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the system under investigation and alleviation of structural or unstructural uncertainties
constitute prime challenges that are frequently encountered in the practice of systems and
control engineering. Designing a controller has primarily the aim of achieving the track-
ing precision as well as a degree of robustness against the difficulties stated. From this
point of view, variable structure systems theory offer well formulated solutions to such
ill-posed problems containing uncertainty and imprecision. In this paper, a simple con-
troller structure is discussed. The architecture is known as Adaptive Linear Element
(ADALINE) in the framework of neural computing. The parameters of the controller
evolve dynamically in time such that a sliding motion is obtained. The inner sliding
motion concerns the establishment of a sliding mode in controller parameters, which aims
to minimize the error on the controller outputs. The outer sliding motion is designed for
the plant. The algorithm discussed drives the error on the output of the controller toward
zero learning error level, and the state tracking error vector of the plant is driven toward
the origin of the phase space simultaneously. The paper gives the analysis of the equiva-
lence between the two sliding motions and demonstrates the performance of the algorithm
on a three degrees of freedom, anthropoid robotic manipulator. In order to clarify the
performance of the scheme, together with the dynamic complexity of the plant, the adverse
effects of observation noise and nonzero initial conditions are studied.
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1 Introduction the sliding line has taken the form of a multidimensional surface,

. . ... called thesliding surfacearound which a switching control action

It is a well-known fact that a variable structure controller with Fakes place 9 9

switching output will (under certain circumstandesesult in & |, v/ariable Structure ContrqVSC), the existence of observa-
sliding mode on a predefined subspace of the state space. f# noise constitutes a prime difficulty. This is due to the fact that
mode has useful invariance properties in the face of uncertaintiig pure sliding control requires very fast switching on the input,
in the plant model and therefore is a candidate for tracking contighich cannot be provided by real actuators, and the input depends
of uncertain nonlinear systems. The theory is well developed, es: the sign of a measured variable, which is very close to zero.
pecially for single input systems in controller canonical form. Th&his makes the control signal extremely vulnerable to measure-
philosophy of the control strategy is simple, being based on twaent noise and may lead to unnecessarily large control signals. To
goals. First, the system is forced toward a desired dynamics, salieviate these difficulties, several modifications to the original
ond, the system is maintained on that differential geometry. In t§dding mode control law have been proposed in the literature,
literature, the former dynamics is named the reaching mode, wh Qmse re(c:ient .?n.e? of Whl'Ch are Easesd c_)l_nhthe use hOfdeIZZY logic
the latter is called the sliding mode. The control strategy borrowS™ | and artificial neural networkf4-5). These methodologies

its name from the latter dynamic behavior, and is caféiding provide an extensive freedom for control engineers to exploit their
' understanding of the problem, to deal with problems of uncer-
Mode _Control_(SMC) tainty and imprecision.

Earliest notion of SMC strategy was constructed on a second-p yring the last decade, numerous contributions to VSS theory
order system in the late 1960s by Emelyafibl The work stipu- pave been made. Some of them are as follows. Hung E8Jdias
lated that a special line could be defined on the phase plane, sugliewed the control strategy for linear and nonlinear systems. In
that any initial state vector can be driven toward the plane afg], the switching schemes, putting the differential equations into
then be maintained on it, while forcing the error dynamics towarchnonical forms and generating simple SMC strategies are consid-
the origin. Since then, the theory has been greatly improved aeckd in detail. In[7] and [8], applications of SMC scheme to
robotic manipulators are studied and the quality of the scheme is
Comibuted by the b - Svet 4 Control Division for pubjication thdiscussed from the point of robustness. One of the crucial points
o e o i acaion "1 SMC is the selection of the parameters of the siding srace.
received by the Dynamic Systems and Control Division February 11, 2000. AssogOMe studies devoted to the adaptive design of sliding surfaces
ate Technical Editors: E. Misawa and V. Utkin. have shown that the performance of control system can be refined
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by interfacing it with an adaptation mechanism, which regularly
redesigns the sliding surfad8—9]. This eventually results in a
robust control system. The performance of SMC scheme is proven
to be satisfactory in the face of external disturbances and uncer-
tainties in the system model representation. Another systematic
examination of SMC approach is presentedi0]. In this refer-
ence, the practical aspects of SMC design are assessed for both
continuous time and discrete time cases and a special consider-
ation is given to the finite switching frequency, limited bandwidth
actuators and parasitic dynamics, all leading to what is known as 1
chattering In [11], the design of discrete time SMC is presented
with particular emphasis on the system model uncertainties. In Fig. 1 Structure of the ADALINE controller
[12-14, it is demonstrated that SMC strategy can be used for
stabilization and robustification of learning dynamics of computa-
tionally intelligent methods. The approach presented in these ref- .
erences is based on the development of a dynamic model for the 7=Gpet Geet+ G 4)
learning strategy and the design of a sliding motion in the parsthe structure is assumed to operate in an ordinary feedback loop
metric displacement space. The method studiefll®-14 has as illustrated in Fig. 2. The definitions of the sliding surface
been applied to several neural network and fuzzy inference systg,g(ne,é) and that of zero learning error levgl(r,74), which are
models used for the purpose of controlling robotic manipulatorseen in this figure, are given %) and(6), respectively.

