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Sliding Mode Control of a Three
Degrees of Freedom Anthropoid
Robot by Driving the Controller
Parameters to an Equivalent
Regime
Noise rejection, handling the difficulties coming from the mathematical representatio
the system under investigation and alleviation of structural or unstructural uncertain
constitute prime challenges that are frequently encountered in the practice of system
control engineering. Designing a controller has primarily the aim of achieving the tra
ing precision as well as a degree of robustness against the difficulties stated. From
point of view, variable structure systems theory offer well formulated solutions to
ill-posed problems containing uncertainty and imprecision. In this paper, a simple
troller structure is discussed. The architecture is known as Adaptive Linear Elem
(ADALINE) in the framework of neural computing. The parameters of the contro
evolve dynamically in time such that a sliding motion is obtained. The inner slid
motion concerns the establishment of a sliding mode in controller parameters, which
to minimize the error on the controller outputs. The outer sliding motion is designed
the plant. The algorithm discussed drives the error on the output of the controller tow
zero learning error level, and the state tracking error vector of the plant is driven tow
the origin of the phase space simultaneously. The paper gives the analysis of the e
lence between the two sliding motions and demonstrates the performance of the alg
on a three degrees of freedom, anthropoid robotic manipulator. In order to clarify
performance of the scheme, together with the dynamic complexity of the plant, the ad
effects of observation noise and nonzero initial conditions are studied.
@S0022-0434~00!01704-4#
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1 Introduction

It is a well-known fact that a variable structure controller with
switching output will ~under certain circumstances! result in a
sliding mode on a predefined subspace of the state space.
mode has useful invariance properties in the face of uncertain
in the plant model and therefore is a candidate for tracking con
of uncertain nonlinear systems. The theory is well developed,
pecially for single input systems in controller canonical form. T
philosophy of the control strategy is simple, being based on
goals. First, the system is forced toward a desired dynamics,
ond, the system is maintained on that differential geometry. In
literature, the former dynamics is named the reaching mode, w
the latter is called the sliding mode. The control strategy borro
its name from the latter dynamic behavior, and is calledSliding
Mode Control (SMC).

Earliest notion of SMC strategy was constructed on a seco
order system in the late 1960s by Emelyanov@1#. The work stipu-
lated that a special line could be defined on the phase plane,
that any initial state vector can be driven toward the plane
then be maintained on it, while forcing the error dynamics tow
the origin. Since then, the theory has been greatly improved
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the sliding line has taken the form of a multidimensional surfa
called thesliding surfacearound which a switching control actio
takes place.

In Variable Structure Control~VSC!, the existence of observa
tion noise constitutes a prime difficulty. This is due to the fact th
the pure sliding control requires very fast switching on the inp
which cannot be provided by real actuators, and the input depe
on the sign of a measured variable, which is very close to z
This makes the control signal extremely vulnerable to meas
ment noise and may lead to unnecessarily large control signals
alleviate these difficulties, several modifications to the origin
sliding mode control law have been proposed in the literatu
some recent ones of which are based on the use of fuzzy l
@2–3# and artificial neural networks@4–5#. These methodologies
provide an extensive freedom for control engineers to exploit th
understanding of the problem, to deal with problems of unc
tainty and imprecision.

