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Abstract—This paper develops a novel training methodology for ¢ Boundary layer parameter.

computationally intelligent systems utilizing gradient information 7 Backpropagated error value for parameter
in parameter updating. The devised scheme uses the first-order dy- 3 Scaling factor for parameter stabilizing law.
namic model of the training procedure and applies the variable . s

structure systems approach to control the training dynamics. This Co Learning rate for cost minimizing law.

results in an optimal selection of the learning rate, which is continu- V¢ Lyapunov function for parameter.
ally updated as prescribed by the adopted strategy. The parameter «; Weighting factor.
update rule is then mixed with the conventional error backpropa- ;. . Membership function ofth rule’s jth input.

gation method in a weighted average. The paper presents an anal- , - Center of membership functign;
ysis of the imposed dynamics, which is the response of the training " L . A .
dynamics driven solely by the inputs designed by variable struc- “J jthinput of computationally Intelllgent ar(_:hltecture.
ture control approach. The analysis continues with the global sta- @ij, bij Shape parameters of membership functign

bility proof of the mixed training methodology and the restrictions  w Vector of firing strengths.

on the design parameters. The simulation studies presented are fo- 4, , Vector of normalized firing strengths.

cused on the advantages of the proposed scheme with regards to ; ;

the compensation of the adverse effects of the environmental dis- Oa(t) Desired state trajectory.

turbances and its capability to alleviate the inherently nonlinear o(t) Actual state trajectory.

behavior of the system under investigation. The performance of

the scheme is compared with that of a conventional backpropa- I. INTRODUCTION

gation. It is observed that the method presented is robust under . .

noisy observations and time varying parameters due to the integra- TABILITY and robustness of the systems having ?‘dIUStable
tion of gradient descent technique with variable structure systems arameters have been the primary focus of the field of sys-

methodology. In the application example studied, control of atwo tems science. The reason for this is mainly to maintain a de-
dAegtreedSacr’Lf]Eﬁggorg Us‘itreer%t'g”(‘:’ﬁorsc’:r?t;csThae”iclo(;ir']‘:‘rtc‘;’ﬁ; ?rf’cvsri?;]fetg-e sired behavior under the existence of factors influencing the
stan . T

adaptation is ca%/riezl out only on the defuzzifier parameters. perform_ance. and appllcablllty adyersg_ly. In systems and_ corl i
trol engineering practice, the applicability of an approach is di-

Index Terms—Fuzzy control, gradient descent, stable training, rectly relevant to the safeness of the approach. Strictly speaking,
variable structure systems. a method violating the stability requirements constitutes a po-
tential danger from the safety point of view. The practice also

NOMENCLATURE imposes that the framework developed must meet the desired

performance specifications, the achievement of which typically

! Fuzzy _system response. suffer from the environmental conditions, i.e., the existence of
N Geqerlc parameter of fuzzy system. noise, time-varying parameters, or nonlinearities like saturation
¢ Optimal yalue of the generic parameter. or time delays. Therefore, the concept of stability and robustness
A¢ Change in parameter. constitutes a central part particularly in the realm of control en-
¢ Obs_erved output error. gineering. However, the rapid growth in science and technology
d DeS'Ted .output. has created complex systems having the capability of perceiving
Ir Reahza‘uqn cost. the environment and decision making. The innovations in data
T Para”.‘e""? cost. . mining, data fusion, sensor technology, recognition technology,

Ty Logar!thmlc mapping ow. and fast microprocessors together with computationally intelli-
i Learnl_ng r_ate for parameter . gent system design have enabled the design and implementa-
T Samph_ng mteryal of update dynamics. tion of expert-machine interactiehased computation environ-
5¢ Sw_|tch|ng func.t|on. for paramete. ments, which have the above mentioned capabilities.
‘%5 22:2 g]: :22 :xigﬂ::g :gggmg' Computational intelligence is a practical framework for

45 .

