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FUZZY VARIABLE STRUCTURE CONTROL OF A CLASS

OF NONLINEAR SAMPLED-DATA SYSTEMS

MEHMET ÖNDER EFE

Abstract. A novel approach to the fuzzy variable structure control
is presented. The method is applicable to a class of discrete-time
multi-input, multi-output systems. The controller for each subsystem
is a two-input single-output fuzzy inference system partitioning the
input space. The scheme presented analytically demonstrates that an
appropriate tuning of the defuzzifier parameters can drive the plant
to the desired sliding regime. The analysis begins with the extraction
of the equivalent measure of the applied control signal, and continues
with the proof of convergence claims for the discrete time sliding
mode control. The method discussed has been applied to a double
pendulum system, whose dynamics is assumed to be unknown, and
the mathematical claims of the paper have been justified through a
series of simulations. The results observed strongly recommend the
use of the algorithm in the cases where the tracking precision and
robustness against disturbances are sought.

1. Introduction

Although the framework of nonlinear control offers various solutions of
the problems that are defined accurately, the applications in real life still
impose increasingly demanding conditions, in the presence of which the
problem becomes either mathematically intractable or a feasible solution
set is typically unreachable. An alternative way to overcome the difficul-
ties arising from the analytic representations is to develop a strategy that
handles different operating conditions with different decision mechanisms.
More precisely, such a system is desired to be capable of processing the
verbal expressions available about the physical phenomena and the solution
is most likely to exploit the theory of fuzzy inference systems.
The use of fuzzy decision mechanisms in control systems significantly re-

duces the necessity to represent the plant dynamics in detail; furthermore,
information contained in rule-based structures extends the solution set be-
cause of the possibilities of utilizing empirical and expert knowledge. The
way in which all them are integrated is extensively studied in the context of
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fuzzy systems and control [1], [2], [3], [4] that postulate the refinement of the
knowledge through the tuning of the controller parameters. In the literature,
various schemes have been utilized to refresh and refine the information con-
tent of a fuzzy system. Error back-propagation and Levenberg–Marquardt
techniques are the most utilized ones, however, their oversensitivity to dis-
turbances constitutes a potential drawback from an operational point of
view. Previous studies [5], [6] have demonstrated that the training methods
that exploit variable structure systems (VSS) theory in parameter tuning
can inherit the robustness property of the VSS methodology.
The control systems based on the VSS theory are known for their ro-

bustness to unmodeled dynamics, plant nonlinearities, disturbances, and
parameter variations. The philosophy is based on switching functions of
the state variables creating a sliding manifold. The goal is to force the sys-
tem dynamics towards the locus described by the manifold equation. When
the state is maintained on this manifold, the system is said to be in sliding
mode, during which the control system becomes insensitive to parameter
variations in the plant dynamics, unmodeled nonlinearities, delays, and to
certain disturbances, which permit to maintain the sliding mode [7], [8], [9],
[10] in limits. Although the VSS theory is well developed for continuous
time models, there are few results postulating the applications in discrete
time, which are of substantial importance since the control systems are be-
coming increasingly computerized and are processing the data observed at
discrete instants of time.
One of the notable works discussing the stability issues in discrete time

sliding mode control (DTSMC) is [11], in which sufficient conditions for
convergence are discussed. Gao et al. [12] scrutinize the design of DTSMC
with particular emphasis on reaching law approach, and exemplify the re-
sults on a second-order linear system having uncertain parameters. Pieper
et al. [13] analyze the optimality in DTSMC for designing optimal slid-
ing surfaces with a linear quadratic criterion, and confirm the results on a
gantry crane apparatus. Sira-Ramirez [14] discusses the convergence during
quasi-sliding mode for nonlinear SISO systems, and Chen et al. elaborate
the sampling time selection problem in computer controlled systems with
a sliding mode [15]. In [16], Misawa analyzes the construction of DTSMC
under the presence of unmatched uncertainties. One of the recent stud-
ies in DTSMC formulates a recursive control signal for linear systems and
proves that the state of the system is uniformly ultimately bounded in the
presence of time-varying disturbance and uncertainties [17]. In [18], the
DTSMC task is studied for discrete time input-output models, and in [19],
the design based on Euler discretization is analyzed.
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A more recent tendency in the design of DTSMC is the blending of algo-
rithmic techniques with other elements, such as logic, reasoning, and heuris-
tics. Such systems have come to be known as intelligent control systems [20],
[21]. A number of new control approaches is used in this respect, based on
fuzzy logic, neural networks, evolutionary computing, and other techniques
adapted from artificial intelligence. One of the examples demonstrating the
feasibility and efficacy of such approaches in the field of DTSMC focuses
on an exhaust measuring system [22], which introduces the use of a fuzzy
supervisor utilizing triangular membership functions. The work presented
by Xu et al. [23] adopts a hybrid approach based on neuro-fuzzy inte-
gration, by the use of which the DTSMC task is achieved by tuning the
parameters of a neuro-fuzzy identifier. The tuning is performed through
error back-propagation technique, and the results have been discussed for
computer control of a two link robotic manipulator. In [24], [25], the design
of DTSMC with recurrent neural networks and Gaussian radial basis func-
tion neural networks is presented, respectively. In both studies, the neural
networks are utilized for estimation purposes.
This paper focuses on the design of sliding mode controllers operating in

