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Abstract

This paper presents a novel training algorithm for fuzzy inference systems. The algorithm combines the Levenberg–
Marquardt algorithm with variable structure systems approach. The combination is performed by expressing the parameter
update rule in continuous time and application of sliding mode control method to the gradient-based training procedure.
The proposed combination therefore exhibits a degree of robustness to the unmodeled multivariable internal dynamics of
Levenberg–Marquardt technique. With conventional training procedures, the excitation of this dynamics during a training
cycle can lead to instability, which may be di7cult to alleviate due to the multidimensionality of the solution space and the
ambiguities concerning the environmental conditions. This paper proves that a fuzzy inference mechanism can be trained
such that the adjustable parameter values are forced to settle down (parameter stabilization) while minimizing an appropriate
cost function (cost optimization). In the application example, control of a two degrees of freedom direct drive SCARA
robotic manipulator is considered. As the controller, a standard fuzzy system architecture is used and the parameter tuning
is performed by the proposed algorithm. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Twentieth century has witnessed widespread inno-
vations in both hardware and software design. In the
=rst half of the century, the emphasis was mainly
on the development of accurate mechanical compo-
nent design, whereas in the second half, new tech-
nologies emerged together with new needs and new
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directions in industry. The development of fast micro-
processors enabled the design and implementation of
Expert–Machine interaction based computation envi-
ronments. Ever increasing needs brought about by the
multidimensionality of the problem space and time-
varying behavior of real-life physical systems further
required to reduce the role of expert and to increase
the role of machine. A natural consequence of this
rapid growth is the emergence of the =eld of intelli-
gent systems.
The word intelligence in this context should be

understood in the sense of a machine’s capability
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of self-adaptation (parametric), self-organization and
self-diagnostics (architectural) in the face of varying
environmental conditions without external interven-
tion. This clearly implies a large spectrum in the
domain of intelligence. In this respect, the degree of
autonomy gains a crucial importance. This quantity is
referred to as Machine Intelligence Quotient (MIQ)
in the related literature. Conceptually, the degree of
intelligence is closely related to the design methodol-
ogy followed. The limits of the intelligent behavior
are determined by the Fexibility of the architecture,
the ability to realize the human expertise, laws of
inference procedure and the speed of learning. All of
these titles are the main constituents of the research
area called Soft Computing.
Soft computing is a practical alternative for solv-

ing complex problems through the use of human ex-
pertise and a priori knowledge about the problem in
hand. Fuzzy Inference Systems are the most popular
constituent of the soft computing area because of their
ability to represent human expertise in the form of IF
antecedent THEN consequent statements. In this do-
main, the system behavior is modeled through the use
of linguistic descriptions. Although the earliest work
by Prof. Zadeh on fuzzy systems has not been paid
as much attention as it deserved in early 1960s, since
then the methodology has become a well-developed
framework. The typical architectures of fuzzy infer-
ence systems are those introduced by Wang [13,14],
Takagi and Sugeno [12], and Jang [10]. In [14], a fuzzy
system having Gaussian membership functions, prod-
uct inference rule and weighted average defuzzi=er
is constructed and has become the standard method
in most applications. Takagi and Sugeno change the
defuzzi=cation procedure where dynamic systems are
used in the defuzzi=cation stage. The potential advan-
tage of the method is that, under certain constraints,
the stability of the system can be studied. Jang et al.
[10] propose an adaptive neuro fuzzy inference sys-
tem, in which a polynomial is used as the defuzzi=er.
This structure is commonly referred to as ANFIS in
the related literature. The choice concerning the order
of the polynomial and the variables to be used in the
defuzzi=er are left to the designer.
In control engineering practice, stability and ro-

bustness are of crucial importance. Because of this,
the implementation-oriented control engineering ex-
pert has always been in pursuit of a design, which