During the last decade, numerous contributions to VSS the
have been made. Some of them are as follows. Hung et al.@6# has
reviewed the control strategy for linear and nonlinear systems
@6#, the switching schemes, putting the differential equations i
canonical forms and generating simple SMC strategies are con
ered in detail. In@7# and @8#, applications of SMC scheme to
robotic manipulators are studied and the quality of the schem
discussed from the point of robustness. One of the crucial po
in SMC is the selection of the parameters of the sliding surfa
Some studies devoted to the adaptive design of sliding surfa
have shown that the performance of control system can be refi
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by interfacing it with an adaptation mechanism, which regula
redesigns the sliding surface@8–9#. This eventually results in a
robust control system. The performance of SMC scheme is pro
to be satisfactory in the face of external disturbances and un
tainties in the system model representation. Another system
examination of SMC approach is presented in@10#. In this refer-
ence, the practical aspects of SMC design are assessed for
continuous time and discrete time cases and a special cons
ation is given to the finite switching frequency, limited bandwid
actuators and parasitic dynamics, all leading to what is known
chattering. In @11#, the design of discrete time SMC is present
with particular emphasis on the system model uncertainties
@12–14#, it is demonstrated that SMC strategy can be used
stabilization and robustification of learning dynamics of compu
tionally intelligent methods. The approach presented in these
erences is based on the development of a dynamic model fo
learning strategy and the design of a sliding motion in the pa
metric displacement space. The method studied in@12–14# has
been applied to several neural network and fuzzy inference sys
models used for the purpose of controlling robotic manipulato

Some studies on the use of SMC strategy are devoted to
dynamic adaptation of the parameters of a flexible model such
the error on the output of the model tends to zero in finite ti
@15–16#. The first results discussed by Ramirez et al.@15# have
concentrated on the inverse dynamics identification of a Kap
pendulum by assuming constant bounds for uncertainties.
et al. @16# extend the results of@15# by introducing adaptive un-
certainty bound dynamics and focus on the same example a
application. The major drawback in both of the approaches is
fact that the dynamic adaptation mechanism needs the error o
output of the model. If the model is to be used as a controller,
fact constitutes a difficulty because the use of the approaches
posed in@15–16# for control applications require the error on th
control signal to be applied, which is unavailable. The seco
drawback of the dynamic uncertainty bound adaptation strateg
@16# is the existence of noise on the measured variables.
approach in@16# requires the integration of the absolute value
the error signal observed on the outputs. When the error sign
close to zero, it clearly leads to the integration of the abso
value of the noise signal, which gradually increases the bo
value and leads to instability in the long run.

In this paper, existence of a relation between sliding surface
the plant to be controlled and the zero learning error level of
parameters of a flexible controller is discussed and the con
applications of the method considered in@15–16# are studied with
constant uncertainty bounds.

This paper is organized as follows: Section 2 gives the defi
tions and the formulation of the problem. Section 3 introduces
equivalency constraints on the sliding control performance for
plant and sliding mode learning performance for the control
Section 4 describes the plant model used in the simulations.
section is followed by the simulation studies. Conclusions con
tute the last part of the paper.

2 Definitions and the Formulation of the Problem
Consider the three input one output flexible structure, which

to be used as the controller, depicted in Fig. 1. The adjusta
parameter vector and the input vector of the structure are
scribed in~1! and ~2!, respectively. In~2!, the symbole denotes
the tracking error, which is the discrepancy between the respo
of the system under control and the reference signal (e5q
2qd). The input output relation of the controller is described
~3!.

G5@Gp Gd Gc#
T (1)

u5@e ė 1#T (2)

t5GTu (3)

or equivalently,
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t5Gpe1Gdė1Gc (4)

The structure is assumed to operate in an ordinary feedback
as illustrated in Fig. 2. The definitions of the sliding surfa
sp(e,ė) and that of zero learning error levelsc(t,td), which are
seen in this figure, are given in~5! and ~6!, respectively.

sp~e,ė!5ė1le (5)

where,l is the slope of the sliding surface.

sc~t,td!5t2td (6)

where,td is the desired output of the controller and is unknow
In order not to be in conflict with the physical reality, the d

signer must impose the following inequalities, the truth of whi
state that the parameters of the controller, the time derivative
the input signal, and the time derivative of the desired outpu
the controller remain bounded.

iGi<BG (7)

i u̇i<Bu̇ (8)

i ṫdi<Bṫd
(9)

Theorem 2.1.The adaptation of controller parameters as d
scribed in~10! enforces the parameters to values resulting in z
learning error level in one-dimensional phase space, whose a
ment is defined by~6!.