Some studies on the use of SMC strategy are devoted to the L
dynamic adaptation of the parameters of a flexible model such that sp(e.e)=et+\e (%)
the error on the output of the model tends to zero in finite timghere,\ is the slope of the sliding surface.
[15-16. The first results discussed by Ramirez et[ab] have
concentrated on the inverse dynamics identification of a Kapitsa S(7,7¢) =7~ 7y (6)

pendulum by assuming constant bounds for uncertainties. Yihere, 7, is the desired output of the controller and is unknown.
et al.[16] extend the results dfL5] by introducing adaptive un- |y order not to be in conflict with the physical reality, the de-
certainty bound dynamics and focus on the same example as {figher must impose the following inequalities, the truth of which
application. The major drawback in both of the approaches is thgyte that the parameters of the controller, the time derivative of
fact that the dynamic adaptation mechanism needs the error on ¢l input signal, and the time derivative of the desired output of
output of the model. If the model is to be used as a controller, thige controller remain bounded.
fact constitutes a difficulty because the use of the approaches pro-
posed in[15—16 for control applications require the error on the [G<Bg )
control signal to be applied, which is unavailable. The second U] <B; ®)
drawback of the dynamic uncertainty bound adaptation strategy in o
[16] is the existence of noise on the measured variables. The |74l <B; 9)
approach i 16] requires the integration of the absolute value of d
the error signal observed on the outputs. When the error signal isTheorem 2.1.The adaptation of controller parameters as de-
close to zero, it clearly leads to the integration of the absolugeribed in(10) enforces the parameters to values resulting in zero
value of the noise signal, which gradually increases the boufehrning error level in one-dimensional phase space, whose argu-
value and leads to instability in the long run. ment is defined by®6).

In this paper, existence of a relation between sliding surface for u
the plant to be controlled and the zero learning error level of the G=— —— Kk sign(s,) (10)
parameters of a flexible controller is discussed and the control uu
applications of the method considered i5—16 are studied with where,k is a sufficiently large positive constant satisfyitid).
constant uncertainty bounds.

This paper is organized as follows: Section 2 gives the defini- k>BgB;+B;, (11)
tions and the formulation of the problem. Section 3 introduces t
equivalency constraints on the sliding control performance for tﬁ?‘
plant and sliding mode learning performance for the controlle?!
Section 4 describes the plant model used in the simulations. TR\ L2
section is followed by the simulation studies. Conclusions consti-
tute the last part of the paper.

e adaptation mechanism (h0) drives an arbitrary initial value
s, to zero in finite time denoted by, satisfying the inequality