provide accuracy as well as insensitivity to environ-
mental disturbances and structural uncertainties. At
this point, it must be emphasized that these ambigu-
ities can never be modeled accurately. When the de-
signer tries to minimize the ambiguities by the use of
a detailed model, then the design becomes so tedious
that its cost increases dramatically. A suitable way of
tackling with uncertainties without the use of compli-
cated models is to introduce Variable Structure Sys-
tems (VSS) theory based components into the system
structure.
Variable Structure Control (VSC) has successfully

been applied to a wide variety of systems having un-
certainties in the representative system models. The
philosophy of the control strategy is simple, being
based on two goals. First, the system is forced towards
a desired dynamics, second, the system is maintained
on that diLerential geometry. In the literature, the for-
mer dynamics is named the reaching mode, while the
latter is called the sliding mode. The control strategy
borrows its name from the latter dynamic behavior,
and is called Sliding Mode Control (SMC).
Earliest notion of SMC strategy was constructed

on a second-order system in the late 1960s by
Emelyanov [5]. The work stipulated that a special
line could be de=ned on the phase plane, such that
any initial state vector can be driven towards the
plane and then be maintained on it, while forcing the
error dynamics towards the origin. Since then, the
theory has greatly been improved and the sliding line
has taken the form of a multidimensional surface,
called the sliding surface and the function de=ning it
is called the switching function.
Numerous contributions to VSS theory have been

made during the last decade, some of them are as fol-
lows: Hung et al. [9] has reviewed the control strategy
for linear and nonlinear systems. In [9], the switch-
ing schemes putting the diLerential equations into
canonical forms and generating simple SMC-based
controls are considered in detail. Gao et al. [7], apply
the SMC scheme to robotic manipulators and discuss
the quality of the scheme. One of the crucial points in
SMC is the selection of the parameters of the sliding
surface. Some studies devoted to the adaptive design
of sliding surfaces, have shown that the performance
of control system can be re=ned by interfacing it with
an adaptation mechanism, which regularly redesigns
the sliding surface [1,11]. This eventually results in a
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robust control system. The performance of SMC
scheme is proven to be satisfactory in the face of
external disturbances and uncertainties in the system
model representation. The latest studies consider this
robustness property by equipping the system with
computationally intelligent methods. In [2,6], fuzzy
inference systems are proposed for SMC scheme.
A standard fuzzy system is studied and the relevant
robustness analyses are carried out. Particularly, the
work presented in [2] emphasizes that the robustness
and stability properties of soft computing based con-
trol strategies can be studied through the use SMC
theory. It is shown in the paper in this way that the
approach is robust, i.e. it can compensate the de=-
ciencies caused by poor modeling of plant dynamics
and external disturbances.
The objective of this paper is to develop a stable

training procedure for fuzzy inference systems, which
will force the adjustable parameters to settle down to a
steady-state solution while minimizing an appropriate
cost function. This is achieved through an appropriate
combination of Levenberg–Marquardt algorithm [8]
with a parameter stabilizing law.
This paper is organized as follows: The second sec-

tion summarizes the conventional method followed
in Levenberg–Marquardt optimization technique. The
third section presents the derivation of parameter sta-
bilizing law. In the fourth section, a standard fuzzy
system model is considered and the relevant formula-
tion for the architecture is given. Next section is de-
voted to the plant to be controlled in this study. This is
followed by the simulation studies. Conclusions con-
stitute the last part of the paper.

2. Levenberg–Marquardt training method

Levenberg–Marquardt method is an approxima-
tion to Newton’s method [8]. The algorithm uses
the second-order derivatives of the cost function
so that a better convergence behavior is observed.
In the ordinary gradient descent search, only the
=rst-order derivatives are evaluated and the parame-
ter change information contains solely the direction
along which the cost is minimized, whereas the
Levenberg–Marquardt technique extracts a better pa-
rameter change vector. It is motivated by this problem
that, on the cost surface, there may be many solutions

leading to the convergence, raising the possibility
of an excessively long time to reach to the solution.
Using the notations given in Appendix, the algorithm
can be stated as follows:

e = d− F(�; u); (1)