Ġ52
u

uTu
k sign~sc! (10)

where,k is a sufficiently large positive constant satisfying~11!.

k.BGBu̇1Bṫd
(11)

The adaptation mechanism in~10! drives an arbitrary initial value
of sc to zero in finite time denoted byth satisfying the inequality
in ~12!.

Fig. 1 Structure of the ADALINE controller

Fig. 2 Architecture of the control system
DECEMBER 2000, Vol. 122 Õ 633
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usc~0!u

k2~BGBu̇1Bṫd
!

(12)

Proof 2.1.Consider the Lyapunov function candidate in~13!. In
order to reach to the zero learning error level (sc50), the time
derivative of ~13! must be negative definite, which is given
~14!.

Vc5
1

2
sc

2 (13)

V̇c5 ṡcsc

5~ ṫ2 ṫd!sc

5~ĠTu1GTu̇2 ṫd!sc

52k sign~sc!sc1~GTu̇2 ṫd!sc

52kuscu1~GTu̇2 ṫd!sc

,~2k1BGBu̇1Bṫd
!uscu (14)

It is apparent that the condition in~11! ensures the negative defi
niteness of the time derivative of the selected Lyapunov funct

If one evaluatesṡc with the aid of~10!, the expression in~15! is
obtained. The solution to the differential equation in~15! can be
given by ~16!.

ṡc52k sign~sc!1GTu̇2 ṫd (15)

sc~ t !2sc~0!52kt sign~sc~0!!1E
0

t

~GT~s!u̇~s!2 ṫd~s!!ds

(16)

At t5th , sc(th)50;

2sc~0!52kth sign~sc~0!!1E
0

th
~GT~s!u̇~s!2 ṫd~s!!ds

(17)

By multiplying both sides of~17! by 2sign(sc(0)), oneobtains
~18!.

usc~0!u5kth2S E
0

th
~GT~s!u̇~s!2 ṫd~s!!ds D sign~sc~0!!

>kth2~BGBu̇1Bṫd
!th (18)

which implies hitting in finite time as described by the inequal
in ~12!. h

Theorem 2.2.If the system enters the sliding modesc50 and
remains in it thereafter, then the parameters of the flexible c
troller, G, evolve boundedly.

Proof 2.2.In the sliding mode,sc50 andṡc50. Based on this,
the following derivation can be made.

ṡc5 ṫ2 ṫd (19)

ṡc5ĠTu1GTu̇2 ṫd50 (20)

uTĠ52u̇TG1 ṫd

52
uTu

uTu
u̇TG1

uTu

uTu
ṫd

5uTS 2
u

uTu
u̇TG1

u

uTu
ṫdD (21)

which requires the following,

uTS Ġ1
u

uTu
u̇TG2

u

uTu
ṫdD50 (22)
634 Õ Vol. 122, DECEMBER 2000
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Since the entries of the vectoru cannot be linearly dependen
for all time @17#, the equality in~22! imposes the following dif-
ferential equation form in the sliding mode.

Ġ52
uu̇T

uTu
G1

u

uTu
ṫd (23)

The solution to the above equation is as follows;

G~ t !5F~ t,0!G~0!1E
0

t

F~ t,s!
u~s!

u~s!Tu~s!
ṫd~s!ds (24)

where,

F~ t,0!5expH 2E
0

t u~s!u̇~s!T

u~s!Tu~s!
dsJ (25)

Since 1<iui<Bu , for the first term in~24!, following relations
can be induced.

iF~ t,0!i5I expH 2E
0

t u~s!u̇~s!T

u~s!Tu~s!
dsJ I

5I expH 2E
0

t u~s!

u~s!Tu~s!
du~s!TJ I

<I expH U2E
0

t u~s!

u~s!Tu~s!
du~s!TUJ I

<I expH E
0

t uu~s!u
u~s!Tu~s!

du~s!TJ I
,IexpH E

0

t

uu~s!udu~s!TJ I
,IexpH BuE

0

t

du~s!TJ I
5iexp$Bu~u~ t !T2u~0!T!%i<B1 (26)

whereB1 is some positive constant. For the bound of the seco
term in ~24!, the analysis proceeds as given below.

