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Masked Multiple State Space Model
Identification Using FRD and

Evolutionary Optimization
Mehmet Önder Efe , Burak Kürkçü , Coşku Kasnakoğlu , Zaharuddin Mohamed ,

and Zhijie Liu , Member, IEEE

Abstract—Identification of dynamical systems from fre-
quency response data (FRD) has extensively been stud-
ied and effective techniques have been developed. Given
different FRD sets obtained from different systems and a
fixed state space model structure, is it possible to find a
constant parameter vector containing (A,B,C,D) quadru-
ple’s numerical content and a FRD-associated mask vector
set that approximates the spectral information available in
each FRD set? This article proposes a genetic algorithm
based optimization approach to determine the real parame-
ter vector (A,B,C,D) and the binary mask vector through
a sequential optimization scheme. We study state space
models for matching FRD from multiple systems. Results
show that the proposed optimization approach solves the
problem and compresses multiple dynamical models into a
single masked one.

Index Terms—Genetic algorithms (GAs), identification,
masked models, optimization, state space models.

NOMENCLATURE

αb Random vector containing zeros and ones.
γc Small positive value for mutation operator in real

parameter optimization subroutine.
λm Relative importance weight of the magnitude

term.
λp Relative importance weight of the phase term.
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λs Relative importance weight of the stability term.
B Real set containing only 0 and 1.
R Set of real numbers.
A,B,C,D System matrices.
M Concatenated form of mask matrices.
m Concatenated (row) mask vector.
m∗ Best value of the concatenated mask vector ob-

served so far.
ml Adjustable real parameter vector for the lth FRD.
W Concatenated form of system matrices.
w Adjustable real parameter vector.
w∗ Best value of the parameter vector observed so far.
x State vector.
xs State vector of the subspace method.
Sb{·} Random initializer of binary vector sets.
Sc{·} Random initializer of real vector sets.
μb Threshold value for mutation operator in binary

parameter optimization subroutine.
μc Threshold value for mutation operator in real pa-

rameter optimization subroutine.
ωlp pth frequency point in the lth FRD.
σc Constant for mutation operator in real parameter

optimization subroutine.
Υ Row generating operator.
{m}nb

1 Mask vector population.
{w}nc

1 Parameter vector population.
dlp pth measured value in lth FRD.
gmax Maximum iteration (generation) number.
J Cost (loss) function.
L Number of different systems to be identified.
nb Population size for binary search.
nc Population size for real search.
nCb Number of binary offsprings generated at each

generation.
nCc Number of real offsprings generated at each

generation.
nc Population size for real parameter search.
Pl Number of rows in lth FRD.
rc Normal distributed random variable (N (0, 1)).
rm Uniformly distributed random variable from (0,1).
u Input of the state space system.
y Output of the state space system.
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ys Output of the subspace identification method
based model.

I. INTRODUCTION

SYSTEM identification has been a core issue for many
decades and as the tools of data acquisition become easily

accessible, the identification algorithms constitute the crux of the
control system design process and effective algorithms emerge.
Many successful approaches have been proposed in the past and
the ones based on frequency response data (FRD) had numerous
industrial and scientific consequences.

Given a frequency response dataset obtained over a set of
frequency points, a parameterized model can be tuned to match
the magnitude and phase information available in the FRD, [1],
[2], [3], [4]. The tuned model is accompanied by a performance
level that is tightly dependent upon the order of the model.
In the literature, techniques yielding the transfer function (TF)
models have become popular, and commercial software adopt
such techniques for practicing engineers, [5], [6]. For single-
input-single-output (SISO) TF models of order n have at most
2n adjustable parameters and depending on the complexity of
the given FRD, large values of n may be inevitable, [7]. The
same SISO system identification problem can be cast into state
space models as well. In such a setting, the matrices embodying
the system require tuning of (n+ 1)2 parameters. Obviously,
the search space for state space models have more flexibil-
ity than TF models and in this article, we adopt state space
models.