J = 1
2e
2; (2)

P� = − (∇2J (�))−1∇J (�); (3)

where ∇2J (�) is the Hessian matrix and ∇J (�) is
the gradient relevant to the cost of (2). The observa-
tion error in (1) is used to minimize the realization
cost in (2) by utilizing the rule described by (3). The
objective is to minimize instantaneous cost de=ned
by (2). If the Taylor series expansion is applied to
e(�) around the operating point, the =rst derivatives
result in the Jacobian given by (4):

Js =




@e1
@�1

· · · @e1
@�B

...
. . .

...
@eL
@�1

· · · @eL
@�B


 : (4)

In (4), B is the number of adjustable parameters
and L is the number of outputs. The =nal form of the
parameter update algorithm is described by (5) and
the details are presented in [8].

P� = N� = − (J Ts Js + qI)−1J Ts e (5)

For large q, the update formula given by (5) becomes
the standard gradient descent with stepsize 1=q; con-
versely for small q, the behavior is as that of Newton’s
method. Therefore, by the introduction of such a term,
a smooth transition between Newton’s method and
steepest descent is achieved. Furthermore, this term
introduces the elimination of invertibility problem
in (5).

3. Derivation of the parameter stabilizing law by
using variable structure systems approach

If the formula given in (5) is assumed to be acti-
vated at integer multiples of the sampling period Ts,
the dynamic behavior of the parameter change can be
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formulated as given in (6) by utilizing Euler’s =rst-
order approximation:

Ṗ� = − 1
Ts
P�+

��
Ts

N�: (6)

In above, the evaluated parameter change is mul-
tiplied by a scaling factor denoted by ��, for the se-
lection of which a detailed analysis is presented in
the subsequent sections. It should be noted that since
(6) is based on the update formula of (3), the term Ts
drops out from the equations after the discretization
and one ends up with (7):

P�(k) = ��N�(k) (7)

In (7), the equivalency between the continuous and
discrete forms of update dynamics is thus clari=ed.
The synthesis of the parameter stabilizing component
is based on the integration of the system in (6) with
VSS methodology. In the design of variable structure
controllers, one method that can be followed is the
reaching law approach [9]. For the use of this theory
in the stabilization of the training dynamics, let us de-
=ne the switching function as in (8) and its dynamics
as in (9). Since the order of the system in (6) is one,
the switching function in (8) is selected as a zero order
one [9]; and it does not use any diLerentiated quantity.
The design strategy in VSS technique necessitates the
desired values of the system state, which can be de-
noted by P�d. However, since the aim of the design
is based on the minimization of parametric displace-
ments in time, the desired value of the P� quantity
is zero. Therefore the switching function in (8) suit-
ably ful=lls the design requirements of VSS strategy.
In (9), the adopted reaching law is described. This se-
lection corresponds to the constant plus proportional
rate reaching mode dynamics. The details on the se-
lection of reaching laws can be found in [9].

s� = P�−P�d = P� (8)

ṡ� = − Q̃� tanh(s�=�)− K̃�s� = Ṗ�: (9)

Equating (9) and (6) and solving for P� yields the
following:

P� = ��N� + TsQ̃� tanh(s�=�) + TsK̃�s�: (10)

De=ne the following quantities:

Q� = TsQ̃� and K� = TsK̃�; (11)

P� = ��N� + Q� tanh(P�=�) + K�P�: (12)

The values of the �� imposed by (12) might be seen
as the desired values at the =rst glance. However, this
selection cancels out the cost minimizing quantity N�

from (6), consequently the update dynamics exactly
behaves as that de=ned by the adopted switching func-
tion (9), which does not necessarily minimize the cost
in (2). Therefore the further analysis explores the re-
strictions on �� as well as the construction of themixed
training criterion.
In the derivations presented below, a key point is

the fact that the system described by (6) is driven by
��, which is known as learning rate in the related lit-
erature. Now we demonstrate that some special selec-
tion of this quantity leads to the parameter stabilizing
rule. Let us de=ne the following quantity for keeping
analytic comprehensibility:

A� = Q� tanh(P�=�) + K�P�: (13)

Now we have a model described by (6), and an equal-
ity to be imposed and given by (12). If one chooses
a positive de=nite Lyapunov function as in (14), the
time derivative of this function must be negative de=-
nite for stability in the parameter change (P�) space.
Clearly the stability in parameter change space implies
the convergence in system parameters.