solving complicated problems by utilizing expert knowledge,
flexible architectures, and mathematical approaches deter-
. . . _ rr’ﬂning the nature of artificial learning. The wolearningin
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respect, the degree of autonomy gains a crucial importanotated that a special line could be defined on the phase plane
This quantity is referred to as machine intelligence quotiestich that any initial state vector can be driven toward the plane
(MIQ) in the related literature. Conceptually, the degree @nd then be maintained on it, while forcing the error dynamics
intelligence is closely related to the design methodologpward the origin. Since then, the theory has greatly been im-
followed. The limits of the intelligent behavior are determinegroved and the sliding line has taken the form of a multidi-
by the flexibility of the architecture, the ability to realize themensional surface, called ttsfiding surfaceand the function
human expertise, laws of inference procedure, and the speefining it is called theswitching function
of learning. All of these titles are the main constituents of the Numerous contributions to VSS theory have been made
research area callembmputational intelligence during the last decade; some of them are as follows. Hxtiad
Fuzzy inference systerage the most popular constituent of9] has reviewed the control strategy for linear and nonlinear
the area of computationally intelligent systems since they asgstems. In [9], the switching schemes, putting the differential
able to represent human expertise in the fornFointecedent equations into canonical forms and generating simple SMC
THEN consequerdgtatements. In the design of fuzzy systemstrategies are considered in detail. In [10] and [11], appli-
the task to be achieved is modeled through the use of linguistations of SMC scheme to robotic manipulators are studied
descriptions. Although the earliest work by Prof. Zadeh acand the quality of the scheme is discussed from the point of
fuzzy systems has not been paid as much attention as it debustness. One of the crucial points in SMC is the selection
served in early 1960s, since then the methodology has becam¢he parameters of the sliding surface. Some studies devoted
a well-developed framework. The typical architectures of fuzag the adaptive design of sliding surfaces have shown that the
inference systems are those introduced by Wang [1], [2], Takgmrformance of a control system can be refined by interfacing
and Sugeno [3] and Jang [4]. In [1], a fuzzy system havingwith an adaptation mechanism, which regularly redesigns the
Gaussian membership functions, product inference rule, asliling surface [12], [13]. This eventually results in a robust
weighted average defuzzifier is constructed and has becoowatrol system. The performance of SMC scheme is proven to
the standard method in most applications. Takagi and Sugdresatisfactory in the face of external disturbances and uncer-
change the defuzzification procedure where dynamic systetamties in the system model representation. Another systematic
are used in the defuzzification stage. The potential advantagemination of SMC approach is presented in [14]. In this
of the Takagi—Sugeno fuzzy models is that under certain caeference, the practical aspects of SMC design are assessed
straints, the stability of the system can be studied [5], [6]. Jafgr both continuous time and discrete time cases and a special
et al. [4] propose an adaptive neuro-fuzzy inference system @nsideration is given to the finite switching frequency, limited
which a polynomial is used as the defuzzifier. This structure mndwidth actuators, and parasitic dynamics. In [15], the design
commonly referred to as ANFIS in the related literature. Thaf discrete time SMC is presented with particular emphasis
choice concerning the order of the polynomial and the variables the system model uncertainties. Some studies consider the
to be used in the defuzzifier are left to the designer. robustness property of VSS technique by equipping the system
The approaches mentioned have widely been used for idemtith computationally intelligent methods. In [7] and [16], fuzzy
fication and control purposes [1]-[4], [6], [7]- As stated earlieinference systems are proposed for SMC scheme. A standard
issues of stability and robustness are of crucial importance frduzzy system is studied and the relevant robustness analyzes are
safety and performance points of view. The implementation-odarried out. Particularly, the work presented in [16] emphasizes
ented control engineering expert is, therefore, always in pursthiit the robustness and stability properties of soft computing
of a design that provides accurate tracking as well as insensased control strategies can be analyzed through the use of
tivity to environmental disturbances and structural uncertainti€MC theory. It is shown in this reference that the approach is
At this point, it must be emphasized that these ambiguities caybust, i.e., it can compensate the deficiencies caused by poor
never be modeled accurately. When the designer tries to mmedeling of plant dynamics and external disturbances.
imize the ambiguities by the use of a detailed model, then theThe objective of this paper is to develop a training proce-
design becomes so tedious that its cost increases dramaticallye for computationally intelligent architectures. The proce-
A suitable way of tackling with uncertainties without the use adure enforces the adjustable parameters to settle down to a
complicated models is to introduce variable structure systesteady-state solution, while meeting the design specifications.
(VSS) theory based components into the design procedure. This is achieved through an appropriate combination of error
Variable structure control (VSC) has successfully been apackpropagation (EBP) algorithm [17] with VSS philosophy.
plied to a wide variety of systems having uncertainties in thenhe early applications of VSS theory in training of computa-
representative system models. The philosophy of the conttiginally intelligent systems have considered the adjustment of
strategy is simple, being based on two goals. First, the systdm parameters of simple models like adaptive linear elements
is forced toward a desired dynamics. Second, the system(ADALINE) [18]. The method presented in [18] is applied to
maintained on that differential geometry. In the literature, thtbe forward and inverse dynamics identification of a Kapitsa
former dynamics is named the reaching mode, while the lattergendulum. A detailed analysis of VSS theory based training
called the sliding mode. The control strategy borrows its nams&rategies for computationally intelligent systems can be found
from the latter dynamic behavior and is called sliding mode [19]. The fundamental difference of the algorithm discussed
control (SMC). in this paper is the fact that the derivation is based on the mix-
Earliest notion of SMC strategy was constructed on a secondre of two different update values. Furthermore, the eventual
order system in the late 1960s by Emelyanov [8]. The work stifsrm of the parameter update formula alleviates the handicaps
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of the gradient based training algorithms, which are widely used 1ll. PARAMETER TUNING WITH VARIABLE STRUCTURE
in the applications extending from speech processing to system SYSTEMS APPROACH

|dent!f|cat|on gnd non.llnear control [20]-{30]. . . . A continuous-time dynamic model of the parameter update
This paper is organized as follows. The second section brleF le prescribed by the EBP algorithm can be written as in
e

reviews the conventional EBP technique, which is responsib
for achieving the desired performance specifications. The pa- Y n

rameter stabilizing part of the training methodology is derived A = _iAd) + TSN¢' ®)