Toward this goal, many aspects of the system identification
problem has been scrutinized in the past. Identification of lin-
ear/nonlinear systems under the presence of noise has been
considered in [8], [9], [10], [11], linear and parameter varying
(LPV) model identification using neural networks is reported
by [12], [13], [14], using block structured architecture [15] and
numerical algorithms for subspace identification (N4SID) have
been studied in [16] and [17], subspace identification based on
FRD is reported in [18]. Regarding the subspace identification
approaches, identification from time domain data using com-
bined invariant subspace and subspace identification method
has been proposed by [19]. Modeling of the latent dynamics
in state space for high dimensional time series in [20] and use
of conditional maximum likelihood identification in the context
of identifying one general state space system in [21] are the
remarkable works reporting successful results. Identification of
Hammerstein–Wiener systems using a combination of gravi-
tational search algorithm and particle swarm optimization is
presented in [22]. Closed-loop delta-operator-based subspace
identification method for continuous-time systems is proposed
in [23], where instrumental variable method and principal com-
ponent analysis are utilized to solve the problems of biased
results as the system operates in closed loop. Identification of
convergent continuous-time Lur’e-type state space systems is
studied in [24] and use of machine learning has been introduced
as a remedy to the data driven identification of dynamical
systems [25], [26].

The works cited so far considered single FRD, i.e., a set
of frequency points and a set of associated complex numbers,
describing the state space system numerically and indirectly.
The optimization process finds a set of real parameters, which
are the numerical content of (A,B,C,D) matrices for a state
space system. After the modeling phase, those parameters are
frozen for the available datasets.

The importance of the problem addressed here is that multiple
state space systems can be obtained by switching from a single
mother system via mask vectors. Especially when hardware
applications are considered, the fact that many spectral features
can be implemented on a single hardware will lead to future
electronic systems being reduced in size and being designed
more effectively. Another field of application is to represent the
approximate dynamical behavior of irrational TFs, like heat flow
generating an infinite dimensional TF or processes governed by
partial differential equations, [27]. Further to these, the method
can be used to store a family of responses generated by varying
a particular design parameter of a unique system. For example, a
family of proportional integral and derivative (PID) controllers
working at multiple operating points [28] or filters [29] can be
contained within a single mother model. Last but not the least, the
approach presented here is extendable to discrete time systems.

Now consider a set of frequency points and more than one
FRD sets (frequency responses) associated to different sys-
tems, choose a state space model and simultaneously tune the
(A,B,C,D) matrices in such a way that different switchings
reproduce the corresponding system’s FRD. The approach pro-
posed in this work makes use of the redundant capacity in a
given state space model in such a way that maximal overlaps
among the given datasets are discovered and their combinations
are activated via appropriate on/off switchings of the relevant
parameters to reproduce the FRD sets via a single, yet switched,
system also called a subsystem in the sequel.

The stage set for the problem involves optimizing a param-
eter set that contains real numbers and another parameter set
composed of binary numbers i.e., mask vectors. The former
establishes the system’s numerical content, while the latter
activates/deactivates the associated variables. This obviously
requires an iterative optimization and we adopt a genetic op-
timization approach for parameter tuning, which best suits the
needs of the current work. Our contribution to the subject area
explains the aforementioned optimization scheme for storing
multiple spectral information into a single mother state space
model.

This rest of this article is organized as follows: Section II
describes the problem analytically. Section III explains the
evolutionary approach adopted to solve the problem and the
algorithmic flow. Section IV is devoted the numerical studies.
Section V provides the comparison with subspace identification
method. Finally, Section VI concludes this article.

II. PROBLEM FORMULATION

Systems and control theory provides many useful alternatives
to reach a dynamic model that is based on a given FRD. These
approaches require choosing a model, then a fitting algorithm
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optimizes the model parameters in such a way that a chosen
loss function is minimized. Loss function may quantify the sim-
ilarity of spectral results or time domain results. The available
algorithms typically generate a TF that matches the given FRD,
which might have been obtained from a continuous time or
discrete time system, with what is generated by the developed
model, [1], [2], [3], [5], [6].

In the literature, we have very mature algorithms that are
based on single dataset based identification of systems, i.e., a
set of frequencies are selected and the corresponding complex
numbers are associated to each particular frequency, then a
model is devised. In this study, we propose an approach that
switches ONor switches OFF the values inside a state space
model such that each particular switching of the dynamic model
generates one of the given FRD sets. The question here is how
we could achieve such a real and binary variable set.