discrete time. The motivation that lies behind is to devise a robust control
scheme for computer controlled multi-input multi-output (MIMO) systems
having uncertainties and belonging to a particular class. The method pre-
sented is based on the fuzzy partitioning of the phase space. The controller
is a standard fuzzy system, the parameters of the defuzzifier of which are
the only adjustable parameters. A predefined sliding mode dynamics is
shown to be achievable by an appropriate tuning of them. In Sec. 2, the
details concerning the structure of the control system, the plant, the fuzzy
controller, and the adaptation law are presented. Section 3 dwells on the
simulation studies, which illustrate the performance of the algorithm on the
dynamic model of a coupled double pendulum system. The conclusions are
presented at the end of the paper.

2. The plant and the analysis of the proposed scheme

Consider the control system structure depicted in Fig. 1, in which the
plant inside the dashed rectangle is a MIMO one, which is composed of n
subsystems. The ith subsystem is assumed to be of order ai belonging to
the class described in (1), in which the subscript k denotes time index:

xik+1 = f
i(Xk) + g

iuik, (1)

where xik =
(
xi1k xi2k . . . xiaik

)T
is the state vector of the ith subsys-

tem, which is ai × 1 dimensional, gi =
(
0 . . . 0 bi

)T
, which is ai × 1

dimensional and is assumed to be known, Xk =
(
x1k
T
x2k
T
. . . xnk

T
)T
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Fig. 1. Structure of the control system

is the state vector of the whole system, which is of dimension

(
n∑
i=1

ai

)
× 1

and uik is the scalar control input to the ith subsystem. The system above

can be written more compactly as xik+1 = f
i + giuik and it is assumed that

the function f i is a smooth function of its arguments.
According to Fig. 1, the error vector at time k for the ith subsystem

is defined as eik = x
i
k − r

i
k, where r

i
k is the vector of the reference state

trajectory at time k. Define the switching function for the ith subsystem as

sik = α
iTeik =

ai∑
j=1

αije
i
jk, (2)

where the dynamics determined by sik = 0 is stable for i = 1, . . . , n. Defining
the closed loop switching dynamics as sik+1 = Q

i(sik), one can proceed as
follows:

sik+1 = α
iTeik+1 = α

iT
(
xik+1 − r

i
k+1

)
= αi

T (
f i(Xk) + g

iuik − r
i
k+1

)
= αi

T (
f i(Xk)− r

i
k+1

)
+ αiaib

iuik.

(3)

Using sik+1 = Q
i(sik) and solving for u

i
k give the control sequence formulated

as follows:

uik = −
(
αiaib

i
)−1 (

αi
T (
f i(Xk)− r

i
k+1

)
−Qi(sik)

)
. (4)

If the value of the vector function f i were available, the application of this

sequence to the ith subsystem of (1) would result in sik+1 = Q
i(sik), where



FUZZY VARIABLE STRUCTURE CONTROL 237

Qi must satisfy the condition below to ensure reaching [11], [12], [14], [15]

sik
(
sik+1 − s

i
k

)
= sik

(
Qi(sik)− s

i
k

)
< 0. (5)

If the condition above is satisfied for all k ≥ 0, the ith subsystem is driv-
en towards the dynamics characterized by sik = 0. However, in practice
sik = 0 is rarely achieved since the problem is described in discrete time.
A realistic observation is |sik| < ε, where ε is some positive number. In
the literature, this phenomenon is called quasi-sliding mode or, equivalent-
ly, pseudo-sliding mode [12], [15], [25]. This mode has useful invariance
properties in the presence of uncertainties and time variations in the plant
and/or environment parameters. Once the quasi-sliding regime starts, the
error signal behaves as is prescribed by |sik| < ε.

2.1. Obtaining the equivalent error on the control signal. Consider
Fig. 1, which illustrates that the quantity siC k would be the error on the
applied control signal if we had a supervisor providing the desired value
of the control denoted by uid k. However, the nature of the problem does
not allow the existence of such a supervisory information. Instead of it,
the designer is forced to construct the value of siC k from the available
quantities. In what follows, a method to compute the error on the control
signal is presented.

Assumption 2.1. The vector functions f i and gi appearing in the plant
dynamics are such that a desired quasi-sliding mode can be created with a
suitable selection of the design parameters, more explicitly, the DTSMC task
is assumed to be achievable.

Remark 2.2. A control sequence leading to DTSMC can be formulated if
the dynamics of the subsystems described by (1) are totally known or if the
nominal representations are known with the bounds of the uncertainties. It
must be noted that the disturbances and uncertainties are assumed to enter
the system through the control channel [7]. When the control sequence in (4)
is applied to system (1), the resulting behavior is called the target DTSMC
and the input signal leading to it is called the target control sequence (uik). If
at least the explicit form of the nominal representation of the vector function
f i is not known, it is obvious that the target control sequence cannot be
constructed by following the traditional DTSMC design approaches.