V = 1
2 s
2
� =

1
2(P�)2; (14)

V̇ = (P�)(Ṗ�): (15)

If (6) and (12) are substituted into (15), the constraint
stated in (16) is obtained for stability in the Lyapunov
sense.

�2� +
1
N�
(A� −P�)�� − 1

N 2
�

A�P� ¡ 0: (16)

The inequality in (16) can be rewritten in a more
tractable form as follows:(
�� +

1
N�

A�

)(
�� − 1

N�
P�

)
¡ 0: (17)

Since A� and P� have the same signs, the roots of
expression (17) clearly have opposite signs. The ex-
pression on the left-hand side assumes negative val-
ues between the roots. Therefore, in order to satisfy
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inequality (17), the learning rate must satisfy the con-
straint given by (18):

0¡ �� ¡ min
{∣∣∣∣ 1N�

P�
∣∣∣∣ ;
∣∣∣∣− 1

N�
A�

∣∣∣∣
}
: (18)

In (18), the interval of learning rate is restricted to pos-
itive values. This is due to preserve the compatibility
between the gradient-based approaches and the pro-
posed approach. An appropriate selection of �� could
be as follows:

�� = � min
{∣∣∣∣ 1N�

P�
∣∣∣∣ ;
∣∣∣∣− 1

N�
A�

∣∣∣∣
}
;

0¡ � ¡ 1: (19)

By substituting the learning rate formulated in (19)
into the stabilizing solution given in (10), the stabiliz-
ing component of the parameter change formula can
be obtained as in (20).

P�VSS = � min(|P�|; |A�|) sgn(N�) + A� (20)

where P� on the right-hand side is the =nal update
value yet to be obtained. The law introduced in (20)
minimizes the cost of stability, which is the Lyapunov
function de=ned by (14). The question now reduces
to the following; can the cost de=ned by (2) be min-
imized by this rule? The answer is obviously not,
because the stabilizing information is derived from
the displacement of parameter vector denoted by P�,
whereas the minimization of (2) is achieved when
� tends to �∗ regardless of what the displacement
is. Therefore, the rule formulated in (20) needs a =-
nal modi=cation. In order to minimize (2), the pa-
rameter change anticipated by Levenberg–Marquardt
optimization technique, which is reviewed in the sec-
ond section, should somehow be integrated into the
=nal form of parameter update mechanism. As intro-
duced in the second section, Levenberg–Marquardt al-
gorithm (LM) evaluates a parameter change as given
by (21):

P�LM = N�: (21)

Combining the laws formulated in (20) and (21) in a
weighted average, the parameter update law of (22) is
obtained:

P� =
�1 P�VSS + �2 P�LM

�1 + �2
: (22)

The parameter update formula given by (22) carries
mixed information containing both the parametric con-
vergence, which is introduced by VSS part, and the
cost minimization, which is due to the Levenberg–
Marquardt technique. The balancing in this mixture is
left to the designer by an appropriate selection of �1
and �2.
The global stability analysis of the approach pre-

sented can be found in [4]. In this reference, the control
of a 3-DOF anthropoid robotic manipulator is achieved
with arti=cial neural networks trained by the proposed
technique.

4. Application to standard fuzzy systems

This section considers the standard fuzzy system
approach introduced in [14] as the computationally
intelligent architecture. The system that is considered
in this study uses bell shaped membership functions
as described by (23).