Let x ∈ Rn×1 be the state vector, u ∈ R be the scalar input
signal, y ∈ R be the output signal and A ∈ Rn×n, B ∈ Rn×1,
C ∈ R1×n and D ∈ R be the system matrices. A continuous
time dynamic system in state space can be given by (1)–(2) or
in (3), which we will call the mother system

ẋ = Ax+Bu (1)

y = Cx+Du (2)(
ẋ
y

)
=

(
A B
C D

)(
x
u

)
. (3)

Let there be L different FRD sets. For the lth FRD, let
Ml := (mlA mlB

mlC mlD
) ∈ B(n+1)×(n+1) be the mask matrix and

W := (A B
C D) ∈ R(n+1)×(n+1) be the parameter matrix that is

to be masked by Ml. The lth masked system that approximates
the lth FRD can be given as

ẋl = (mlA �A)xl + (mlB �B)u (4)

yl = (mlC �C)xl + (mlD �D)u (5)

where the operator � performs an element-wise multiplication
of its arguments and l = 1, 2, . . . , L. Let ai be the ith col-
umn of A, then we have A = (a1a2 . . . an). Define the row
generating operator Υ as Υ{A} := (aT1 a

T
2 . . . aTn ), which is

an 1× n2 vector. Now, define w := Υ{W}, ml := Υ{Ml},
m := (m1m2 . . .mL) and minimize the cost in the following:

J :=
λm

Pl

L∑
l=1

Pl∑
p=1

(
(20 log |dlp| − 20 log |yl(w,ml, ωlp)|)2

λp

Pl
∠ (dlp − yl(w,ml, ωlp))

2
)
+

λs

L∑
l=1

sgn (|λmax{mlA �A}|) + 1
2

(6)

where λm > 0, λp > 0, and λs > 0 are weight parameters de-
termining the relative importance of the magnitude, phase, and
the stability information, respectively. In above, ∠(.) is the
angle operator and λmax(·) stands for the maximum eigenvalue.
Choosing λs > 0 ensures performing search among solutions
having all left half plane (LHP) poles, i.e., stable models. For the

state space multiple model identification problem, the complex
number dlp is the scalar target value for the lth frequency
response dataset’s pth row and ωlp is the frequency value in
the lth dataset’s pth row, i.e.,

yl(w,ml, ωlp) = (mlC �C)(jωlpIn×n −mlA �A)−1×
(mlB �B) + (mlD �D) (7)

where

ml = Υ

{(
mlA mlB

mlC mlD

)}
,w = Υ

{(
A B
C D

)}
. (8)

Based on the above formulation, the inherent connection
between the mask and the mother system is defined in (4) and
(5), where Binary mask values and real parameter values are
to be optimized by minimizing the cost function given in (6).
For a frozen set of real parameters, every different mask vector
defines a new dynamical system, i.e., a new FRD. The crux of
the presented approach is to find out a good mask vector and a
good real parameter vector that fits all FRDs with an acceptable
cost value.

Denoting the concatenated set of frequencies by F and the
concatenated set of FRD sets by D, the optimization problem
for the multiple FRD identification problem can be given as
follows:

minimize J(w,m,F ,D)
s.t. w ∈ R1×(n+1)2

,m ∈ B1×L(n+1)2
(9)

where the order of the system, n, is chosen by the designer. The
value of λp in (6) determines the relative importance of phase in-
formation. If λp = 0, the optimization approach matches solely
the magnitudes and the resulting system may be a nonminimum
phase system although the FRD generating counterpart was a
minimum phase one, or vice versa. This is further strengthened
by using the third term in (6), where the stability of the masked
models are ensured by choosing an appropriate value for λs.
One has to note that models obtained via minimizing the cost
in (9) are valid only over the chosen frequency spectrum. At
this point, one could wonder why genetic algorithms (GAs) are
chosen instead of deterministic approaches. The answer to this
question is threefold: 1) Deterministic methods often struggle
in such scenarios as they attempt to evaluate the entire solution
space in a single step. In such cases, GAs can be more effective
due to their ability to explore potential solutions across a wide
search space through parallel computation and population-based
approaches. 2) Certain optimization problems tend to get stuck
in local minima with deterministic methods. Especially in com-
plex objective functions with multiple local minima, GAs may
perform better as they have the ability to explore potential
solutions across a broad search space. 3) If the optimization
problem exhibits a certain structure or characteristic as we
have here, GAs are more suitable for leveraging or adapting
to such structures. Remembering the search space containing
real and binary variables, it becomes comprehensible to advice
using GAs. In the next section, we explain how an evolutionary
algorithm based iterative approach can be implemented to solve
the problem.
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Fig. 1. Temporal flow of the optimization algorithm.