2 Definitions and the Formulation of the Problem Sl s | UPDATEG | G
PARAMETERS
Consider the three input one output flexible structure, which is
to be used as the controller, depicted in Fig. 1. The adjustabl Evaluate
parameter vector and the input vector of the structure are de 5
scribed in(1) and (2), respectively. In(2), the symbole denotes IF ROBOT
the tracking error, which is the discrepancy between the respons ,, oo y
of the system under control and the reference sigreatq » 2 r g q
—qq). The input output relation of the controller is described by . H_’CONTROLLER MCg I
(3).
G=[G, G4 GI" 1)
— y T
u=[e e 1] (2) i :@\4
7=G'u ©) N

or equivalently, Fig. 2 Architecture of the control system
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|s.(0)] Since the entries of the vectarcannot be linearly dependent
S K—(BoB.+B.) (12)  for all time [17], the equality in(22) imposes the following dif-
GPuT Py ferential equation form in the sliding mode.

Proof 2.1.Consider the Lyapunov function candidate113). In ) uu’ u
order to reach to the zero learning error level=0), the time G=——7-G+—7 14 (23)
derivative of (13) must be negative definite, which is given in uu uu
(14). The solution to the above equation is as follows;
1 t
V=5 (13) _ _ue .
2 G(t)=d(t,0G(0) + O(D(t'U)U(U)TU(a') Ta(o)do (24)
Ve=ScSec where,
:(T_ Td)sc tU(U)U(U)T
=(GTu+GTu— rg)s, fD(t,O)—eXp[ - L—u(a)Tu(a) da] (25)
= —ksign(sc)s.+(G'u—7g)s; Since 1=|lu]|<B,, for the first term in(24), following relations
= —kls,| +(GTU—Ty)se can be induced.
t ; T
<(—k+BgBy+B; sl (14) |0 (t,0)] = exp{ _ f %da}
u(o)'u(o
It is apparent that the condition i11) ensures the negative defi- 0
niteness of the time derivative of the selected Lyapunov function. tou(o) N
If one evaluates, with the aid of(10), the expression ifl5) is =|exp — f Wdu(a)
obtained. The solution to the differential equation(1b) can be 0
given by (16). t u(o) T
.= —ksign(s.)+GTU— 7y (15) = eXp{’_fou(U)Tu(U) du(e) H
; ‘ T \i : v lu(o)]
Sc(t) —sc(0) = —ktsign(s,(0))+ | (G (o)u(o)—714(0))do | ex de(O’)T
0 oU(o) u(o)
(16) t
At t=ty,, sc(t,)=0; < exp[f |u(a)|du(a)T]
0
th
—5¢(0)= —kty sign(s¢(0)) + f (GT(0)u(0)— 74(0))dor t
0 <|lexp! B, | du(o)T
17) 0
By multiplying both sides of17) by —sign(s.(0)), oneobtains =|lexp{B,(u(t)T—u(0)N}||<B, (26)

(18). . -
whereB, is some positive constant. For the bound of the second
term in (24), the analysis proceeds as given below.

th

|Sc(0)|_kth_(f (GT(U)U(U)—'Td((f))dff)Sigf(Sc(O))
0 t u(o) .

’ fOCI)(t,a') Tq(0)do

=kt~ (BgBy+B: )ty (18) u(o)"u(o)
which implies hitting in finite time as described by the inequality tou(o) .
; . _ Wo)
In (12) N O Bl fOU(O')TU(O') Td(O')dO'
Theorem 2.2.f the system enters the sliding modg=0 and
remains in it thereafter, then the parameters of the flexible con- t .
troller, G, evolve boundedly. <B; OU(‘T) Tq(o)da
Proof 2.2.1n the sliding modes.=0 ands,=0. Based on this, .
the following derivation can be made. <B,B, f ry(o)do
Se= 774 (19) °
. . < - <
SC:GTU+GTU_ Td:O (20) BlBu”Td(t) Td(o)” BZ (27)

o e whereB, is some positive constant. Since the two components of
uG=-uG+my the solution in(24) evolve boundedly, the sum of them will trivi-
ally be bounded as given i{28).

