKð ÞTX
� �

+ e3E
TE+Q+ e4r

2I+ e5E
TE

Y2 = e3E
T
1E1 � 1� �h

� �
Q+ e5E

T
1E1

Proof. Let the Lyapunov function candidate be chosen
as follows

V4 x, tð Þ= xT tð ÞXx tð Þ+
ðt

t�h tð Þ

xT sð ÞQx sð Þds

0
B@

1
CA

3 e
�l
Ð t

0

Ð s

0
u s, tð Þdtds

ð42Þ

By using fractional It ô’s formula, we have

dV4 x, tð Þ=LHV4 x, tð Þ+2xT tð ÞXGx tð Þ

3 e
�l
Ð t
0

Ð s

0
u s, tð Þdtds

dBH tð Þ
ð43Þ

with

LHV4 x, tð Þ= 2xT tð ÞX A� BKð Þx tð Þ+2xT tð ÞXYDA tð Þx tð Þ
�

+2xT tð ÞXA1x t� h tð Þð Þ

+2xT tð ÞXYDA1 tð Þx t� h tð Þð Þ+2xT tð ÞXf x, tð Þ+ xT tð ÞQx tð Þ � 1� _h tð Þ
� �

xT t� h tð Þð ÞQx t� h tð Þð Þ
o

3 e
�l
Ð t

0

Ð s
0

u s, tð Þdtds
+2xT tð ÞGTXGx tð Þ � lxT tð ÞXx tð Þ � l

ðt
t�h tð Þ

xT sð ÞQx sð Þds

ðt

0

u t, sð Þds3 e
�l
Ð t

0

Ð s

0
u s, tð Þdtds

ð44Þ

Similar to the proof of Theorem 3, by choosing l a
sufficiently large number such that the last term in
equation (44) vanishes, and also using Lemma 2, it is
resulted that

LHV4 x, tð Þ\wT
2 tð ÞXw2 tð Þ3 e

�l
Ð t
0

Ð s

0
u s, tð Þdtds ð45Þ

where w2 tð Þ= xT tð Þ xT t� h tð Þð Þ
	 
T

, and

X=
X1 XA1 + e3ETE1

� e3ET
1E1 � 1� �h

� �
Q+ e2DAT

1 tð ÞDA1 tð Þ

� �

with

X1 = X A� BKð Þ+ A� BKð ÞTX
� �

+ e�11 XB BTB
� ��1

BTX+ e�12 XB BTB
� ��1

BTX

+ e3
�1XUUTX+ e3E

TE+ e1DA
T tð ÞDA tð Þ

+Q+ e�14 XX+ e4r
2I

Using Lemma 1 several times, the condition X\ 0 is
equivalent to

P+Y1F tð ÞY2 + Y1F tð ÞY2ð ÞT \ 0 ð46Þ

where
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P=

P1 XA1 + e3ETE1 XB XB XU X 0 0
� e3ET

1E1 � 1� �h
� �

Q 0 0 0 0 0 0
� � �e1BTB 0 0 0 0 0
� � � �e2BTB 0 0 0 0
� � � � �e3 0 0 0
� � � � � �e4 0 0
� � � � � � �e1 0
� � � � � � � �e2

2
66666666664

3
77777777775

with

P1 = X A� BKð Þ+ A� BKð ÞTX
� �

+ e3E
TE+Q+ e4r

2I

and

Y1 =

ET 0

0 ET
1

06n3 n 06n3 n

2
64

3
75,F tð Þ=

F tð Þ 0

0 F tð Þ

� �
,

Y2 =
0n3 6n UTe1 0

0n3 6n 0 UTe2

� �

Using Lemma 3, inequality equation (46) holds if
and only if the following is satisfied

P+ e5Y1Y
T
1 + e�15 YT

2 Y2 \ 0 ð47Þ

Using Lemma 1, inequality equation (47) is equiva-
lent to equation (41). This completes the proof.

Remark 5. The number of decision variables and the
number of LMIs are the two important factors in sol-
ving LMIs. In our problem, the number of LMIs is
fixed and the number of decision variables is a function
of the system order. As we know, any LMI toolbox
such as YALMIP in MATLAB can solve any arbitrary-
dimensional LMIs (increasing the number of decision
variables cause more processing). Therefore, the stabi-
lity conditions equations (31) and (41) can be solved
easily by YALMIP toolbox and verifying the feasibility
of the proposed LMIs proves the stability. Note that
since sufficient stability conditions have been proposed,
infeasibility of the proposed LMIs does not imply
instability. However, regarding the feasibility of the
proposed LMIs in comparison with similar approaches
such as integral SMC proposed in Khandani et al.,25 it
is worth mentioning that since the restricting condition
on the design matrix (equation (32) in Khandani
et al.25) does not exist in this work, then the proposed
LMIs are less conservative.