III. GENETIC ALGORITHMS

GAs have demonstrated very successful results in various
optimization problems. Their independence from the need for
derivatives in the loss function grants them significant prefer-
ence. This attribute becomes notably advantageous in certain
contexts, [30], [31]. In this section, we focus our discussion on
binary and real search algorithms tailored for the loss function
in (6). The challenge lies in establishing the hierarchy of binary
and real search subroutines.

The initial collection of mask vectors is chosen randomly
from Bnb×L(n+1)2

, where nb represents the number of candidate
solutions, corresponding to the population’s size. To identify
the best performing mask vector within this set, an initial
vector w is required. w is chosen randomly from R1×(n+1)2

.
The optimal mask vector is determined by evaluating the cost
J(w,m,F ,D).

The process involves a loop over generations denoted by g.
In the first phase of the loop, the binary subroutine manages
parent selection, crossover, mutation, and evaluates the cost for
the subsequent mask generation (m). The best performing mask
vector for the gth generation is established, with w remaining
unchanged.

For the real variable optimization, the first generation is
specially configured. The previously used w is included in the
first generation, derived from Rnc×(n+1)2

. Here, nc denotes the
population size for the GA that optimizes the real variables
(A,B,C,D) of the optimization problem. The other entries,
excluding the initial w vector, are randomly assigned in the
first generation. The real variable optimization employs the
best mask vector from the preceding subroutine, generating
the next iteration through parent selection, crossover, mutation
operations, and cost evaluation using (6). Subsequently, a new
population of w vectors is obtained, and the loop progresses by
returning to the binary (mask) optimization stage utilizing the
best w vector found. This process is summarized in Algorithm 1
and depicted in Fig. 1. In Fig. 1, g = 1 stage, a random real vector
(w) enters and an optimized mask (m) is generated for the next
generation.

In Fig. 1, each generation comprises two consecutive sub-
routines. The sequence starts with w[0] and, after acquiring the
optimal mask (m�), the algorithm seeks the best real vector
(w�), and so forth. The essence of this optimization process
lies in the fact that the binary subroutine uses the locally best
parameter vector (w�), while the real optimization process
employs the locally best mask vector (m�) from consecutive

Algorithm 1: Evolutionary Search for m and w.

1: Initial mask generation Sb{{m}nb
1 }

2: Initial parameter vector Sc{w} (w∗ initially)
3: for g = 1 to gmax do
4: %Binary optimization subroutine
5: Parent selection from {m}nb

1
6: Crossover among selected (binary) parents
7: Mutation in {m}nb

1
8: Cost evaluation with {m}nb

1 and w∗

9: Sort and select
10: Choose current best

m∗ ← argminJ({m}nb
1 ,w∗,F ,D)

11: % Real optimization subroutine
12: if g == 1 then
13: Initial parameter generation Sc{{w}nc−1

1 }
14: Append w∗ (used initially) as nth

c candidate
15: end if
16: Parent selection from {w}nc

1
17: Crossover among selected (real) parents
18: Mutation in {w}nc

1
19: Cost evaluation with {w}nc

1 and m∗

20: Sort and select
21: Choose current best

w∗ ← argmin J(m∗, {w}nb
1 ,F ,D)

22: if J <= tolerance then
23: Exit
24: end if
25: end for

generations. This iterative procedure gradually minimizes the
cost denoted by J in (6), ultimately leading to the discovery of
an optimal or near-optimal solution. Depending on the accuracy
expectations, the designer is allowed to seek for a solution in
larger dimensional state space models, which may offer better
accuracies.