_u'u e u'u .
TR TUTRC IG(t)]|<By+B, (28)
u u H
IUT( - WUTGJF uu 'Td) (21) Note that in(7) we assumed that the parameters of the flexible
controller,G, are bounded. However, Theorem 2.2 states that once
which requires the following, the system enters the sliding mosle=0, the boundedness &f is
" " guaranteed. That is to say th&@) is automatically satisfied.
Tt - 0T - == In the view of the analysis presented, the parameters of the
u (G+ au! G u'u Td) 0 (22) controller are adjusted as described explicitly(29)—(31).
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. e ]
Gp: - mk&gr{sc) (29) A

Gd: - mk&gr{sc) (30)

. 1 s,>0r>155,.>0
= i i P 4%
G, P e~ +1ksngr(sc) (31)

The main problem in applying the design presented is the un- Ce
availability of the desired value of the control signa}). If this
guantity is not available, one cannot constrgicand the approach
cannot be used for control purposes. In the next section, the rela-

tion between thes, of (5) ands, of (6) is analyzed.

sp<lor<ry &5, <0

sp=0

\ 4
3 Analysis of the Relation Between Sliding Mode Con-
trol and Sliding Mode Learning

Consider the sliding lins, and the zero learning error level
described by5) and (6), respectively. In the most general sense o
the relation between these two quantities can be written (@2)n than the shaded set causes the violation of at least one of the
in which the integers andm characterize the differential relation 4€Sign objectives, one has to findlarelation from the intersec-
betweens, ands, and the values of which are quite difficult tolon Set.
obtain if the system dynamics is uncertain. Assume thatn
=0; qualitatively, if the value o8, tends to zero, this means that Vp=
Sc goes to zero. Physically, the system achieves a perfect tracking
because the controller produces the desired control inputs or vice 3 Invertibility Condition. As depicted in Fig. 5, if the
versa. Conversely, as the value _sg inc_reases in magnitude,_fam”y of lines described bg,= 7 (>0) are drawn for varying
which means that the error vector is getting away from the origigg|yes of 5, the tracking error vector will fall into one of these
the same sort of a divergent behaviorspis observed or vice gpsets of the phase space at each instant of time. However, each
versa. In this section, three conditions thBtmust satisfy are one of the members of this family corresponds to a different situ-
discussed. ation entailing differens, values. Therefore the relatioli must

s(mzq,(S(m)) (32) be invertible. In other wordsis, € R for Vs e R.
¢ P These three conditions clearly stipulate that'theelation must

3.1 Region Condition. It should be clear that as the controlbe such that the horizontal axes of the two subplots shown in Fig.
input approaches to the desired control value for the current cdnmust be mapped onto each other for simultaneous minimization
ditions, this means that the state tracking error vector of the pleftthe shown quadratic functions.
is driven toward the sliding manifold. In other words, the desired Theorem 3.1.All monotonically increasing continuous func-
control signal drives the state tracking error to the sliding manjigns can serve as thé relation, which satisfy the three condi-

Fig. 3 Signs of s, and s on different sides of s,=0 line

N =

s (38)

fold. In (33), these two statements are clarified. tions discussed in Section 3.1-Section 3.3, for the establishment
lim s,=0& lim 7= 74 (33) of an equivalency between the sliding mode control of the plant
T7g $p—0 and the sliding mode learning inside the controller.
The two equivalent limits and their consequences can be rewritterProof 3.1.Stability in the Lyapunov sense requires the negative
as given in(34) and (35) by utilizing s, ands;. definiteness of the time derivative of the Lyapunov function in
0 (38). Utilizing (39) leads to the following time derivative.
) . e—
J:Tosp:oj( e— —Ae:{é_)() (34)
lim s,=0={7— 74 (35) Neither ¥, nor V. is
sp—0 minimized
The statements above require the following conditiorilan
v(0)=0 (36)

Furthermore, as indicated in Fig. 3, the relatdnmust use the
first and the third quadrants of the coordinate system.

V,is
positive x>0 minimized
P(x)=4 zero x=0 (37)
negative x<0
3.2 Compatibility Condition. In order to measure the

tracking performance of the control system; define the Lyapunov
function in (38). The realization performance of the controller

(Vo) has already been defined {@3). In Fig. 4, two sets are Both V, and V, are
illustrated. If one selects & relation such that a simultaneous minimized
minimization is achieved, then this selection can be considered as

a suitable candidate. SinckE candidates from the regions other Fig. 4 Sets of possible four cases
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4 spz\'}l-l(sc)

axis
| » .