I E
0

t

F~ t,s!
u~s!

u~s!Tu~s!
ṫd~s!dsI

,B1I E
0

t u~s!

u~s!Tu~s!
ṫd~s!dsI

,B1I E
0

t

u~s!ṫd~s!dsI
,B1BuI E

0

t

ṫd~s!dsI
,B1Buitd~ t !2td~0!i<B2 (27)

whereB2 is some positive constant. Since the two components
the solution in~24! evolve boundedly, the sum of them will trivi
ally be bounded as given in~28!.

iG~ t !i,B11B2 (28)
h

Note that in~7! we assumed that the parameters of the flexi
controller,G, are bounded. However, Theorem 2.2 states that o
the system enters the sliding modesc50, the boundedness ofG is
guaranteed. That is to say that~7! is automatically satisfied.

In the view of the analysis presented, the parameters of
controller are adjusted as described explicitly in~29!–~31!.
Transactions of the ASME
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e

e21ė211
k sign~sc! (29)

Ġd52
ė

e21ė211
k sign~sc! (30)

Ġc52
1

e21ė211
k sign~sc! (31)

The main problem in applying the design presented is the
availability of the desired value of the control signal (td). If this
quantity is not available, one cannot constructsc and the approach
cannot be used for control purposes. In the next section, the
tion between thesp of ~5! andsc of ~6! is analyzed.

3 Analysis of the Relation Between Sliding Mode Con-
trol and Sliding Mode Learning

Consider the sliding linesp and the zero learning error levelsc
described by~5! and ~6!, respectively. In the most general sens
the relation between these two quantities can be written as in~32!,
in which the integersn andm characterize the differential relatio
betweensp and sc and the values of which are quite difficult t
obtain if the system dynamics is uncertain. Assume thatm5n
50; qualitatively, if the value ofsp tends to zero, this means tha
sc goes to zero. Physically, the system achieves a perfect trac
because the controller produces the desired control inputs or
versa. Conversely, as the value ofsp increases in magnitude
which means that the error vector is getting away from the orig
the same sort of a divergent behavior insc is observed or vice
versa. In this section, three conditions thatC must satisfy are
discussed.

sc
~n!5C~sp

~m!! (32)

3.1 Region Condition. It should be clear that as the contr
input approaches to the desired control value for the current c
ditions, this means that the state tracking error vector of the p
is driven toward the sliding manifold. In other words, the desir
control signal drives the state tracking error to the sliding ma
fold. In ~33!, these two statements are clarified.

lim
t→td

sp50⇔ lim
sp→0

t5td (33)

The two equivalent limits and their consequences can be rewr
as given in~34! and ~35! by utilizing sp andsc .

lim
sc→0

sp50⇒ H ė→2le⇒ He→0
ė→0 (34)

lim
sp→0

sc50⇒$t→td (35)

The statements above require the following condition onC.

C~0!50 (36)

Furthermore, as indicated in Fig. 3, the relationC must use the
first and the third quadrants of the coordinate system.

C~x!5H positive x.0

zero x50

negative x,0

(37)

3.2 Compatibility Condition. In order to measure the
tracking performance of the control system; define the Lyapu
function in ~38!. The realization performance of the controll
(Vc) has already been defined in~13!. In Fig. 4, two sets are
illustrated. If one selects aC relation such that a simultaneou
minimization is achieved, then this selection can be considere
a suitable candidate. SinceC candidates from the regions othe
Journal of Dynamic Systems, Measurement, and Control
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than the shaded set causes the violation of at least one of
design objectives, one has to find aC relation from the intersec-
tion set.

Vp5
1

2
sp

2 (38)

3.3 Invertibility Condition. As depicted in Fig. 5, if the
family of lines described bysp5h (h.0) are drawn for varying
values ofh, the tracking error vector will fall into one of thes
subsets of the phase space at each instant of time. However,
one of the members of this family corresponds to a different s
ation entailing differentsc values. Therefore the relationC must
be invertible. In other words,'spPR for ;scPR.