Definition 2.3. Given an uncertain plant, the sub-components of which
have the structure described in (1), and a command trajectory rik for k ≥
0. The input sequence denoted by uid k satisfying the following difference
equation is defined to be the idealized control sequence, and the difference
equation itself is defined to be the reference DTSMC model for the ith
subsystem.

rik+1 = f
i

d
(Rk) + g

iuid k. (6)
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In this representation, Rk =
(
r1k
T
r2k
T
. . . rnk

T
)T
stands for the

vector of command trajectories for the whole system. This equation can be
written more compactly as rik+1 = f

i

d
+ giuid k. Mathematically, the exis-

tence of such a model and sequence means that system (1) perfectly follows
the command trajectory (rik) if both the idealized control sequence (u

i
d k) is

known and the initial conditions are set as xi0 = r
i
0, more explicitly, e

i
k ≡ 0

for all k ≥ 0. Undoubtedly, the reference DTSMC model is an abstraction
since the function f i

d
appearing in it is not available; however, the concept

of idealized control sequence should be considered as the synthesis of the
command signal rik from the time solution of difference equation (6).

Fact 2.4. If the target control sequence (4) were applied to system (1),
the idealized control sequence would be the steady state solution of the
control signal, i.e., lim

k→∞
uik = u

i
d k. However, under the assumption of the

achievability of the DTSMC task, the difficulty here is again the unavail-
ability of the functional form of f i. Therefore, the aim in this subsection
is to discover an equivalent form of the discrepancy between the control
applied to the system and its target value by utilizing the idealized control
viewpoint. This discrepancy measure is denoted by siC k = u

i
k−u

i
d k. If the

target control sequence (4) is rewritten by using (6), one obtains

uik = −
(
αiaib

i
)−1 (

αi
T
(
f i − f i

d
− giuid k

)
−Qi(sik)

)
= −

(
αiaib

i
)−1 (

αi
T
(
f i − f i

d

)
−Qi(sik)− α

i
ai
biuid k

)
= −

(
αiaib

i
)−1 (

αi
T
∆f i −Qi(sik)

)
+ uid k,

(7)

where ∆f i = f i− f i
d
. The target control sequence becomes identical to the

idealized control sequence, i.e., uik ≡ u
i
d k as long as α

iT∆f i − Qi(sik) = 0
holds for all k ≥ 0. However, this condition is of no practical importance
since the analytic forms of the functions f i and f i

d
are not available. There-

fore, one should consider this equality as an equality to be enforced instead
of an equality that holds all the time, because its implication is siC k = 0,
which is the ultimate goal of the design. It is obvious that enforcing this
equality to hold will let the controller synthesize the target control sequence,
which will eventually converge to the idealized control sequence by the adap-
tation algorithm yet to be discussed.

Consider sik+1 below:

sik+1 = α
iTeik+1 = α

iT
(
xik+1 − r

i
k+1

)
= αi

T
(
f i + giuik − f

i

d
− giuid k

)
= αi

T (
∆f i + gisiC k

)
= αi

T
∆f i + αiaib

isiC k = Q
i(sik) + α

i
ai
bisiC k.

(8)
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Solving the above equation for siC k yields the following:

siC k =
(
αiaib

i
)−1 (

sik+1 −Q
i(sik)

)
. (9)

The interpretation of the above control error measure is as follows: since
we are in pursuit of enforcing sik+1 = Q

i(sik) in the closed loop, until this
equality is achieved, the applied control sequence is not the sought one.
However, if an adaptation strategy enforces (9) to approach zero, this en-
forces sik+1 → Q

i(sik), consequently u
i
k → u

i
d k as k increases.

Remark 2.5. The reader should note that the application of uid k ∀k ≥ 0
to system (1) with zero initial errors would lead to eik ≡ 0 ∀k ≥ 0, but
uid k is not a computable quantity. On the other hand, the application of
uik that is obtained by minimizing the magnitude of s

i
C k ∀k ≥ 0 will lead

to sik+1 → Q
i(sik). Therefore, adopting (9) as the equivalent measure of the

control error and minimizing it enforces any nonzero initial errors to zero in
time. In other words, the tendency of the control scheme will be to generate
the target DTSMC sequence described in (4).

Remark 2.6. Referring to (9), it should be obvious that if

siC k
(
siC k+1 − s

i
C k

)
< 0

is satisfied, then sik
(
sik+1 − s

i
k

)
< 0 is enforced. In other words, if the

control signal approaches the target control sequence, the DTSMC task is
achieved and the plant follows the command signal.

2.2. Fuzzy controller for the ith subsystem. Consider an m-input,
single output fuzzy controller having RiFC rules in the rule base, triangular
membership functions, and product inference engine. The input-output
relation of such a system is given by

uik =

RiFC∑
l=1

βilk

m∏
j=1

µilj(e
i
jk)

RiFC∑
l=1

m∏
j=1

µilj(e
i
jk)

, (10)

where eijk is the jth entry of the input vector at time k, µ
i
lj is the lth

rule’s jth membership function, and βilk is the scalar conclusion of lth
rule and is adjustable. The fuzzy system above can be expressed more

compactly as uik = β
i

k

T
Ωik, where β

i

k
and Ωik are R

i
FC × 1 vectors and

Ωik = w
i
k

(
RiFC∑
l=1

wilk

)−1
with wilk =

m∏
j=1

µilj(e
i
jk) is the firing strength of the

lth rule in the ith controller. The fuzzy system described by (10) is known
as the standard fuzzy system and is analyzed by Wang [2] in detail.
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Set RiFC = 9 and m = 2 and consider the fuzzy quantization depicted in
Fig. 2 (to which more references will be made at a later stage, explaining
the notations used in the figure). We choose time-invariant membership
functions, and consider solely the adjustment of the defuzzifier parameters,

i.e., the βi
k
vectors for i = 1, 2, . . . , n. According to Fig. 2,

RiFC∑
l=1

wilk = 1.