in the third section. The section starts with a continuous time

representation of the EBP algorithm and continues with an eke above model is composed of the sampling time denoted
planation of how the VSS based training criterion and EBRY I, the gradient-based nonscaled parameter change denoted
based training strategy are combined. In the fourth sectid¥, Ne = e(0f(¢,u)/0¢) and a scaling factor denoted by
ana|ysis of the imposed dynamics is presented_ There |tf‘i§ the selection of which a detailed anaIySiS is presented in the
shown that the desired dynamics and imposed dynamics g@sequent discussion. Using Euler's first-order approximation
stable but structurally different. The fifth section gives théor the derivative term, one obtains the following relation, which
global stability proof of the mixed training strategy and disobviously validates the constructed model in (5) and which leads
cusses the constraints on the design parameters. In the sigtthe following representation:

section, the standard fuzzy model is introduced and the appli-

cation of the devised training strategy is discussed. The seventh Adk+1) - A¢(k) = - Ad(k) + i77¢Nq5(ls) (6)
section introduces a plant, which is to be controlled by using T Z T
the architecture and the proposed learning algorithm. Simula- Ak +1) = npNy(k). (7)

tion results are discussed in the eighth section and the con

lu- . . .
sions are presented at the end of the paper. CBy comparing (4) and (7), the equivalency between the contin-

uous and discrete forms of the update dynamics is thus clarified.
The synthesis of the parameter stabilizing component is based
Il. PARAMETER TUNING WITH ERRORBACKPROPAGATION  on the integration of the system in (5) with variable structure

Systems methodology. In the design of variable structure con-

In most applications of computationally intelligent systems; ; '
EBP method constitutes the central part of the learning. In t{f9!lers: oné method that can be followed is the reaching law

section, the technique is briefly reviewed for systems in whi proggh [9]. For t,he use of th|§ theory n th? stab|l|z_at|on (,)f
the outputs are differentiable with respect to the parametert § tram_mg dy”a”?'cs' Ie_t us define the switching function as in
interest. The method has first been formulated for parame{ and its dynamics as in (9)

adjustment in artificial neural networks by Rumelhetral.[17] s, = A ®)
in 1980s. The approach has successfully been applied to a wide ¢ K

variety of optimization problems. Using the nomenclature, the 5 = —% tanh(sﬁ) — %345 (9)
algorithm can be stated as follows: s € s

where @, and K, are the gains and is the width of the

e=d— f(¢,u) (1) boundary layer. In the derivations presented below, a key point
1, is the fact that the system described by (5) is also drivendy

Jr = 9¢ (2 which is known as learning rate in the related literature. Now

.7, we demonstrate that some special selection of this quantity

Ap = —1g b () leads to a rule that minimizes the magnitude of parametric

displacement. With the quantity defined in (10), equating (9)
The observation error in (1) is used to minimize the realizatiand (5), and solving foA¢ yields the relation in
costin (2) by utilizing the rule described by (3), which is known

as gradient descent or error backpropagation in the related liter- Ay =Q, tanh(%) + KyA¢ (10)
ature €
Ap =Ny + Ag. (12)
A = 2l (@) @
¢ a¢p The values of they, imposed by (11) might be seen as the de-

sired values at first glance. However, this selection cancels out
The minimization proceeds recursively as given in (4) for whicipe backpropagated error valdg from (5), consequently, the
the sensitivity derivative with respect to the generic paramefghdate dynamics exactly behaves as that defined by the adopted
¢ is needed. Since the update value in (4) entails the obsery@itching function (9), which does not necessarily minimize the
tion errore, the algorithm is quite sensitive to the noisy obsekost in (2). Therefore, the further analysis explores the restric-
vations, which directly influence the value of the adjustable pdons onn, as well as the construction of the mixed training
rameter and degrade the learning performance. The next sectifiterion.
presents the derivation of a method capable of reducing the adNow we have a model described by (5) and an equality to be
verse effects of noise thereby increasing the robustness in igorced and formulated by (11). If one chooses a positive def-
sense. inite Lyapunov function as given by (12), the time derivative of
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this function must be negative definite for stability of paramwill meet the objectives of both the parametric stabilization and
eter changéA¢) dynamics. Clearly, the stability in parametethe cost minimization, which means the fulfillment of the de-
change space implies the convergence in system parametersign specifications. The parameter update rule will then be as in

1 1 a1A¢yss + a2 APrpp
Vo = 55 = 5(A¢)? 12 =2 ,
o = 5% = 5(80) (12) A¢ o (20)
Vo = (A)(A9). (13) The parameter update formula given by (20) carries mixed dis-
If (5) and (11) are substituted into (13), the constraint stated ffgcement value containing both the parametric convergence,
(14) is obtained for stability in the Lyapunov sense which is introduced by VSS part, and the cost minimization,

) . whichis due to the EBP technique. The balancing in this mixture
2 1 _ L is left to the designer by an appropriate selection of the positive
+ A A AsAp < 0. 14
e Nqb( ¢ o) Ni AP (14) weightsa; anda,. More explicitly, if a; /a2 > 1 the displace-
ent given to the parametghas a strong tendency to maintain
e current value of the parameter. However, whepa, > 1
the mobility of the parameter vector increases and the important
1 1 part of the parametric displacement value is dominated by the
<% + qu%) <% B MAd)) <0. 15)  Cost minimizing component. This clarifies how the selection of