�ij(uj) =
1

1 +
∣∣∣∣uj − cij

aij

∣∣∣∣
2bij

(23)

In above, cij de=nes the center of ith rule’s jth mem-
bership function, aij and bij characterize the slope and
Fatness of that function, respectively. The structure
of fuzzy system is illustrated in Fig. 1, for which the
following type of a rule base structure is adopted.

IF u1 is U1 AND u2 is U2 AND : : : AND um is Um

THEN F = yi

In this representation, lowercase variables denote
the inputs; uppercase variables stand for the fuzzy
sets corresponding to the domain of each linguistic
label.
During the simulations, cij, aij and bij parameters

are kept constant and the adaptation is carried out on
the y parameters of defuzzi=er. The initial values of
the membership functions are selected such that the
region of interest is covered appropriately.
The overall realization performed by the system

considered is given in (24), where weighted average
defuzzi=er is used with algebraic product aggregation
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Fig. 1. Architecture of the standard fuzzy system.

method.

F =

∑#Rules
i=1 yi

∏#Inputs
j=1 �ij(uj)∑#Rules

i=1

∏#Inputs
j=1 �ij(uj)

=
∑#Rules

i=1
yiwni: (24)

In (24), the vector of =ring strengths denoted by w
is normalized and the resulting vector is represented
by wn.

wni =

∏#Inputs
j=1 �ij(uj)∑#Rules

i=1

∏#Inputs
j=1 �ij(uj)

: (25)

With the de=nition given in (25), and the realization
described by (24), the adjustable parameter set is se-
lected as the y parameters of the defuzzi=er. The Ja-
cobian can now be formulated as given by (26).

Js = − [wn1; wn2; : : : ; wnR]: (26)

The method presented in this paper uses solely the in-
stantaneous observations contrary to what commonly
adopted in the literature. Therefore, the Jacobian has
only one row. By construction of the algorithm pre-
sented, the internal parameter Ay is de=ned as follows:

Ayi = Q tanh
(
Pyi

�i

)
+ K Pyi: (27)

The parameter � that de=nes the boundary layer is
selected as unity for all adjustable parameters and for

Fig. 2. Physical view of the direct drive robotic manipulator.

all simulations presented in this study. The param-
eter stabilizing law de=ned in (20) imposes the
update rule formulated in (28), whereas the cost mini-
mizing update rule, which is based on the Levenberg–
Marquardt method, predicts the necessary parameter
change value as described by (29). The =nal form
of the update rule proposed can then be formulated
as a weighted average of these two values. This is
described by (30).

PyiVSS = � min(|Pyi|; |Ayi|) sgn(Nyi) + Ayi; (28)

PyiLM = Nyi; (29)

Pyi =
�1iPyiVSS + �2iPyiLM

�1i + �2i
: (30)

5. Plant model

In this study, a two degrees of freedom direct drive
robotic manipulator, which is illustrated in Fig. 2, is
used as the test bed for the proposed training method,
depicted in Fig. 3. Since the dynamics of such a
mechatronic system is modeled by nonlinear and
coupled diLerential equations, precise output track-
ing becomes a di7cult objective due to the strong
interdependency between the variables involved. Fur-
thermore, the ambiguities concerning the friction
related dynamics in the plant model make the design
much more complicated. Therefore the methodology
adopted must be intelligent in some sense.
The general form of robot dynamics is described

by (31) where M (-), V (-; -̇), . and f stand for the
state varying inertia matrix, vector of Coriolis terms,
applied torque inputs and friction terms, respectively.
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Fig. 3. Control of a plant using the proposed training method.