Therefore, Ωik = w
i
k, and the denominator in (10) is equal to unity.

Fig. 2. Construction of the membership functions

2.3. Adaptation mechanism. Define the quantities Ωik+1 = Ω
i
k+∆Ω

i
k+1

and uid k+1 = u
i
d k+∆u

i
d k+1. In order not to violate the set of requirements

by physical realities, we impose the conditions ‖∆Ωik‖ ≤ 2BΩ and |∆u
i
d k| ≤

2Bud for all k ≥ 0, where BΩ and Bud are some positive constants satisfying
‖Ωik‖ ≤ BΩ and |u

i
d k| ≤ Bud for all k ≥ 0, respectively. Furthermore, the

parameters of the controller are assumed to be bounded, i.e., ‖βi
k
‖ ≤ Bβ ,

where Bβ > 0. Using these quantities, we set ζ = 2 (BβBΩ +Bud) and

assume that Ωik
T
Ωik+1 > Γi > 0 is satisfied in some subspace of the space

�2. The existence of such Γi and the meaning of the assumption will be
discussed later.
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Theorem 2.7. For a discrete time system having the structure given
in (1), the use of a two-input single-output fuzzy logic controller described
in (10) with a parameter adaptation rule as described in (11) leads to
siC k

(
siC k+1 − s

i
C k

)
< 0, and the system is driven towards the predefined

quasi-sliding regime

βi
k+1
= βi

k
− γ
(
φI + ρΩikΩ

i
k

T
)−1
sgn
(
siC kΩ

i
k

)
, (11)

where γ is a positive constant satisfying inequality (12) and φ and ρ are
positive design parameters satisfying φ > 0.75ρ and

γ >
ζφ(φ + ρ)

(φ− 0.75ρ)Γi
. (12)

Proof. See Appendix.

Theorem 2.8. For a two-input single-output fuzzy logic controller hav-
ing triangular membership functions, if the membership grades for the suc-
cessive input measurements satisfy conditions (13) and (14) below, then
the membership grades do not exhibit binary transitions and there exists a
strictly positive Γi:

|µil1(e
i
1 k+1)− µ

i
l1(e

i
1 k)| ≤ 1− Λ

i
1 ∀l, (13)

|µil2(e
i
2 k+1)− µ

i
l2(e

i
2 k)| ≤ 1− Λ

i
2 ∀l, (14)

where 0 < Λi1 < 1 and 0 < Λ
i
2 < 1.

Proof. Since the uncertainty bound (γ) is chosen according to (12) and since

Ωik
T
Ωik+1 > Γi > 0 has been assumed, one needs to show that the least value

of Ωik
T
Ωik+1 is strictly positive. Before going into the details, note that (13)

and (14) prohibit the binary changes in the value of any of the membership
functions. For example, if µil1(e

i
1 k) = 1 for some k, the value of µ

i
l1(e

i
1 k+1)

can decrease at most to the level 1 − Λi1. Referring to Fig. 2, let the input
vector perform a transition from the region A1 at time k to the region A6 at
time k+1. We denote this transition by A1 → A6. Clearly, conditions (13)
and (14) require that the point eik in Fig. 2 can reach points in the shaded
area at time k + 1, and this area is the largest area that can be reached
from the region A1. Taking this into account, we can claim that the least

value of Ωik
T
Ωik+1 that can be observed from the transition A1 → A6 is

Λi1Λ
i
2. Once the minimal least value of Ω

i
k

T
Ωik+1 for all possible transitions

is constructed, a candidate Γi value can be set if the global minimum value

of Ωik
T
Ωik+1 is strictly positive.

For this reason, consider the data given in Table 1, in which the results
for all possible transitions are summarized. The values seen in the table
stipulate that there are equivalent transitions leading to the same least
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value. These are given in the third column. In analyzing the results, the
rules are enumerated as follows: Rule 1 NN, Rule 2 NZ, Rule 3 NP, Rule 4
ZN, Rule 5 ZZ, Rule 6 ZP, Rule 7 PN, Rule 8 PZ, Rule 9 PP. Here, N, Z,
and P stand for linguistic labels negative, zero, and positive, respectively.
Among what is given in the fourth column of Table 1, the transitions A6 →
A6, A7 → A7, A10 → A10, and A11 → A11 are the most difficult ones
since they require the evaluation of four rule outputs. For example, in the
transition A6 → A6 one gets

Ωik
T
Ωik+1 =

(
2ei1 ke

i
1 k+1 +

(
ei1 k + e

i
1 k+1

)
Li1 + L

i
1
2
)

Li1
2

×

(
2ei2 ke

i
2 k+1 +

(
ei2 k + e

i
2 k+1

)
Li2 + L

i
2
2
)