Sp= 2n

Sp=1

Sp= 0

v
Sp=-1
Sp= 27
Fig. 5 The family of lines formed as the value of s, varies
Sp:‘l’_l(sc) (39)

Vp=5pSp
[ ]

= (P H sV H(se)

\I,—l
:aa—S(SC)éC‘I’_l(Sc)

-1
:%((’;THGTU—Q)\P*(S&

-1
:%(—ksigr‘(sc)—kGTu—.Td)\pil(sc)

FA\ R L.
= —(73(8 (56T g~ k(¥ (,)sigrTs,)
ﬁ‘l’_l(sc) -1 -1 i
=5 (¥ (s0l(BaBu+B:) —k(¥X(s0)sign(sy)))
oV (s,
:%(lxp*l(sc)usewB'Td)*""l”l(sc)')
A CN
= e ISl BoBy By (40)

Since the partial derivativeW¥ ~(s.)/ds. is positive due to the
monotonically increasing behavior oF, the bound parameter
given in(11) enforces value of. to zero level, or equivalenths,

to zero. It is straightforward to prove that a hitting occurs in finite

time (see Proof 2.1

Sp Se

Fig. 6 The relation W performs a mapping between two hori-
zontal axes shown
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4 A 3-DOF Anthropoid Robot Dynamics

In this study, the dynamic model of the three degrees of free-
dom anthropoid robotic manipulator, whose physical structure is
illustrated in Fig. 7, is used as the test bed. Since the dynamics of
such a mechatronic system is modeled by nonlinear and coupled
differential equations, precise output tracking becomes a difficult
objective due to the strong interdependency between the variables
involved and the existence of gravitational forces. Therefore the
control methodology adopted must have the capability of coping
with the stated difficulties.

The general form of the dynamics of a robotic manipulator is
described by41) whereM(q), C(q,9), g(q) and stand for the
state varying inertia matrix, vector of Coriolis and centrifugal
terms, gravitational forces and applied torque inputs, respectively.
The nominal values of the plant parameters are given in Table 1 in
standard units.

M(q)g+C(a,q)q+g(q)=7 (41)

If the angular positions and angular velocities are described as the
state variables of the system, six coupled and first order differen-
tial equations can define the model.(#R) through(45), the non-

Fig. 7 Physical structure of the manipulator

Table 1 Manipulator parameters

Link 1 length 0.50 I
Link 2 length 0.40 I
Link 3 length 0.40 I3
Link 1 mass 4.00 m;
Link 2 mass 3.00 m;
Link 3 mass 3.00 m3
Distance link 1 CG-joint 1 0.20 1
Distance link 2 CG-joint 2 0.20 I
Cylindrical link radius 0.05 R

im cylindrical link inertial parameter | E 1:m,R2/2, E,:m,l,z/l 2 | E
i" cylindrical link inertial parameter | A,=m.R”/2 A,
i® cylindrical link inertial parameter | [i=m"/12 for i=2,3 I;
Link 1 torque limits +50.00 Toar 1
Link 2 torque limits +40.00 Toar 2
Link 3 torque limits +20.00 Toat 3

Transactions of the ASME



zero entries of the state varying inertia matrix are described. The
nonzero Cristoffel symbols are given [(#6)—(49). The details of

the plant model are presented[it8—19.
M 13= Myl %, co(d,) +my(l, 0K qy) + I 3 COL 0+ 03)) 2+ E4
+A, SiN(g) + E, coS(g) +Ag Sin(d,+da)

+E;cos(gp+0s) (42)
M 55= Myl 2, SirP(0,) + mg(15+125+ 215l i3 cog ) +1,+ 15
(43)
M 3= Mz=mg(1 25+ 3l cOKd3)) + 15 (44)
M gs=Mal e+ | 5 (45)

he, = (=myl &+ A, — E;)cog a)sin(ay)
+(As—E3)cog g+ ds)sin(gz+qs) + ma(l; cods)
+1czcog0z+03))(— 12 sin(dz) — ez sin(dz+ds)) (46)
hc,=sin(d,+qs)(—mslcsl; oK)

+(—mgl %+ A3~ E3)cogq,+g)) (47)
hca=myl 2, cogdy)sin(dy) (48)
hc,=—myl,l 3 sin(ds) (49)

Coriolis and centrifugal terms are formulated as follows.