Table 1
Manipulator parameters

Motor 1 rotor inertia 0.2670 I1
Arm 1 inertia 0.3340 I2
Motor 2 rotor inertia 0.0075 I3
Motor 2 stator inertia 0.0400 I3C
Arm 2 inertia 0.0630 I4
Motor 1 mass 73.000 M1
Arm 1 mass 9.7800 M2
Motor 2 mass 14.000 M3
Arm 2 mass 4.4500 M4
Arm 1 length 0.3590 L1
Arm 2 length 0.2400 L2
Arm 1 center of gravity 0.1360 L3
Arm 2 center of gravity 0.1020 L4
Axis 1 friction 5.3000 f1
Axis 2 friction 1.1000 f2
Torque limit 1 245.00 .1 max
Torque limit 2 39.200 .2 max

The plant parameters are given in Table 1 in standard
units.

M (-) V-+ V (-; -̇) = .− f: (31)

If the angular positions and angular velocities are
described as the state variables of the system, four
coupled and =rst-order diLerential equations can de-
=ne the model. In (32) and (33), terms seen in (31)
are given explicitly:

M (-) =
[
p1 + 2p3 cos(-2) p2 + p3 cos(-2)
p2 + p3 cos(-2) p2

]
;

(32)

V (-; -̇) =

[
− -̇2(2-̇1 + -̇2)p3 sin(-2)

-̇
2
1p3 sin(-2)

]
: (33)

In above,p1=2:0857,p2=0:1168 andp3 =0:1630.
The details of the plant model are presented in [3].

6. Simulation studies

In the simulation studies presented, the plant in-
troduced in Section 5 is controlled by the fuzzy
system considered in Section 4. The main objective
is to keep the update dynamics in a stable region.
This is achieved through a suitable combination of
Levenberg–Marquardt optimization technique and the
strategy based on the VSS approach.
The reference velocity trajectory, described by (34)

and depicted in Fig. 4, is used in all simulations with
zero initial errors. With this selection, the each link of
the manipulator is enforced to position at 2 rad in the
angular space. The maximum value of the reference
velocity trajectory has been set such that the Coriolis
terms become highly active, which makes the task
more di7cult:

-̇d1;2 = �(1− tanh2(�[t − 2]))
−�(1− tanh2(�[t − 12])): (34)

The results presented concern the adjustment of
only the defuzzi=er parameters during the learning
process and the membership functions are kept con-
stant. The choice on the initial values of the member-
ship function parameters is made by trial and error.
Fuzzy quantization of the input variables is illustrated
in Fig. 5. The state tracking errors and applied torque
inputs are depicted in Figs. 6 and 7, respectively. It is
evident from Fig. 6 that once a Fuctuation occurs on
the error or rate of error, it is dampened out by the
use of VSC philosophy in the learning strategy. The
torque signals illustrated in Fig. 7 indicate that the al-
gorithm produces physically meaningful values.
The time behavior of the defuzzi=er parameters is

illustrated in Figs. 8 and 9 for the base and elbow
links, respectively. The behavior in the adjustable pa-
rameter space clearly indicates the stabilizing activity
introduced by the approach presented. If an instant
Fuctuation is detected on the tracking error, the cost of
operation increases and the algorithm gives appropri-
ate changes to the adjustable parameters and tries to
maintain the desired performance speci=cations with
less parametric change eLort. The settings used to
achieve this behavior are tabulated in Table 2.
During the simulations, the squared sum of

parametric changes is de=ned to be the total cost of
parametric stability. The cost function is described by
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Fig. 4. Reference position and velocity trajectories.

Fig. 5. De=nitions of membership functions.
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Fig. 6. State tracking errors in fuzzy control.

Fig. 7. Applied torque inputs in fuzzy control.

(35) and its time behavior is illustrated in Fig. 10.

J (t) =


Rules∑

j=1

(Pyj(t))2




ELBOW
AXIS

+


Rules∑

j=1

(Pyj(t))2




BASE
AXIS

: (35)

As can be inferred from Fig. 10, the parametric sta-
bilization performance of the proposed methodology
is highly promising especially in the regions where
the positional reference values are almost constant. As
the reference velocity values change, the Fuctuations
appear also in the cost graph but they are dampened
out in a reasonable time.
A remarkable property of the algorithm presented

is the fact that it operates on-line. The potential dis-
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Fig. 8. Defuzzi=er parameters (yB) for base link controller (time versus magnitude).