Li2
2

=
(
Li1L

i
2

)−2
F i
(
ei1 k, e

i
1 k+1

)
Gi
(
ei2 k, e

i
2 k+1

)
≥
(
Li1L

i
2

)−2
inf

ei1k,e
i
1k+1∈A6

F i
(
ei1 k, e

i
1 k+1

)
× inf
ei2k,e

i
2k+1∈A6

Gi
(
ei2 k, e

i
2 k+1

)

(15)

which is evaluated over a domain satisfying the following conditions:

• ei1 k, e
i
1 k+1 ∈ [−L

i
1, 0];

• ei2 k, e
i
2 k+1 ∈ [0, L

i
2];

• |ei1 k − e
i
1 k+1| ≤

(
1− Λi1

)
Li1;

• |ei2 k − e
i
2 k+1| ≤

(
1− Λi2

)
Li2.

In Fig. 3, we portray the hexagonal domains over which the infimum
values are evaluated. More explicitly, inf

ei1k,e
i
1k+1∈A6

F i
(
ei1 k, e

i
1 k+1

)
is eval-

uated over the hexagon Oφ1φ2φ3φ4φ5 and inf
ei2k,e

i
2k+1∈A6

Gi
(
ei2 k, e

i
2 k+1

)
is

evaluated over Oφ6φ7φ8φ9φ10. The function F
i takes its minimum values

at the centers of the line segments φ1 − φ2 and φ4 − φ5, and the function
Gi takes its minimum values at the centers of the line segments φ6−φ7 and
φ9−φ10. When the corresponding values are solved, the least value of (15)
is obtained as given in A6 → A6 row of Table 1.
If the results obtained for all possible cases given in the fourth column

of the table are combined, the final result given below is reached

Ωik
T
Ωik+1 > Λ

i
1Λ
i
2min

((
1−
Λi1
2

)(
1−
Λi2
2

)
,Λi1Λ

i
2

)
. (16)
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Table 1: Possible regional transitions and the least value of Ωik
T
Ωik+1

Regional Transition Contributing Rule(s) Equivalent Transitions Least Value of Ωik
T
Ωik+1

A1 → A1 3 A4 → A4, A13 → A13, A16 → A16 1
A1 ↔ A2 3 A3 ↔ A4, A13 ↔ A14, A15 ↔ A16 Λi1
A1 ↔ A5 3 A9 ↔ A13, A4 ↔ A8, A12 ↔ A16 Λi2
A1 ↔ A6 3 A4 ↔ A7, A10 ↔ A13, A11 ↔ A16 Λi1Λ

i
2

A2 → A2 3,6 A3 → A3, A14 → A14, A15 → A15 1
A2 ↔ A3 6 A14 ↔ A15 (Λi1)

2

A2 ↔ A5 3 A3 ↔ A8, A9 ↔ A14, A12 ↔ A15 Λi1Λ
i
2

A2 ↔ A6 3,6 A3 ↔ A7, A10 ↔ A14, A11 ↔ A15 2(Λi1)
2Λi2

A2 ↔ A7 6 A3 ↔ A6, A10 ↔ A15, A11 ↔ A14 (Λi1)
2Λi2

A5 → A5 2,3 A8 → A8, A9 → A9, A12 → A12 1
A5 ↔ A6 2,3 A7 ↔ A8, A9 ↔ A10, A11 ↔ A12 2Λi1(Λ

i
2)
2

A5 ↔ A9 2 A8 ↔ A12 (Λi2)
2

A5 ↔ A10 2 A6 ↔ A9, A7 ↔ A12, A8 ↔ A11 Λi1(Λ
i
2)
2

A6 → A6 2,3,5,6 A7 → A7, A10 → A10, A11 → A11 Λi1Λ
i
2(1− 0.5Λ

i
1)(1− 0.5Λ

i
2)

A6 ↔ A7 5,6 A10 ↔ A11 2(Λi1Λ
i
2)
2

A6 ↔ A10 2,5 A7 ↔ A11 2(Λi1Λ
i
2)
2

A6 ↔ A11 5 A7 ↔ A10 (Λi1Λ
i
2)
2
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Fig. 3. Regions of interest for A6 → A6 transition or its equivalents

As long as conditions (13) and (14) hold, the result above ensures that
Γi > 0 for each controller exists in �2 and satisfies inequality (17):

0 < Γi < Λ
i
1Λ
i
2min

((
1−
Λi1
2

)(
1−
Λi2
2

)
,Λi1Λ

i
2

)
. (17)

The result obtained proves Theorem 2.8 and confirms the claim of Theo-
rem 2.7.

Remark 2.9. A system composed of n subsystems having structure (1)
in the feedback loop illustrated in Fig. 1 can be driven towards a predefined
quasi-sliding mode if the adopted fuzzy controller for each subsystem has
the structure discussed in Sec. 2.2 and if the adaptation mechanism is given
in (11). The proposed scheme extracts the error measure by using (9),
which is used in the adjustment of the fuzzy controller parameters, and the
reaching is enforced.