) _ the weight parameters should be made in terms of the relative
SinceA, andA¢ have the same signs, the roots of (15) Clearh’nf)ortance of the two subtasks

have opposite signs. The expression on the left-hand side (LHS
assumes negative values between the roots. Therefore, in order
to satisfy the inequality in (15), the learning rate must satisfy

Equation (14) can be rewritten in a more tractable form as fqrE
lows:

IV. ANALYSIS OF THE IMPOSEDDYNAMICS

the constraint given in In the previous section, the mixed training algorithm is de-
rived. This part analyzes the implications of the learning rate in
0<ne < Inin{ ‘ im/) ; _iAé‘} ) (16 a7) on the_domain of pa_rametric change space. If the learning
Ny Ny rate in (17) is substituted into the dynamic model of (5), one ends

In order to preserve the compatibility between the traditiongPWith the dynamics formulated in (21), which characterizes the

gradient-based approaches and the proposed approach, th qH_avior of the system driven solely by the learning rate in (17)
terval of learning rate is restricted to positive values as described 1 8. )
above. An appropriate selectionsf could be as follows: A= _iA¢ - T, ming |Ad], [Ag|} sgn(Ng).  (21)

In (21), two different cases can be of interest these are namely,
|[Ag| < |Ay|or|Ay| < |Ag|. Inthe analysis presented below,

B bstituting the | . o f lated in (17) int ththefollowingtwofactsmustbekeptin mind.
y substituting the learning rate formulated in (17) into the Fact1: [2] = = sen(z) wherer € R,

equality given in (11), the stabilizing componeki- ss of the Fact 2: sen(z1) sen(zs) < 1, wherezy, zs € R. Forthe
parameter change formula is obtained as first ca.ss (211) bgcor‘jes— ’ 12 '

Apyss = fmin(|Ad|, |Ay|) sen(Ng) + Ay (18) Ad = —1+ Bsgn(N,) sgn(Ag)

N = ﬁlnill{‘Niqu(/) ,

1
_N_¢A¢‘}’ 0<p<l1. (A7)

Ad < -1+
whereA¢ on the right-hand side (RHS) is the final update value T T
yetto be obtained. The law introduced in (18) minimizes the cost = Sinces < 1, the imposed dynamics is globally stable. For
of stability, which is the Lyapunov function defined by (12). The  the second case, (21) turns out to be as follows with the aid
question now reduces to the following. “Can this law minimize  of Fact 3.

the cost defined by (2)?” The answer is obviously not because Fact3: Ay = Qg tanh(Ag¢/e) + KyAp < (Qu+Ky)A¢

the stabilizing criteria in (18) is derived from the displacement whered < ¢ < 1, which is the admissible interval for the

of the parameter vector denoted Ay, whereas the minimiza- boundary layer width. The lower bound eris due to the

tion of (2) is achieved wheg tends to¢™ regardless of the physical meaning, whereas the upper bound is due to the
displacement. In order to minimize (2), the parameter change inequality given above

anticipated by gradient-based optimization technique, which is

Ad. (22)

reviewed in the second section, should somehow be integrated Ag = _iA(/) + /—3A¢ sgn(Ny) sgn(Ay)
into the final form of parameter update mechanism. As intro- 1 1
duced in the second section, EBP algorithm evaluates a param- < —1+3(Qs + Ky) A, (23)
eter change as given in - Ts
A¢rpp = (¢ Ny (19) Iftheterm3(Q, + Ky ) is constrained to be less than unity, the

imposed dynamics becomes globally stable. The analysis pre-
where(, is the learning rate in the conventional sense. It is reaented in this section reveals that the imposed dynamics is some-
sonable to expect that under certain constraints, a combinatwimat different from the adopted switching function because of
of the laws formulated in (18) and (19) in a weighted averagke constraints on the learning rdig,) selection, nevertheless,
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the imposed dynamics is globally stable. In the next section, the <(/3 + Qs + Ky)ay _ i) Ap?
T

overall stability proof of the training algorithm is discussed. (a1 + )T
(&%)
+7 N,A¢ + 5NN, 31
V. EXTRACTING THE CONDITIONS FOR THEGLOBAL STABILITY (cy + o) CoNoAP + 75 NoNo. (31)

OF THE MIXED TRAINING DYNAMICS

If the RHS of (30) is rearranged with Section IV, the Fact 2, (31)
s obtained. The inequality in (31) constitutes a time varying
cc)1ur:1nt|ty, which is always larger than the quantity in (28). The
further analysis for this case will proceed together with the result
of the second case.