These three conditions clearly stipulate that theC relation must
be such that the horizontal axes of the two subplots shown in
6 must be mapped onto each other for simultaneous minimiza
of the shown quadratic functions.

Theorem 3.1.All monotonically increasing continuous func
tions can serve as theC relation, which satisfy the three cond
tions discussed in Section 3.1–Section 3.3, for the establishm
of an equivalency between the sliding mode control of the pl
and the sliding mode learning inside the controller.

Proof 3.1.Stability in the Lyapunov sense requires the negat
definiteness of the time derivative of the Lyapunov function
~38!. Utilizing ~39! leads to the following time derivative.

Fig. 3 Signs of s p and s c on different sides of s pÄ0 line

Fig. 4 Sets of possible four cases
DECEMBER 2000, Vol. 122 Õ 635
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sp5C21~sc! (39)

V̇p5 ṡpsp

5~C21~sc!!
•

C21~sc!

5
]C21~sc!

]sc
ṡcC

21~sc!

5
]C21~sc!

]sc
~ĠTu1GTu̇2 ṫd!C21~sc!

5
]C21~sc!

]sc
~2k sign~sc!1GTu̇2 ṫd!C21~sc!

5
]C21~sc!

]sc
~C21~sc!~GTu̇2 ṫd!2k~C21~sc!sign~sc!!!

<
]C21~sc!

]sc
~ uC21~sc!u~BGBu̇1Bṫd

!2k~C21~sc!sign~sc!!!

5
]C21~sc!

]sc
~ uC21~sc!u~BGBu̇1Bṫd

!2kuC21~sc!u!

5
]C21~sc!

]sc
uC21~sc!u~2k1BGBu̇1Bṫd

! (40)

Since the partial derivative]C21(sc)/]sc is positive due to the
monotonically increasing behavior ofC, the bound paramete
given in~11! enforces value ofsc to zero level, or equivalently,sp
to zero. It is straightforward to prove that a hitting occurs in fin
time ~see Proof 2.1!. h

Fig. 5 The family of lines formed as the value of s p varies

Fig. 6 The relation C performs a mapping between two hori-
zontal axes shown
636 Õ Vol. 122, DECEMBER 2000
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4 A 3-DOF Anthropoid Robot Dynamics
In this study, the dynamic model of the three degrees of fr

dom anthropoid robotic manipulator, whose physical structure
illustrated in Fig. 7, is used as the test bed. Since the dynamic
such a mechatronic system is modeled by nonlinear and cou
differential equations, precise output tracking becomes a diffic
objective due to the strong interdependency between the varia
involved and the existence of gravitational forces. Therefore
control methodology adopted must have the capability of cop
with the stated difficulties.

The general form of the dynamics of a robotic manipulator
described by~41! whereM (q), C(q,q̇), g(q) andt stand for the
state varying inertia matrix, vector of Coriolis and centrifug
terms, gravitational forces and applied torque inputs, respectiv
The nominal values of the plant parameters are given in Table
standard units.

M ~q!q̈1C~q,q̇!q̇1g~q!5t (41)

If the angular positions and angular velocities are described as
state variables of the system, six coupled and first order differ
tial equations can define the model. In~42! through~45!, the non-

Fig. 7 Physical structure of the manipulator

Table 1 Manipulator parameters
Transactions of the ASME
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zero entries of the state varying inertia matrix are described.
nonzero Cristoffel symbols are given in~46!–~49!. The details of
the plant model are presented in@18–19#.

M115m2l c2
2 cos2~q2!1m3~ l 2 cos~q2!1 l c3 cos~q21q3!!21E1

1A2 sin2~q2!1E2 cos2~q2!1A3 sin2~q21q3!