2.4. Practical issues. The analysis presented so far has concentrated on
the class of systems having the structure described by (1). It is obvious
that the system under control in real life is a sampled form of a continuous
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system, which can generically be represented as

Ẋ = σ (X,u) (18)

The system above can be considered as the plant block in Fig. 1, con-
sequently, system (1) corresponds to the sampled system inside the dashed
rectangle if the figure.

2.4.1. Sampling time. Imposing (13) and (14) means that the observation
at time k and the observation at time k + 1 must lie within a rectangular
region, an example of which for the transition A6 → A6 is shown in Fig. 2.
In the limit case, these values lie on the diagonal corners of the rectangular
area. The consequences of these conditions are as follows: the function f i

seen in the dynamics of system (1) must be sufficiently smooth, and the
command signal must be sufficiently enough in order not to cause jumps
violating (13) and (14). This requirement is tightly dependent upon the
unknown system (18) and the sampling period Ts. We require that the
vector function σ in (18) is sufficiently smooth, and the sampling period
is sufficiently short to satisfy the conditions over regional transitions. This
would result in that there exist Λi1 > 0 and Λ

i
2 > 0, which are the underlying

assumptions of the design. On the other hand, one can always increase Li1
and Li2 to satisfy conditions (13) and (14), but this can be in conflict with
the processing of the fuzziness or the subjective judgements of the designer.

2.4.2. Causality. In (9), we have postulated the error on the applied control
at time k. However, the right-hand side of (9) requires the value of sik+1.

In the application example, we set siC k =
(
αiaib

i
)−1 (

sik −Q
i(sik−1)

)
, the

right-hand side of which is actually the control error at time k− 1. Assum-
ing this form practically as an equivalent measure of the control error, we
introduce some amount of uncertainty into the control system, which can
be represented in the system dynamics that has already been assumed to
be unknown.

2.4.3. Actuation speed. Since it has been assumed that the details concern-
ing the dynamic model of the system are unavailable, what causes a difficulty
from a practical point of view is the choice of sik+1 = Q

i(sik), which charac-
terizes the behavior during the reaching mode. The choice of the function
Qi(sik) can only be set by trial-and-error due to the lack of system-specific
details.
In the application example, we use

sik+1 =
(
1− λi1Ts

)
sik − λ

i
2Ts sgn

(
sik
)
,

where λi1 > 0, λ
i
2 > 0 and

(
1− λi1Ts

)
> 0 (see [14]).
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2.4.4. Enhancement of the behavior in the quasi-sliding mode. It is well
known that the use of the function sgn(·), particularly during the sliding
mode for continuous time variable structure control systems affects the per-
formance during the sliding mode adversely since the measured quantity is
very close to zero and this leads to the chattering phenomenon [8]. However,
in discrete time, once the trajectory in the phase space crosses the switch-
ing hyperplane, it maintains the crossings repetitively and a zigzag motion
along the switching hyperplane occurs [12]. Adopting a smooth transition
about the decision boundary can enhance the tracking performance in terms
of reducing magnitude of the zigzagging during the quasi-sliding mode. For
this purpose, the following approximation for the function sgn(·) has been
utilized:

sgn(siC k)
∼=

siC k
|siC k|+ δ

, (19)

where δ > 0 determines the sharpness around the origin. Since function
(19) is not discontinuous at the origin, the decision mechanism provides a
soft switching in the vicinity of the boundary characterized by siC k = 0.

3. A case study: DTSMC of a coupled double pendulum

A coupled double pendulum system is used to illustrate the performance
of the proposed method. The physical structure of the plant is shown in
Fig. 4. Since the dynamics of such a mechatronic system is modeled by
nonlinear and coupled differential equations, precise tracking becomes a
difficult objective due to the strong interdependence between the variables
involved. Furthermore, the ambiguities introduced by the noise on the mea-
sured quantities make the design of a robust controller so complicated that
the achievement of which is a challenge in the conventional design frame-
work. Therefore, for such a system, the control methodology adopted must
be capable of handling the difficulties stated.
The differential equations characterizing the behavior of the system are

(20)–(23), where the angular positions and angular velocities for each pen-
dulum define the state vector. The control inputs, which are denoted by
u1 and u2, are provided to the relevant pendulum by servomotors at the
base. Masses and the inertial moments of the two pendulums are given as
M1 = 2kg, M2 = 2.5 kg, J1 = 0.5 kg, and J2 = 0.625kg. The two pendu-
lums are of height κ1 = 0.5m, the spring constant is denoted by κ2 and is
equal to 100N/m. The natural length of the spring is κ3 = 0.5m and the
distance between pendulum hinges is κ4 = 0.4m.
We consider the system

ẋ11 = x
1
2, (20)
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Fig. 4. Physical structure of the double pendulum system

ẋ12 =

(
M1Pκ1

J1
−
κ2(κ1)

2

4J1

)
sin(x11)

+
κ2κ1

2J1
(κ3 − κ4) +

u1

J1
+
κ2(κ1)

2

4J1
sin(x22), (21)

ẋ21 = x
2
2, (22)

ẋ22 =

(
M2Pκ1

J2
−
κ2(κ1)

2

4J2

)
sin(x21)

+
κ2κ1

2J2
(κ3 − κ4) +

u2

J2
+
κ2(κ1)