Simulation results

We consider the system equations (1) and (18) with the
following numerical values

A=

�3 1 0

0:3 �2:5 1

�0:1 0:3 �3:8

2
64

3
75,

A1 =

�0:1 0 0:2

0:1 0 �0:1
0 0:1 0

2
64

3
75, B=

1 1

0 1

2 1

2
64

3
75,

C=
2 �1 0

�1 1 1

� �
,

D=

0:2 0:2 0:2

0 0:2 0:1

0 0 0:3

2
64

3
75, E=

0:2 0 0

0 0:2 0

0:2 0:2 1

2
64

3
75,

E1 =

0:1 0 0

0 0:1 0

0:1 0 0:1

2
64

3
75,

G=

0:012 0:012 0:012

0:012 0:012 0:012

0:012 0:012 0:012

2
64

3
75

The perturbation observer gain, the nonlinear input
and the other parameters are given as follows

DL=

0:05 sin tð Þ 0:2 sin tð Þ
0:1 sin tð Þ 0:3 sin tð Þ
0:1 sin tð Þ 0:3 sin tð Þ

2
64

3
75,

; uð Þ= 0:8+0:3sin uð Þð Þu, x =0:5, d=0:5,

�h=0:5, j =0:001, r =0:5, H=0:7

The function F tð Þ, the time-varying delay h tð Þ and
the function f x, tð Þ are chosen as

F tð Þ=0:5sin 4tð Þ, h tð Þ=0:5 cos tð Þ,
f x, tð Þ=0:1 sin tð Þ x3 x1 x2½ �

We first choose K and then we solve LMI equation
(31), and determine other parameters. So by choosing

K=
0:1450 5:9899 10:6121
12:1506 7:8498 �14:7590

� �

and then solving the proposed LMIs in Theorem 3, the
following results are obtained
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L=

0:5618 0:4655

0:2829 0:6249

0:3137 0:4361

2
64

3
75,

X=

22:2283 �7:6382 �8:3119
�7:6382 13:6318 3:7571

�8:3119 3:7571 16:3889

2
64

3
75,

Q1 =

19:9702 �6:5747 �11:1064
�6:5747 21:6024 �5:1074
�11:1064 �5:1074 35:0890

2
64

3
75,

Q2 =

78:6196 45:7292 18:7516

45:7292 72:1607 15:5245

18:7516 15:5245 88:0699

2
64

3
75

The initial states are set as x̂ 0ð Þ= �4 �2:5 3½ �T
and x 0ð Þ= �2 �1 2½ �T. For two different values of

the Hurst parameter (H), the simulation results are
given in Figures 1–6. ForH=0:7, the state trajectories,
the estimated states and the corresponding errors are
shown in Figures 1–3, which illustrate that the estima-
tion error converges to zero by employing the SMC law
in equation (22). The sliding mode variables are shown
in Figure 4. The simulations have been carried out for
10 individual fBm paths that are shown in dotted lines
with the corresponding averages in solid lines. It can be
observed that the trajectories of the states converge to
zero and the overall closed-loop system is stochastically
stabilized under the proposed SMC law. Furthermore,
forH=0:85, the simulation results are given in Figures
5 and 6 which show that the observer and controller
can deal with the impact of the fractional Brownian
motion and the results are satisfactory. By increasing
the Hurst parameter, the effect of fractional Brownian
motion is more destructive though, and despite the fact
that the stability is ensured, the simulation results

Figure 1. Trajectories of the states x tð Þ for H = 0:7.

Figure 2. Trajectories of the state estimates x̂ tð Þ for H = 0:7.
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Figure 3. Trajectories of the estimation errors e tð Þ for H = 0:7.

Figure 4. Trajectories of the sliding mode variable s tð Þ for H = 0:7.

Figure 5. Trajectories of the states x tð Þ for H = 0:85.
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Figure 6. Trajectories of the state estimates x̂ tð Þ for H = 0:85.

Figure 7. Trajectories of the states x tð Þ for H = 0:5.

Figure 8. Trajectories of the state estimates x̂ tð Þ for H = 0:5.
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indicate that the convergence of the state trajectories
and the state estimates take place more slowly.

Since the proposed method considers a generalized
class of stochastic systems, it can be applied to non-
fractional stochastic systems driven by Brownian
motion by setting the Hurst parameter H=0:5. As a
matter of fact, classical stochastic systems are a special
case of fractional stochastic systems investigated in this
article. Figures 7 and 8 illustrate this fact where the tra-
jectories of the states and the estimated states have been
depicted for a classical stochastic system. Obviously,
the strategy works effectively in this case as well.

Conclusion

In this article, a novel observer has been designed for
fractional Itô stochastic systems with uncertain para-
meters, input nonlinearity and time-varying delay.
SMC design framework has been employed to derive
the results. The proposed non-fragile observer guaran-
tees that the estimation error system is stable in prob-
ability. To this end, a sliding surface has been
introduced and it is proven that this surface is reach-
able in finite time. In addition, the stochastic stability
of the sliding motion has been proven via a set of linear
matrix inequalities. Finally, the SMC design for the
fractional Itô stochastic systems with time-varying
delay and input nonlinearity with known states has
been presented. The simulation example supports the
theoretical claims.
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