1E3 cos2~q21q3! (42)

M225m2l c2
2 sin2~q2!1m3~ l 2

21 l c3
2 12l 2l c3 cos~q3!!1I 21I 3

(43)

M235M325m3~ l c3
2 1 l c3l 2 cos~q3!!1I 3 (44)

M335m3l c31I 3 (45)

hc15~2m2l c2
2 1A22E2!cos~q2!sin~q2!

1~A32E3!cos~q21q3!sin~q21q3!1m3~ l 2 cos~q2!

1 l c3 cos~q21q3!!~2 l 2 sin~q2!2 l c3 sin~q21q3!! (46)

hc25sin~q21q3!~2m3l c3l 2 cos~q2!

1~2m3l c3
2 1A32E3!cos~q21q3!! (47)

hc35m2l c2
2 cos~q2!sin~q2! (48)

hc452m2l 2l c3 sin~q3! (49)

Coriolis and centrifugal terms are formulated as follows.

C~q,q̇!5F 2hc1q̇1q̇212hc2q̇1q̇3

2hc1q̇1
212hc4~ q̇2q̇31q̇3

2!1hc3q̇2
2

2hc2q̇1
22hc4q̇2

2
G (50)

Lastly, the gravity terms are obtained as given in~51! whereP
represents the gravity constant.

g~q1 ,q2 ,q3!5F 0
~m2l c21m3l 2!P cos~q2!1m3l c3P cos~q21q3!

m3l c3P cos~q21q3!
G

(51)

5 Simulation Studies
In the simulation studies presented, the plant introduced in

fourth section is controlled by the proposed control scheme.
aim is to produce some torque signals such that the applicatio
which results in the observation of a sliding motion in the pha
space. As the controller, the architecture discussed in the se
section is adopted. The structure of the control system is as i
trated in Fig. 2, in which the plant is in an ordinary feedback loo

Fig. 8 Reference state trajectories
Journal of Dynamic Systems, Measurement, and Control
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to which the reference signal illustrated in Fig. 8 is applied
each link. Based on the tracking error vector, first the value
sp(e,ė) is evaluated and this quantity is passed through theC
function to get the value ofsc , which is used in the dynamic
adjustment mechanism. In evaluating the value of the quantitysp ,
the slope parameter of the switching line~l! has been set to unity
for all three links.

In practical implementations of control structures for trajecto
control of robotic manipulators, a number of difficulties are e
countered, which make it difficult to achieve an accurate traj
tory tracking. The simulation studies carried out address th
difficulties. The first difficulty is the existence of gravitationa
forces adversely influencing the control performance. The sec
difficulty is the existence of observation noise. To study the
fects of this situation, which is very likely to be encountered
practice, the information used by the controller is corrupted b
Gaussian distributed random noise having zero mean and vari
equal to 0.33e-6. The peak magnitude of the noise signal is wi
61e-3 with probability very close to unity. The third difficulty i
the nonzero positional initial conditions. In order to demonstr
the reaching mode performance of the algorithm, the base lin
moved to p/18 radians, the shoulder link is moved to2p/18
radians and the elbow link is moved top/18 radians initially.

It should be pointed out that once the error or the rate of e
comes very close to origin, the adjustment mechanism is dri
solely by the noise sequence. Since the bound of perturbing si
is known, the dynamic equations of the parameters given in~29!–
~31! can be modified so that a reduction on the unnecessary
justment activity is obtained and the convergent behavior of
parameters can still be achieved by utilizing a sufficiently ha
threshold function given by~52! and depicted in Fig. 9. The valu
of threshold is denoted bynb and has been set to 5e-3 in th
simulations. The equations of the controller parameters are th
fore modified as given in~53!–~55!.

T~sp!5~11exp~2105~ uspu2nb!!!21 (52)

Ġp52
e

e21ė211
k sign~C~sp!!T~sp! (53)

Ġd52
ė

e21ė211
k sign~C~sp!!T~sp! (54)

Ġc52
1

e21ė211
k sign~C~sp!!T~sp! (55)

As theC relation, the following selection is made parallel to th
conditions discussed in the second section.