2

4J2
sin(x12), (23)

where P = 9.81ms−2 is the gravitational acceleration constant. As de-
scribed above, since κ4 < κ3, the two pendulums repel each other in the
upright position. The model introduced in this section has been studied by
Spooner and Passino [26], who discuss the decentralized adaptive control
using radial basis neural networks.
In practical implementations of trajectory control of mechatronic devices,

a number of difficulties are encountered, which make it difficult to achieve
an accurate trajectory tracking. The simulation studies carried out address
these difficulties. The first difficulty is the existence of the observation noise.
To study the effects of this situation, which is very likely to be encountered
in practice, the information used by the controller is corrupted by a noise
sequence. The second difficulty is the nonzero initial conditions for the
pendulum angular positions. In order to demonstrate the reaching mode
performance of the algorithm, the two pendulums are moved to arbitrarily
chosen initial conditions.
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Fig. 5. Reference state trajectories

As the dynamic model above suggests, there are two subsystems (n = 2),
which are of order two, i.e., ai = 2. In the simulations we set L

i
1 = L

i
2 = 0.5

for describing the membership functions. As the uncertainty bound we set
γ = 2 for both controllers, φ = ρ = 1 for design parameters of the proposed
adaptation law given in (11), and δ = 0.05 for sign function smoothing
parameter in (19). In order to describe the locus, along which a sliding
motion should be enforced, we set αi1 = α

i
2 = 1, which describes a line

with slope equal to minus unity in the two-dimensional phase space of each
subsystem. Furthermore, the reaching law of sik+1 = Q

i(sik) is characterized

by λi1 = 380 and λ
i
2 = 1. We choose Ts = 2.5ms as the sampling period

and initially set the adjustable controller parameters to zero for both fuzzy
controllers.
At the outset, x11k(k = 0) = 0.2618 radians, x

2
1k(k = 0) = 0.3927

radians, and x12k(k = 0) = x
2
2k(k = 0) = 0 radians/s; on the other

hand, r11k(k = 0) = −0.7854 radians, r
2
1k(k = 0) = 0.7854 radians, and

r12k(k = 0) = r
2
2k(k = 0) = 0 radians/sec. The positional initial condi-

tions stipulate that there are considerably large errors although the plant
and reference system are immovable initially. One important difficulty that
has already been highlighted is the presence of observation noise having ze-
ro mean and average variance equal to 6.3897 · 10−8. The noise sequence
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Fig. 6. State tracking errors

corrupting the state variables has a Gaussian distribution and a sample
from it lies in the interval [−0.001, 0.001] with probability very close to
unity. Another disturbance comes from the environment and additively
perturbs the velocity readings. The component disturbing the x12 state
is given by ν1(t) = 0.01 sgn(sin(−1.5708t)) and that for x22 is given by
ν2(t) = 0.01 sgn(sin(−0.6283t)).
Under these conditions, in response to the reference trajectory depicted

in Fig. 5, the tracking errors illustrated in Fig. 6 are observed. Clearly, the
system states keep following the reference trajectory after a short transient.
The motion observed in the phase plane is illustrated in the top row of
Fig. 7, in which after a fast reaching mode, the desired quasi-sliding be-
havior is enforced and is maintained by producing a suitable control signal,
which is depicted in the bottom row of Fig. 7. The smoothness of the con-
trol signals is an important result, which is a consequence of the smooth
sgn(·) function. The applied control signals during the first 1.25 seconds of
the simulation have been illustrated in Fig. 8 with logarithmic horizontal
axes. Clearly, the controls produced in the initial phase of the simulation
emphasize applicability and safety. In the top row of Fig. 9, the norms ‖βi

k
‖

for i = 1, 2 are plotted. Apparently the parameters of the both controllers

evolve bounded. Lastly, the behavior of the quantity Ωik
T
Ωik+1 for both
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Fig. 7. Phase space behaviors and the applied control signals

links are illustrated in the bottom subplots of Fig. 9, from which a minimal
value of 0.25 has been observed for both fuzzy controllers. This emphasizes
that conditions (13) and (14) are not violated and the existence claim of
Theorem 2.8 and its proof is justified.
Our last remarks on the simulation results focus on the computational

complexity of the proposed control scheme. For the example discussed, a to-
tal of 844 floating point operations per control period (flops/Ts) are required
to evaluate the output of the controller and to tune the controller param-
eters. The former constitutes 49 flops/Ts while the latter is 795 flops/Ts.
When the contribution of (11) is taken into consideration with varying num-
ber of rules contained in the rule base of the ith fuzzy controller, we obtain a
value equal to 9(RiFC)

2+7RiFC+3, which clearly indicate that the increase
in the number of flops is parabolic in terms of RiFC . The example presented
is promising in the sense of total computations since it has only 9 rules in
the rule base for each controller.

4. Conclusions

A novel method for the variable structure control of a class of nonlinear
sampled-data systems is studied in this paper. The method is based on
the extraction of the equivalent control error and utilization of it in a new
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Fig. 8. Applied control signals during the first 1.25 seconds

parameter tuning scheme. The controller is a standard fuzzy system, which
has two inputs and single output. The adjustable parameters are parame-
ters effective at the defuzzification stage. The proposed technique has been
tested on the dynamic model of a coupled double pendulum system, the
governing equations of which are assumed to be unknown but belong to a
particular class. The results obtained through the simulations have shown
that a good tracking performance can be achieved in the presence of distur-
bances, large initial errors, and uncertainty. The method has been shown
to be computationally efficient for real time control applications.
The future research on this topic aims to demonstrate analytically that

the desired quasi-sliding regime starts in finite time.