In Algorithm 1, the crossover operation (line 6) functions as
a two-input, two-output operator. It operates based on a roulette
wheel selection strategy, accepting two vectors (parents) and
executing multiple exchanges to generate two offspring vectors.
In our algorithm, a random number determines the strategy
for the current parents. Among three equiprobable outcomes,
the first outcome employs a single-point crossover, the second
uses a double-point crossover, and the last outcome generates a
random vector αb ∈ B1×(n+1)2

comprising zeros and ones. The
two offspring vectors are derived using the uniform crossover
approach, defined as follows:

offspring1 = αb � parent1 + (1− αb)� parent2

offspring2 = (1− αb)� parent1 + αb � parent2

where 1 is a 1× (n+ 1)2 vector composed of all ones. The
strategy defined above eliminates the drawbacks of using single
type crossover and we generate nCb offsprings, where nCb is an
even number as we generate two offsprings at each trial and it
is equal to nb in this study.
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Mutation operator in line 7 of Algorithm 1 is a single input
single output operator that enhances the exploratory capability
of the search mechanism. At the gth generation, the ith entry
of m[g], denoted by mi[g], is modified using a uniformly dis-
tributed random number, rm, which varies in between 0 and 1.
For a given threshold, say μb, if rm < μb, the value of mi[g] is
flipped, i.e., mi[g]← 1−mi[g]. Since the distribution of rm is
uniform, the variableμb is the flipping probability of the relevant
variable.

At every generation, the population together with the off-
springs are evaluated using the loss function in (6), the individu-
als are sorted according to their performances. The poorest ones
are then deleted to maintain the population size constant, i.e.,
nb. This ensures that the (g + 1)th population will not contain
poorer individuals than the poorest one of the gth generation.

For the real optimization subroutine of Algorithm 1, roulette
wheel selection is used to determine parents (line 16) and uni-
form crossover approach defined below is adopted (line 17)

offspring1 = αc � parent1 + (1− αc)� parent2

offspring2 = (1− αc)� parent1 + αc � parent2

where αc is a uniform random number that varies in between
(−γc, 1 + γc) with 0 < γc � 1 being a positive value improv-
ing the exploration capability yielding offsprings that are slightly
different than ordinary mixture (i.e., γc = 0) of their parents. For
the ith entry of the w vector, which contains the real parame-
ters, mutation operator taking place in line 19 of Algorithm 1
implements wi[g]← wi[g] + σcrci if rci > μc with μc being
a small positive threshold, 0 < σc < 1 being a constant design
parameter and rci being a normally distributed random variable.
The evaluation, sorting and selection procedure is the same as
we discussed for binary case, and the result in gth generation is
w�, which is to be used by the binary optimization subroutine
in (g + 1)th generation.

The algorithm defined above generates well performing bi-
nary mask population for the current best parameter vector
(w�[g]) and a well performing parameter vector population for
the best mask vector (m�[g]) until either a predefined number
of generations (gmax) is achieved or J ≤ tolerance is reached.
Since the optimization problem given in (9) involves finding real
vector w ∈ R1×(n+1)2

and the Binary vector m ∈ R1×L(n+1)2

classical optimization schemes does not help working in such
a mixed search space. This was our motivation to use genetic
optimization as given under the Algorithm 1’s structure.

As seen from the given discussion, the optimization process
considering only the binary or only the real case adopts an evo-
lutionary optimization process to distinguish well performing
solutions. Our paper integrates them in a way that a suitable
mask vector accompanied by a parameter vector can be reached
to fit multiple FRDs under different switchings, the outcomes of
which will be discussed next.

Last but not the least, one can choose to enhance crossover
and mutation strategies to obtain a better population that displays
better convergence characteristics. The goal in this study is to
demonstrate that the proposed scheme generates useful results
under standard GA settings.

Fig. 2. Bode magnitude and phase plots of the four systems that are
represented in a single masked model.

IV. ILLUSTRATIVE EXAMPLE

To provide an illustrative example, four systems characterized
by equations (10)–(13) have been taken into account. The mag-
nitude and phase data for each system were computed over the
frequency range ω ∈ [0.01, 100] rad/s, yielding the frequency
domain specifics depicted in Fig. 2. We considered a logarith-
mically spaced Pl = 100 points for l = 1, 2, 3, 4. The figure
demonstrates that these four systems exhibit distinct behaviors,
encompassing characteristics of low-pass, high-pass, and band-
pass filters with gain values below or above 0 dB level at different
frequencies. Such characteristics are frequently encountered in
the industrial practice

H1(s) =
20s

(s+ 0.1)(s+ 10)
(10)

H2(s) =
s+ 4

(s+ 0.1)(s+ 9)
(11)

H3(s) =
s(s+ 10)

(s+ 0.2)(s+ 11)
(12)

H4(s) =
s− 1

(s+ 0.1)(s+ 8)
. (13)

The poles of the four systems that generate the target spectral
data seem in two clusters, which are around 0.1 and 10. This is
deliberate to see the spectral changes occur within the chosen
frequency spectrum. If the FRD generating models have spectral
pictures, the meaningful change of which take place at mutually
exclusive spectral regions, then packing those into a single
mother model would require larger n.