In this section, the global stability of the mixed trainin
strategy is analyzed. For this purpose, a Lyapunov functign
given in (24) is defined. In (24}, is a positive constant and
its properties are discussed at the end of the section

1 Case 2:|A4y4| < |A
Vo = 5(A07 + (N2, (24) 4l < a4l
i ivati ioni venin 1 arf3
The time derivative of the Lyapunov function is as given in V, = _FAd)Q - +1a i | Ay| sgn(Ny)Ad
ng = A(f)A(f) + ’Y¢N¢N¢. (25) (&% 2
A (e Ny A
(1 + )T, ¢+(o¢ + a2)T; CoNotd

Since the analysis in this section concerns the stability of the

mixed training strategy, the combined form of the learning al- + ’71¢N¢N¢ 5 (32)
gorithm, as given below, should be used in the formulation — AR NP (A sen(NOALA
T ¢” + (ot T, sgn(Ag) sgn(Ng) AgAd
. 1 a1 Adyss + a2A¢EBP> oy az
Vo=1—-—=A4A A S — ) ——— (s NyA
¢ < T, ¢+ (a1+a2)T5 d) + (Oél"‘OéQ)T ¢ ¢+ (al+a2)TSC¢ ¢ d)
+ Y6 Ny Ny. (26) + ’Y¢N¢N¢ (33)
1 3
If the A¢vss of (18) andA¢gpp of (19) are substituted into = _TAd)Q + <% sgn(Ag) sgn(Ny)
(26), one obtains the following relation, which can assume two s HLTA2)5s
different forms due to the minimum operator: + L) AyAg
/3 (Oél + OCQ)T
V, = —|—4minA ,|A L NyA NgN, 4
¢ = T </) (a1+ )T (1Al | ¢|) (Oél—l—Oég) ColNg AP 4+ Yo Ns Ny (34)
x sgn(Ny)A +7AA Loae? o o
gu(Ng)Ag (o1 + aa) T, ® ¢ = - A+ (o T o). (Bsgn(Ay)sen(Ng) + 1)
(8%}
—=——(,NyA NN, 27 G2
ot onLl CoNo AP + 73 NoNo. (27) X AgAd + WC¢N¢A¢+%N¢N¢. (35)

Case 1:|A¢| < |4y
Since|A¢| = A¢sgn(A¢), (27) can be rewritten as follows: Fact 1: AgA¢ < (Qp + K4)A¢? andAyA¢ > 0.

. 1, a8 , Fact 2: min(Bsgn(Ags)sgn(Vy) + 1) = 1 — 8 and
Vo = —TA(/) + mA(/) Sgn(Ad)) Sgn(ng) max(/} Sgn(Aqg) Sgll(ng) + 1) =1+4+pFand0 < g < 1.
§ ay ! a Due to the facts given above, the following rearrangements
AN+ ———(NGA :
(o1 4 aa)T, A (ot oo T, CeNgAP can be made:
+ v NN, 28 . 1
N O Vbt T (A (V) + 1)
= AP+ WM)Q sgn(A¢) sgn(Ny) ’ (a1 +a2)T N
s @ @ 2
o X (Qy + Ky)A” + (o oy SeNedAd
o Qu tanh(A)AS , (o1 + )T,
(al "El ) - 042 + Yo Ne Ny, (36)
41( —= (W NLA 1 «
(01 + 2T sB9"+ (01 + 2) T NP < —?Ad)Q + m(l + /3)(6245 + K¢)A¢2
+ 6NNy (29) e
WQSNE#A(/) + 76 No Ny (37)
Due to Section IV, Fact 3, the equality in (29) satisfies the fol- ) L o
lowing inequality: < AP + KA
g inequality Ts</>(a1+)(Q¢ )¢
. 1 a1 o
— AP+ ——F Ad*sen(A n( N, +—NA+ N,N, 38
Vo < -7 A9+ (or o) ¢~ sgn(Ag) sgn(Ny) (o + o), CoNo AP+ 7o No Ny (38)
1@y 2 a Ky 2 <2@1(Q¢ +Ky) 1 ) 2
S 1 BN R L B _ (2@t Ke) 11
(Oél + OéQ)T (Oél + OéQ)T ¢ (al + CYQ)T T, ¢
o (25
— (4N A NyN, 30 — (G NGA NgN, 39
(o + )T, CoNp AP + v No Ny (30) +(a F oo, CoNo AP + 13Ny Ny (39)
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§ <2a1(/3+Q¢+K¢) 1>A¢2

(al + a?)TS TS
(&%) -
+ m@NzﬁA(/) + Yo No N (40)

solution given in (20) leads to the stable training of computa-
tionally intelligent systems.

It is clear that the derivation and the analysis presented im-
pose some conditions on the design parameters. In the rest of
this section these conditions are discussed.

I the negativity of the quantity on the RHS of the inequality (40) 1) pye to the requirement on the negative definiteness of the

is ensured, the negativity of the quantity in (31) becomes trivial.
Therefore, the two inequalities can be reduced to one inequality,
which is given below. The global stability of the mixed training
dynamics will clearly require the negativity of the quantity on

the RHS of
Vo< —SPAR NG+ NN, (A1)
T, (Oél =+ OéQ)TS
where
Com1- 201(B + Qo + Ko) (42)
o] + Qo
Set
2
a
- (43)

Yo = —————
supy | Ng Nl

Whereaf5 is the least nonzero value d@f¢? observed during
a training course. It should be noted here that one may not

time derivative of the Lyapunov function, the following
must be satisfied:

200(B+ Qo+ Ky)
o1 + o

The selection for the learning ratg imposes the fol-

lowing condition:

_ 2041(/3 + ng + K¢)
a1 + 2

The inequality in (51) ensures the learning rateto as-
sume positive values. Since the condition in (51) includes
the condition in (50), the constraint in (51) is one of the
restrictions on the design parameters.