_2h01Q1Q2_+?hC2_f'11Q3 _
C(q,q)=| — hc,gf+ 2hC4_(Q2Q3+ qg) +hesq3
—hc,ai—he,q5

(50)

Lastly, the gravity terms are obtained as given(si) where P
represents the gravity constant.
0

9(01,02,03)=| (Malca+mgl,) P cogq,) + mgl 3P cogd,+qs)

Mgl 3P cogq,+d3) 51)

5 Simulation Studies

In the simulation studies presented, the plant introduced in t
fourth section is controlled by the proposed control scheme.
aim is to produce some torque signals such that the applicatio
which results in the observation of a sliding motion in the pha
space. As the controller, the architecture discussed in the sec
section is adopted. The structure of the control system is as ill
trated in Fig. 2, in which the plant is in an ordinary feedback I00|¢

Angular Position Reference

qa (rad)
o

I
I
g
) !
1 I
1 I
Ap--------\¢ il Al | N
! I
I
" "
5

1
Time (sec)
Angular Velocity Reference

l}d (rad/sec)

10
Time (sec)

Fig. 8 Reference state trajectories
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T(sp)

0 > 'sp[
np

Fig. 9 Threshold function

to which the reference signal illustrated in Fig. 8 is applied for
each link. Based on the tracking error vector, first the value of
sp(e,é) is evaluated and this quantity is passed through‘he
function to get the value o§;, which is used in the dynamic
adjustment mechanism. In evaluating the value of the quasyity
the slope parameter of the switching li(d has been set to unity
for all three links.

In practical implementations of control structures for trajectory
control of robotic manipulators, a number of difficulties are en-
countered, which make it difficult to achieve an accurate trajec-
tory tracking. The simulation studies carried out address these
difficulties. The first difficulty is the existence of gravitational
forces adversely influencing the control performance. The second
difficulty is the existence of observation noise. To study the ef-
fects of this situation, which is very likely to be encountered in
practice, the information used by the controller is corrupted by a
Gaussian distributed random noise having zero mean and variance
equal to 0.33e-6. The peak magnitude of the noise signal is within
+1e-3 with probability very close to unity. The third difficulty is
the nonzero positional initial conditions. In order to demonstrate
the reaching mode performance of the algorithm, the base link is
moved to 7/18 radians, the shoulder link is moved ton/18
radians and the elbow link is moved 418 radians initially.

It should be pointed out that once the error or the rate of error
comes very close to origin, the adjustment mechanism is driven
solely by the noise sequence. Since the bound of perturbing signal
is.known, the dynamic equations of the parameters givéan-

6 ) can be modified so that a reduction on the unnecessary ad-

nistment activity is obtained and the convergent behavior of the

rameters can still be achieved by utilizing a sufficiently hard
reshold function given by52) and depicted in Fig. 9. The value

' threshold is denoted by, and has been set to 5e-3 in the
Imulations. The equations of the controller parameters are there-
ore modified as given it53)—(55).

T(sp)=(1+exp —10%(|s;| —np))) (52)
. e
sz — mkSIQr(‘P(Sp))T(Sp) (53)
. e
Go=— gz XSO ¥ (s;)) T(sp) (54)
Ge=— ez KSIg ¥ () T(sp) (55)

As the W relation, the following selection is made parallel to the
conditions discussed in the second section.
W(x)=x (56)

Furthermore, in order to reduce the chattering effect in the slid-
ing mode, the function in57) has been used instead of the sign
function in the dynamic strategy described(§8)—(55).

sign(x) ~ (57)

X
|x|+0.05
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o Fig. 12 Time behavior of the lyapunov function in (38) for each
As the initial values for the controller parameters, the valuggk

given in (58) are adopted.