Appendix A.

Set ζ = 2(BβBΩ +Bud) and consider the following facts.

Fact A.1. (
φI + ρΩikΩ

i
k

T
)−1
=
1

φ
I −

ρΩikΩ
i
k

T

φ
(
φ+ ρΩik

T
Ωik

) , (24)
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Fig. 9. Evolution of the Euclidean norms of the adjustable
parameter vectors (top row) and the behavior of the quan-

tity Ωik
T
Ωik+1 for each pendulum (bottom row)

which is a symmetric matrix.

Fact A.2.

sgn(Ωik)
TΩik+1 ≥ Ωik

T
Ωik+1 > 0 and sgn(Ωik)

TΩik = 1. (25)

Definition A.3. Define ℘ as the set of points in �2, which can be
reached from the set of points in � in one step. This implies that the
inequalities in (13) and (14) are not violated in a transition from eik ∈ � to
eik+1 ∈ ℘.

Fact A.4. From the definition of membership functions, we have

sup
eik∈�

2

Ωik
T
Ωik = 1. (26)

Fact A.5. From the definition of membership functions, it can be easily
shown that

inf
eik∈�

2
Ωik
T
Ωik = 0.25. (27)
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Proof of Theorem 2.7.

siC k(s
i
C k+1 − s

i
C k) = s

i
C k

(
βi
k+1

T
Ωik+1 − u

i
d k+1 − s

i
C k

)

= siC k

(
βi
k

T
Ωik+1 −

(
γ

(
φI + ρΩikΩ

i
k

T

)−1

× sgn

(
siC kΩ

i
k

))T
Ωik+1 − u

i
d k+1 − s

i
C k

)

By Fact A.1, this equals

siC k

(
βi
k

T
Ωik + β

i

k

T
∆Ωik+1 − u

i
d k + u

i
d k − u

i
d k+1 − s

i
C k

)

−siC kγ sgn(s
i
C kΩ

i
k)
T

(
1

φ
I −

ρΩikΩ
i
k

T

φ
(
φ+ ρΩik

T
Ωik

)
)
Ωik+1

= siC k

(
βi
k

T
∆Ωik+1 + u

i
d k − γ sgn(s

i
C kΩ

i
k)
T

×

(
1

φ
I −

ρΩikΩ
i
k

T

φ
(
φ+ ρΩik

T
Ωik

)
)
Ωik+1 − u

i
d k+1

)

= siC k

(
βi
k

T
∆Ωik+1 −∆u

i
d k+1 − γ sgn(s

i
C kΩ

i
k)
T

×

(
1

φ
I −

ρΩikΩ
i
k

T

φ
(
φ+ ρΩik

T
Ωik

)
)
Ωik+1

)

= siC k

(
βi
k

T
∆Ωik+1 −∆u

i
d k+1

)
− γsiC k sgn(s

i
C k) sgn(Ω

i
k)
T

×

(
1

φ
I −

ρΩikΩ
i
k

T

φ
(
φ+ ρΩik

T
Ωik

)
)
Ωik+1

≤ |siC k|2(BβBΩ +Bud)− γ|s
i
C k| sgn(Ω

i
k)
T

×

(
1

φ
I −

ρΩikΩ
i
k

T

φ
(
φ+ ρΩik

T
Ωik

)
)
Ωik+1
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= |siC k|ζ − γ|s
i
C k|
1

φ
sgn(Ωik)

TΩik+1 + γ|s
i
C k|
ρ sgn(Ωik)

TΩikΩ
i
k

T

φ

(
φ+ ρΩik

T
Ωik

)Ωik+1.

By Fact A.2, the last expression is less than

|siC k|ζ − γ|s
i
C k|
1

φ
Ωik
T
Ωik+1 + γ|s

i
C k|

ρΩik
T
Ωik+1

φ

(
φ+ ρΩik

T
Ωik

)

= −|siC k|


γ φ− ρ+ ρΩik

T
Ωik

φ

(
φ+ ρΩik

T
Ωik

)ΩikTΩik+1 − ζ

 .

According to Definition A.3, we see that the last expression is less than

≤ −|siC k|


γ
φ− ρ+ ρ inf

ei
k
∈�2
Ωik
T
Ωik

φ

(
φ+ ρ sup

eik∈�
2

Ωik
T
Ωik

) inf
eik∈�

eik+1∈℘

Ωik
T
Ωik+1 − ζ


 .

Facts A.4 and A.5 and the assumption Ωik
T
Ωik+1 > Γi > 0 show that this

equals

−|siC k|

(
γ
φ− 0.75ρ

φ(φ+ ρ)
Γi − ζ

)
.

The negativity of the quantity above is owing to the choice in (12). Since
φ > 0.75ρ is satisfied, this result implies that the adaptation mechanism
enforces the fuzzy controller to synthesize the target control sequence (4),
which leads to the achievement of the prescribed DTSMC task, and Theo-
rem 2.7 is proved.
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