2) In order to ensure the stability of the imposed dynamics,
which has already been analyzed in the fourth section, the
following condition must hold true:

AQg + Ky) < 1.

C,=1- 0. (50)

1

> T, (51)

(52)

know the numerical value of this number, but there exists such

a number in the course of each training trial. With this value of

74, (41) becomes as follows:

- ng 2 (8]
Vy < —22A¢7 + ———2(LNLA
¢ TS d) (Oél—|—062)175<;;5 ¢ d)
% NN (44)
N PiVe
sup, [Ny No|
Cy 2 a2 2
_Z2A — = (oNLA = B4(45
ST ANt G T aayr e eAd +os = Baldd)

Inequality in (45) follows from the inequality

N,N,
e o, (46)
sup, | Ny Ny|
Sinceai < A¢?forallt >0
By<-S2ap2y N ApLAR  (47)
¢ = T, (041 =+ OéQ)TS oY

ng 8%
< - <i - 1) AP* + WC¢|N¢||A¢|~
(48)

In order to ensure the negativeness of the RHS of (48), the f

lowing inequality must be satisfied:

a1 + az (Cp — 15)| Ad|

VI. TRAINING OF Fuzzy INFERENCESYSTEMS BY THE
DEVELOPED METHOD

This section considers the standard fuzzy system approach in-
troduced in [2] as the computationally intelligent architecture.
The architecture utilized in this study uses bell-shaped member-
ship functions as described by

1
pij () = —————5;—.
1 + ujfcij

aij

(53)

In above,c;; defines the center of the membership function,
a;; andb;; characterize the slope and flatness of the function,
respectively. The structure of the fuzzy system is illustrated in
Fig. 1 for which the following type of a rule base structure is
adopted:

IF w; is Uy AND 1wy is Us AND - - - AND ,y, iS Uy,
THEN f = y;.

In the IF part of this representation, the lowercase variables de-
note the inputs and the uppercase variables stand for the fuzzy
sets corresponding to the domain of each linguistic label. The
JHEN part is comprised of the prescribed decision in the form
of a scalar number.

The overall realization performed by the system considered is
given in (54), where weighted average defuzzifier is used with

G < a2 | N (49) algebraic product aggregation method
This selection of the learning rate for EBP part ensures the SR ow [Ty pei(uy) R
negative definiteness of the time derivative of the Lyapunov f= R qm = Zyﬂ"m (54)
P Hj:l i (1) i=1

function in (24). Itis clear that the parametgrexists, nonzero,
nonnegative, and finite. These facts justify the particular chosemereR is the number of rules contained in the rule baserand
form of the Lyapunov function and the analysis proves that tliethe number of inputs. In (54), the vector of firing strengths de-
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Fig. 2. View of the direct drive robotic manipulator.

Ham VIl. PLANT MODEL

Fig. 1. Architecture of the standard fuzzy system.

Rule #R In the simulations, the dynamic model of a two degrees of

freedom direct drive robotic manipulator (illustrated in Fig. 2)
is used as the test bed. Since the dynamics of such a mecha-
tronic system is modeled by nonlinear and coupled differen-

noted byw is normalized and the resulting vector is represent% | equations, precise output tracking becomes a difficult ob-

by w, jective due to the strong interdependency between the variables
T g (uy) involved. Besides, the ambiguities on the friction related dy-

Wni = R = pous . (55) namics in the plant model make the design much more compli-

bRy | VTSRO cated. Therefore, the methodology adopted must be intelligent

With the definition given by (55) and the realization describelf SOMe sense. o _
by (54), the adjustable parameter set is selected agpheam- The general form of robot dynamics is described by (62)

eters of the defuzzifier. The backpropagated error measure whereM(6), V(6,6), 7, andf. stand for the state varying in-
now be formulated as given by ertia matrix, vector of coriolis terms, applied torque inputs, and

friction terms, respectively. The plant parameters are given in

Of (yi, - -
Nys = e f((;J % _ g (56) Table lin standard units
. . . M@HO+V(E,0)=7— f. 62
By construction of the algorithm presented, the internal pa- )0+ V(B 0) =7/ (62)
rameterd,; is defined as follows: If the angular positions and angular velocities are described as
Ay; the state variables of the system, four coupled and first-order
Ayi = Qy; tanh(f) + Ky Ay;. (57) differential equations can define the model. In (63) and (64),

the terms seen in (62) are given explicitly
The parameter that defines the boundary layer is selected as