Gp1(0)  Gpa(0) Gp3(0) -10 -10 -10 - o _
show the minimization activity of the algorithm presented, the
Ga(0) Gga(0) Ggs(0)|=| =2 -2 -2 horizontal axes of the subplots are selected as logarithmic. Clearly
Ge1(0)  Geo(0)  Gea(0) 0 0 0 aftert=1s, the cost is almost zero, which means that the error
(58) vector lies in the vicinity of the sliding manifold. It is seen that
sgme small magnitude spikes occur in time and they are damp-

Under these conditions, the state tracking error graph in Fig. 10 . . byt |
obtained. The trend in position and velocity errors clearly stipula] é’ed out quickly. We relate these spikes to the difficulties stated at

: : . ; : L beginning of the section.
that the algorithm is able to achieve precise tracking objecti N ; o
with a sufficiently fast response. The motion in the phase plane 'sWhat shogld be emphasized as a last point is the smpoth_ness of
torque signal produced by the controller. As seen in Fig. 13,

illustrated in Fig. 11. These figures show that after a fast reachi outputs of the shoulder and the elbow link controllers exceed

mode, a sliding mode is enforced and is maintained by produci S ) X
a suitable control signal. In Fig. 12, the time behavior of the ghtly the limits of the applicable control ranges during the very

Lyapunov function in(38) is illustrated for each link. In order to 211 Phase of the motion, during which a reaching mode is ob-
served. Since the initial errors are considerably large in magni-

tude, evaluated torque signals.] are saturated and the applied
torque signals £,) are depicted in the right column of Fig. 13.
However, the applied control signal has sufficiently smooth char-

.
er

20 T -
| | |
T R N .
i I 1
& o
! i |
Aop - :
1 1 3 3
20 . . ! y !
0 5 10 15 20 0 5 10 15 20
Time (sec)

.
e

2 . . .
-02 -0.15 -0.1 -0.05

5 10 15 20

.
(23

Time (sec) Time (sec)

Fig. 11 Motion in the phase plane for each link Fig. 13 Evaluated and applied torque inputs

638 / Vol. 122, DECEMBER 2000 Transactions of the ASME



Gai

Gey

0 5 10 15 20
Time (sec)

Time (sec)

Fig. 14 Behavior of the parameters of the base link controller Fig. 16 Behavior of the parameters of the elbow link controller

acteristic, which does not violate the potential limits of the aCtU%'erform the simulation has been measured as 48 seconds on a

tors. Lastly, the behavior of the controller parameters for baseentium 11-233 PC running Matlab 5.1 software, indicating that
shoulder and elbow links are illustrated in Fig. 14, Fig. 15, anghe applicability of the algorithm in real-time.

Fig. 16, respectively. In these figures, it is seen that the parameters
of the controllers remain bounded and are robust against the effect )
of noise around the origin of the phase space. Clearly, the threéh- Conclusions

old function (T(sp)) of (52) introduces the elimination of the | this paper, a novel method for establishing a sliding motion
noise related evolution in the controller parameters. in the dynamics of a three degrees of freedom anthropoid robot is

During the simulations, the bounds for the uncertainties dgiscussed. The method is based on the adoption of a nonlinear
noted_ byk for all three links has been set to 1000. T_he S'mU|a}t'OHynamic adjustment strategy in an ADALINE based controller.
stepsize has been selected as 2.5 ms and the time requireg{@ task is to drive the tracking error vector to the sliding mani-
fold and keep it on the manifold forever. What makes the pro-
posed algorithm so attractive in this sense is the fact that the
sliding mode control of the plant is achieved while an equivalent
regime is imposed on the controller parameters. In this way, the
difficulties related to the noise on the measured quantities, gravi-
tational forces and the structural uncertainties on the governing
equations of the plant are alleviated by incorporating the robust-
ness provided by the VSS technique into the proposed approach.
A further attractiveness of the algorithm is the fact that the con-
Time (sec) troller for each link possesses only three parameters. The compu-
tational requirement is not therefore excessive. From these points
of view, the method proposed is highly promising in control en-
--------- gineering practice.
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