Fig. 9. Defuzzi=er parameters (yE) for elbow link controller (time versus magnitude).
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Fig. 10. Time behavior of the stability cost of operation.

Table 2
Settings used in the simulations

Ts 2.5 ms
� 0.1
� 1.0
�1i 3.0 for all i
�2i 2.0 for all i
Q 0.1
K 0.1
� 1.0
#Rules 9 (for each link)
#FIS Inputs 2 (for each link)

advantage of on-line training strategies is the lack of
rigorous stability considerations. Due to this reason,
learning algorithm must be robusti=ed against disturb-
ing eLects. In this study, the di7culties that are likely
to occur in on-line learning and control are alleviated
by the robustness provided by VSS technique.
Finally, for the evaluation of Jacobian matrix,

the conventional Levenberg–Marquardt optimization
technique requires the outputs of a computationally
intelligent system for a set of input patterns. There-

fore, the dimensions of the Jacobian increase and the
computational cost increases. Since the methodology
adopted in this paper utilizes an on-line learning strat-
egy, the response to a single input pattern is su7cient
to construct an instant value of Jacobian. This stipu-
lates that the computational burden introduced by the
VSS part is compensated by the reduction in Jacobian
dimensions. This dimensionality is the fundamental
problem in Levenberg–Marquardt optimization pro-
cedure due to the necessity of matrix inversion at
each step.

7. Conclusions

In this paper, a novel technique for improving
learning performance of computationally intelligent
architectures is presented. An approximate model of
the Levenberg–Marquardt optimization procedure is
constructed and VSS approach is incorporated into
the proposed form of the parameter update law. In
this procedure, Levenberg–Marquardt optimization
method is responsible for the minimization of squared
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error while the VSS based law is responsible for the
stability in the parameter change space.
The conventional approaches suLer from some

handicaps, such as imperfect modeling, noisy obser-
vations or time varying parameters. If the eLects of
these factors are transformed to the cost hypersurface,
whose dimensionality is determined by the adjustable
design parameters, it is evident that the surface may
have directions along which the sensitivity deriva-
tives assume large values. In these cases, Levenberg–
Marquardt optimization procedure evaluates large
parametric displacements, which can eventually lead
to a locally divergent behavior. In control engineer-
ing practice, such a behavior constitutes a potential
danger from a safety point of view. The approach
presented in this paper takes care of the instantaneous
Fuctuations in parameter space. Since the VSS ap-
proach is well known with its robustness property,
an appropriate combination of Levenberg–Marquardt
optimization technique and VSS methodology can
eliminate the handicaps stated in the preceding para-
graph. The Fuctuations that are most likely to occur
in the parameter space during training are dampened
out. The combination is therefore a good candidate
for e7cient parameter tuning.
In the application example presented, the results

con=rm the prominent features of the approach, which
are discussed in the previous section. The algorithm is
applicable to any neuro-fuzzy system model provided
that the model output is diLerentiable with respect to
the parameter of interest.
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Appendix Notation

F fuzzy system response
� a generic parameter of fuzzy system
�∗ cost minimizing value of a generic parameter
P� change in parameter �
e observed output error
d desired output

J cost function
Js Jacobian
�� variable learning rate
Ts sampling interval of update dynamics
s� switching function for parameter �
Q̃� constant rate component parameter of

switching scheme
K̃� proportional rate component parameter of

switching scheme
� boundary layer parameter
N� change prescribed by LM algorithm
� scaling factor for parameter stabilizing law
V Lyapunov function
�i weighting factor
�ij membership function of ith rule’s jth input
cij center of membership function �ij
uj jth input of fuzzy inference system
aij, bij shape parameters of membership function �ij
w vector of =ring strengths
wn vector of normalized =ring strengths
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