unity for all adjustable parameters and for all simulations pre- M(6) = {pl +2p3cos(f2) p2+ps COS(%)} (63)
sented in this study. The parameter stabilizing law defined in p2 + p3 cos(fz2) D2
(18) imposes the update rule formulated in (58), whereas the V(0,6) = [—92(291 + 62)ps3 5111(92)} 64)
cost minimizing update rule, which is the ordinary EBP method, T 62 p3 sin(62) ‘

predicts the necessary parameter change value as described b _ _ _
(59). The final form of the proposed update rule can now be fdf @00vep, = 2.0857+0.0576M,,, ps = 0.1168+40.0576M,,
mulated as a weighted average of these two values as descriadps = 0.1630 + 0.0862M,,. Here M,, denotes the payload

by (60) mass. The details of the plant model are presented in [31].
Ayivss = fmin(|Ay; |, |[Ayil) sgn(Nyi) + Ay (58) VIIl. SIMULATION RESULTS
Ayirar = Cyilyi- (59) In the simulations, the plant introduced in the Section VII

jes controlled by the standard fuzzy system considered in Sec-

In order to satisfy the conditions for the global stability, th X = )
tion VI. The architecture of the control system is illustrated in

learning rate for the EBP part is selected as follows:

Fig. 3.
¢ =099 + az (Cyi — T3,)| Ayl (60) The main objective of the design presented is to achieve pre-
v ' o | Vi cise state tracking together with small parameter update effort.
A a1 Ay vss + a2 Ay; gBP (61) This is achieved through a suitable combination of EBP algo-
Yy = .

QL+ o rithm and VSS methodology. During the simulations;, a;;
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TABLE |
MANIPULATOR PARAMETERS
Motor 1 Rotor Inertia |0.2670 |1, Payload Mass See text [ M,
Arm 1 Inertia 0.3340 |1, Arm [ Length 0.3590 |,
Motor 2 Rotor Inertia | 0.0075 {13 Arm 2 Length 0.2400 L,
Motor 2 Stator Inertia | 0.0400 |Isc | Arm 1 Center of Gravity |0.1360 | L3
Arm 2 Inertia 0.0630 |1, Arm 2 Center of Gravity |0.1020 L,
Motor 1 Mass 73.000 |AM; [Axis 1 Friction Bound 5.3000 | fu
Arm 1 Mass 9.7800 {M, | Axis 2 Friction Bound 1.1000 |/
Motor 2 Mass 14.000 | M3 | Torque Limit 1 245.00
Arm 2 Mass 44500 |M,; |Torque Limit2 39.200
STABLE
TRAINER
Parameter
Update Signal
Ag(y)
INTELLIGENT a1
a0 CONTROLLER »  PLANT
q)=F()
Noise

Fig. 3. Control of a plant using the proposed training method.

andb;; parameters of the membership functions are kept cc
stant and the adaptation is carried out on ghgarameters of
defuzzifier. The initial values of the membership functions ai 1.5
selected such that the region of interest is covered appropriat:

The reference angular position and velocity profiles used
all simulations are depicted in Fig. 4. The simulations are start g 5
with initial rest conditions.

In order to demonstrate the robustness property of the ¢
proach discussed, a payload of 2.5 kgs is regularly grasped i

0

released by the robot. The time behavior of the payload con ¢ gB2se Link Angular Velocity

tions is demonstrated in Fig. 5. Another difficulty to be allevi ¢4
ated by the algorithm discussed is the observation noise. Il 55
assumed that the encoders provide noisy measurements ta
controller. The noise sequence is Gaussian distributed and
the same statistical properties for all four state variables, name
each sequence has zero mean and variance edial-t@. The
perturbing signal is illustrated in Fig. 6. It is expected that th
stabilizing forces created on the adjustable design paramet
will lead to the elimination of the adverse effects of the noisy

0.4
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observations, which excites the high frequency dynamics of thig- 4. Reference position and velocity trajectories.

learning algorithm. Therefore, the results obtained will enable

the designer to make a fair comparison between the pure gsanse of rejecting the high-frequency components entering into
dient descent and the proposed combination especially in the training dynamics.
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Fig. 5. Time behavior of the load mass.

o 02Noise Added to Base Position o Ogloise Added to Elbow Position com_bination results in precise state tracking unQer the existepce

' ' of disturbances stated above. Furthermore, Fig. 9 emphasizes

0.01 that the control signals evaluated by the controllers lie within
the limits of applicable control ranges. Therefore, the signal is

0 directly applied to the manipulator without requiring saturation.
0.01 The behavior of the total parametric cost described by (65) is fig-
ured out in the top row of Fig. 10. The upper left plot of Fig. 10
-0.02 -0.02 oo ! )
0 1%_ (sgg) 30 0 0. (S?eljc) 30 indicates that the cost in (65) reaches to very small values during
ime 3 . o
Noise Added to Base Velocity Noise Added to Elbow Velocity the early phases of the simulation. Th_IS is due to th_e pgrameter
0.02 0.02 stabilizing property of the approach discussed. As is discussed
001 0.01 throughout the paper, the best convergence that can be attained

by pure EBP technique reveals a marginally stable behavior,
0 0 which is highly sensitive to the environmental disturbances. In
order to visualize this behavior, the cost in (65) is mapped to