One may choose the order of the mother model by considering
the orders of the given TFs in (10)–(13). The sum of the orders
is eight, therefore, a mother model of order less than this value
could be considered as an economic representation. However,
in a practical setting, one may have spectral information rather
than the TFs and in those cases, the value of n can be set by trial
and error, which may introduce some redundancy in the final
mother model.
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Fig. 3. Evolution of the best cost over the generations, where gmax =
20 000.

Fig. 4. Obtained results for the first and the second subsystems after
applying the synthesized masks to the mother state space model in (14)
and (15).

Optimization was applied to fine-tune the parameters of
a fifth-order state-space system (n = 5) as per the proposed
methodology. The real parameters are constrained to the interval
[−10, 10]. The evolution of the cost function for the composite
problem involving these four systems is illustrated in Fig. 3. The
optimal cost value resulting from this optimization was noted as
J = 0.65152 and the mother system given in (14) and (15) is
obtained after gmax = 20 000 generations taking almost an hour
on an Intel I7 computer having 2.4 GHz CPU. All simulations
are conducted in MATLAB environment

ẋ =

⎛
⎜⎜⎜⎜⎝

−8.24 2.73 −1.04 −1.38 2.00
−2.29 −7.85 0.09 0.16 0.25
−0.70 0.17 −4.98 0.40 −0.63

0.69 −0.12 −0.60 −1.37 0.11
0.80 0.16 −1.37 −0.02 −0.29

⎞
⎟⎟⎟⎟⎠x

+

⎛
⎜⎜⎜⎜⎝

−1.81
9.02
2.12
2.13
−2.14

⎞
⎟⎟⎟⎟⎠u (14)

y =
(−0.53 2.08 −0.55 2.29 −0.57

)
x+ 1.07u. (15)

Fig. 4 displays the alignment of the obtained subsystems
with the targeted spectral data for l = 1, 2. For the last two
subsystems, i.e., l = 3, 4, the results are shown in Fig. 5. This
visualization confirms that both magnitude and phase curves can

Fig. 5. Obtained results for the third and the fourth subsystems after
applying the synthesized masks to the mother state space model in (14)
and (15).

Fig. 6. Obtained masks that are applied to the mother system’s
(A B
C D ) quadruple given in (14) and (15).

be accurately approximated. One might say that some frequency
values are not well approximated. First of all, it is necessary to
emphasize the success of the proposed algorithm in expressing
four different systems with a 5th order masked model. If each
system were implemented separately, this problem could be
solved with an 8th order model. Here, dimensional simplifica-
tion should not be overlooked when representing spectral infor-
mation with a smaller dimensional system. In a more practical
scenario, one might capture a resonant peak available in the
Bode magnitude plot. In such cases, use of frequency weighted
cost function may be considered as a remedy, which is not
implemented here.

Fig. 6 depicts the masks utilized to create these subsystems.
It is evident that a variety of masks were generated, enabling the
production of subsystems derived from the mother system given
in (14) and (15). These outcomes validate the effectiveness of
the suggested approach.

Selecting the relative importance parameters λm, λp, and λs

within the study holds significant importance. The third term
in (6) is zero for stable masked models. If the stability is not a
critical issue, the designer may choose λs = 0. In our study, we
would like to observe similarity in the time domain responses,
then we set λs = 10 000, which tells that we do not accept
unstable approximations to the systems in (10)–(13). Confining
ourselves to the stable region, a λp value that is excessively larger
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Fig. 7. Evolution of the best cost over the generations where gmax =
10 000.

than λm would predominantly align with phase information,
whereas a value that is excessively small would predominantly
align with magnitude information. Through our discussed exam-
ple, it was noted that a suitable λp value, specifically λp = 0.1
and λm = 1, was identified, where the alteration range of phase
information in degrees did not excessively influence the cost
function. Consequently, these values were implemented in the
shown results.

In the literature, subspace identification methods are known
to solve problems if there is only one FRD or time domain
data, [32], [33], [34], which discuss the theoretical aspects of the
subspace identification scheme. To the best of our knowledge, no
other alternative provides a means to obtain multiple subsystems
after applying a proper mask to a mother system to fit the desired
FRD.