C~x!5x (56)

Furthermore, in order to reduce the chattering effect in the s
ing mode, the function in~57! has been used instead of the sig
function in the dynamic strategy described in~53!–~55!.

sign~x!'
x

uxu10.05
(57)

Fig. 9 Threshold function
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As the initial values for the controller parameters, the valu
given in ~58! are adopted.

FGp1~0! Gp2~0! Gp3~0!

Gd1~0! Gd2~0! Gd3~0!

Gc1~0! Gc2~0! Gc3~0!
G5F 210 210 210

22 22 22

0 0 0
G

(58)

Under these conditions, the state tracking error graph in Fig. 1
obtained. The trend in position and velocity errors clearly stipul
that the algorithm is able to achieve precise tracking objec
with a sufficiently fast response. The motion in the phase plan
illustrated in Fig. 11. These figures show that after a fast reach
mode, a sliding mode is enforced and is maintained by produc
a suitable control signal. In Fig. 12, the time behavior of t
Lyapunov function in~38! is illustrated for each link. In order to

Fig. 10 State tracking errors

Fig. 11 Motion in the phase plane for each link
638 Õ Vol. 122, DECEMBER 2000
es

0 is
te

ive
e is
ing
ing
e

show the minimization activity of the algorithm presented, t
horizontal axes of the subplots are selected as logarithmic. Cle
after t51 s, the cost is almost zero, which means that the e
vector lies in the vicinity of the sliding manifold. It is seen th
some small magnitude spikes occur in time and they are da
ened out quickly. We relate these spikes to the difficulties state
the beginning of the section.

What should be emphasized as a last point is the smoothne
the torque signal produced by the controller. As seen in Fig.
the outputs of the shoulder and the elbow link controllers exc
slightly the limits of the applicable control ranges during the ve
early phase of the motion, during which a reaching mode is
served. Since the initial errors are considerably large in mag
tude, evaluated torque signals (te) are saturated and the applie
torque signals (ta) are depicted in the right column of Fig. 13
However, the applied control signal has sufficiently smooth ch

Fig. 12 Time behavior of the lyapunov function in „38… for each
link

Fig. 13 Evaluated and applied torque inputs
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acteristic, which does not violate the potential limits of the act
tors. Lastly, the behavior of the controller parameters for ba
shoulder and elbow links are illustrated in Fig. 14, Fig. 15, a
Fig. 16, respectively. In these figures, it is seen that the param
of the controllers remain bounded and are robust against the e
of noise around the origin of the phase space. Clearly, the thr
old function (T(sp)) of ~52! introduces the elimination of the
noise related evolution in the controller parameters.

During the simulations, the bounds for the uncertainties
noted byk for all three links has been set to 1000. The simulat
stepsize has been selected as 2.5 ms and the time requir

Fig. 14 Behavior of the parameters of the base link controller

Fig. 15 Behavior of the parameters of the shoulder link con-
troller
Journal of Dynamic Systems, Measurement, and Control
a-
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perform the simulation has been measured as 48 seconds
Pentium II-233 PC running Matlab 5.1 software, indicating th
the applicability of the algorithm in real-time.

6 Conclusions
In this paper, a novel method for establishing a sliding mot

in the dynamics of a three degrees of freedom anthropoid rob
discussed. The method is based on the adoption of a nonli
dynamic adjustment strategy in an ADALINE based controll
The task is to drive the tracking error vector to the sliding ma
fold and keep it on the manifold forever. What makes the p
posed algorithm so attractive in this sense is the fact that
sliding mode control of the plant is achieved while an equival
regime is imposed on the controller parameters. In this way,
difficulties related to the noise on the measured quantities, gr
tational forces and the structural uncertainties on the govern
equations of the plant are alleviated by incorporating the rob
ness provided by the VSS technique into the proposed appro
A further attractiveness of the algorithm is the fact that the c
troller for each link possesses only three parameters. The com
tational requirement is not therefore excessive. From these po
of view, the method proposed is highly promising in control e
gineering practice.
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