-0.01 0.01 : , .
another quantity defined below. Singe< .J,(¢) < 1, the map-
002, . 20 - 0,02, 0 2 - ping in (66) is a valid mapping
Time (sec) Time (sec) 1
Jf(t) = (66)
Fig. 6. The noise sequence added to the state variables. | 1Og(‘]5 (t))|

o _ ~Thefunction in (66) reveals the inverse power behavior of its ar-
In the training of the controller structures discussed in thgiment. When (66) is plotted in polar coordinates, the globally
paper, the squared sum of parametric changes is defined taskghle behavior of the proposed technique and the marginally

the cost of stability stable behavior of the traditional EBP technique can fairly be
_ 9 compared. This is because of the logarithmic nature of the ra-

Ja(t) = Z(Ad)(t)) ) (65) dial direction, which makes the near origin activity more com-

¢ prehensible. The bottom row of Fig. 10 illustrates the behavior

Since there are two controllers producing the necessary signafithis function. In these subplots, time flows along the counter-
for each link, the summation in (65) is over the adjustable palockwise direction and one revolution corresponds to one pe-
rameter set of both of the controllers. riod of the reference signal, i.e., 8 s perio@isradians in these

The choice concerning the initial values of the membershjpots. Clearly, the existence of observation noise and the require-
function parameters is made by trial and error. Fuzzy quantitents of the problem in hand stimulate the unstable internal dy-
zation of the input variables is illustrated in Fig. 7. The stateamics of EBP method. This is apparent from the right subplots
tracking errors and applied torque inputs are depicted in FigsoBFig. 10 in which the average magnitudes are increasing in
and 9, respectively. It is evident from Fig. 8 that the proposeiine.



EFE AND KAYNAK: STABILIZATION OF GRADIENT-BASED TRAINING STRATEGIES 573

12

NEGATIVE ZERO POSITIVE

1 —]

L DN/
. \f
M J
: AL

V@GN

0.1 -0.05 0 0.05 0.1

Error or Rate of Error
Fig. 7. Definitions of membership functions.
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Fig. 8. State tracking errors with proposed method. Fig. 9. State tracking errors in fuzzy control with proposed method.

For the use of the proposed algorithm, is set to 20 while the adjustable parameters to grow unboundedly. This aspect of

ag is equal to 1. State tracking errors under the same conditi(}ﬁ%'n'r?g W'thOLljtdsafelty condltlonsdc_ogsntu_tels a bl"_im?r betwr:aen
but only with EBP techniquéx, = 0) is illustrated in Fig. 11. the theoretical developments and industrial applications whose

As is clearly seen, the results stipulate a divergent characteri@fiMe concem is stability and robustness. The application ex-

and the controller produces nonapplicable control signals. D @ples utilizing the gradient informa_tion if‘ trai_ning have, 'Fhere-
to the space limit, only the state tracking error behavior of tH&'®: used the methods of computational intelligence, which are

system under control is depicted. The simulation settings éy@icallytrained off-line withe priori data. In this paper, we pro-

tabulated in Table Il in which it is apparent that the constrainfPS€ & general?zed method for_ creatiljg st:_:lbilizing forces on the
stated in (51) and (52) are satisfied. training dynamics of computationally intelligent systems, more

specifically the typical forms of which are artificial neural net-
works, fuzzy inference systems, or systems capable of learning
and generalizing knowledge.

One of the major problems in applications of gradient-basedThe proposed method is based on the integration of EBP
training strategies is the lack of stabilizing forces to prevestrategy with VSS technique to benefit from the robustness

IX. CONCLUSION
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Fig. 11. State tracking errors with pure EBP technique.
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TABLE 1l
SIMULATION SETTINGS
T 1.0 msec.
Yij 0.1
a; See Sec. 7
o 1.0
o 0.1
K 0.1
£ 1.0
#Rules 9 (for each link)
#FIS Inputs | 2 (for each link)

as the computationally intelligent architecture and the adap-
tation is performed on the parameters of the defuzzifier. The

task assigned to the fuzzy system is the control of a two de-
grees of freedom direct drive manipulator. Despite the represen-
tational simplicity of the plant, the existence of a considerable

amount of observation noise corrupting the state variables and
time-varying payload mass make the problem challenging for

conventional learning schemes.

The comparison strongly recommends the use of the algo-
rithm for the applications requiring on-line tuning of the param-
eters, stability in the parametric displacement space and insen-
sitivity to environmental disturbances.

(1
[2]
(3]

(4]
(5]

(6]
(71

(8]
[9]

property of VSS approach as well as the cost minimizing prop-

erty of the EBP method. An analytical study of the conditions(10]

of stability in the parameter change space is presented. Since

the extracted forms of the components)yss and A¢ggp

(11]

are mutually independent, the performance of the algorithm
depends on the compatibility between the design objectives.

More specifically, the applications entailing continuous evo-12]

lution on the adjustable parameters can adversely be affected
from the VSS based component as it enforces the parameters

to converge.

(13]

Simulation studies carried out aim to compare the perfor-

mance of the proposed scheme with that obtained with pure EB[I54]

technique. For this purpose, a standard fuzzy system is used
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