In the presented simulation work, we chose nb = nc = 20.
The population size is an important parameter, if it is large, the
optimization takes a long time, alternatively, for small popula-
tion sizes, the algorithm is likely to get trapped to a local minima.
In addition to this, we set μb = μc = 0.02, which suggests 2%
change in each mutation operation, and σc = 0.1, γc = 0.2 are
chosen.

V. COMPARISON WITH SUBSPACE IDENTIFICATION METHOD

In order to compare our approach with subspace identifi-
cation method, which was applied successfully to industrial
problems [35], [36], we chose the system in (10) and sought for
four models (L = 4) that have the same Bode magnitude and
phase data. The reason behind the choice of L is to see possible
different solutions generating the same spectral information.
During the optimization process, we chose nb = nc = 50 in-
dividuals and n = 3, which is the order of the masked models
to be developed. All other optimization parameters were kept
the same. In Fig. 7, the evolution of the cost (J) is shown.
Since the four FRDs contain the same information, the cost
decreases to a very low value after gmax = 10 000 generations.
The optimization process yields the mother model given in (16)
and (17), and the associated masks are shown in Fig. 8.

ẋ =

⎛
⎝−1.30 −1.85 0.22
−6.58 −0.37 0.49
−4.48 −2.22 −10.00

⎞
⎠x+

⎛
⎝−2.69
−0.90
−5.41

⎞
⎠u (16)

Fig. 8. Obtained masks that are applied to the mother system’s
(A B
C D ) quadruple given in (16) and (17).

Fig. 9. Difference between the magnitude and phase curves between
the first two subsystems and that generated by subspace identification
algorithm. One should note that the first two masks are identical and the
masked subsystems are the same.

y =
(−5.21 5.48 −3.68

)
x. (17)

According to Fig. 8, first two systems have the same mask
thereby leading to the same system. In other words, we see
three different systems generated by our approach and we will
compare the Bode magnitude and phase curves obtained via
subspace identification method. Let Ĝl(jω) be the TF of the
lth subsystem generated by the proposed algorithm and let
Gn4sid(jω) be the TF obtained from the subspace identification
algorithm, which generates the following state space model:

ẋs =

⎛
⎝−0.87 15.26 −14.29

0.46 −9.23 −10.82
0.00 0.00 −109.75

⎞
⎠xs +

⎛
⎝ 3.77
−2.32

0.00

⎞
⎠u (18)

ys =
(
2.28 −4.93 0.99

)
xs. (19)

When the Bode magnitude and phase data are plotted for
(10), for our approach and for subspace identification method,
the obtained curves turn out to be totally indistinguishable.
Therefore, we show the differences in Figs. 9 and 10, where
we see the difference in ±0.1 dB interval in magnitudes, ±0.3
degrees in phases.

According to the presented comparison, we conclude that
the proposed algorithm is able to generate a model, which
can compete with subspace identification method, further, the
proposed scheme is able to store different systems’ spectral
content within a single masked model, which cannot be achieved
via subspace identification method. The disadvantage of the
proposed approach is the time required to reach an acceptable J
value. This is mainly because the proposed technique is based
on a search based optimization, which gradually improves the
performance.
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Fig. 10. Difference between the magnitude and phase curves between
the last two subsystems and that generated by subspace identification
algorithm.

Based on the described algorithm and the studied numerical
examples, the contribution of the current work is to define
an algorithm that encodes multiple spectral information into a
single switchable mother model. The work differentiates from
the existing body of literature in terms of mask update which is
carried out simultaneously with the real parameter update.

VI. CONCLUSION

This article describes an effective switching and optimization
approach to store multiple FRDs within a mother state space
model. The problem is cast into an optimization problem that
has binary and continuous variables and an effective solution is
proposed. The proposed optimization strategy finds out the best
performing subnetwork. The proposed technique seeks for the
optimum value of a cost function, which is defined over all sub-
systems obtained via available masks. The evolutionary process
finds out best matching numerical content and associated mask
values. The proposed approach is justified via a simulations
covering spectrally dissimilar system behaviors. The current
study advances the subject area toward multifunctional state
space models that may contain dissimilar spectral information in
an optimized dynamical structure accompanied by an optimized
mask.
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