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On Stabilization of Gradient-Based Training
Strategies for Computationally Intelligent Systems
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Abstract—This paper develops a novel training methodology for
computationally intelligent systems utilizing gradient information
in parameter updating. The devised scheme uses the first-order dy-
namic model of the training procedure and applies the variable
structure systems approach to control the training dynamics. This
results in an optimal selection of the learning rate, which is continu-
ally updated as prescribed by the adopted strategy. The parameter
update rule is then mixed with the conventional error backpropa-
gation method in a weighted average. The paper presents an anal-
ysis of the imposed dynamics, which is the response of the training
dynamics driven solely by the inputs designed by variable struc-
ture control approach. The analysis continues with the global sta-
bility proof of the mixed training methodology and the restrictions
on the design parameters. The simulation studies presented are fo-
cused on the advantages of the proposed scheme with regards to
the compensation of the adverse effects of the environmental dis-
turbances and its capability to alleviate the inherently nonlinear
behavior of the system under investigation. The performance of
the scheme is compared with that of a conventional backpropa-
gation. It is observed that the method presented is robust under
noisy observations and time varying parameters due to the integra-
tion of gradient descent technique with variable structure systems
methodology. In the application example studied, control of a two
degrees of freedom direct-drive robotic manipulator is considered.
A standard fuzzy system is chosen as the controller in which the
adaptation is carried out only on the defuzzifier parameters.

Index Terms—Fuzzy control, gradient descent, stable training,
variable structure systems.

NOMENCLATURE

Fuzzy system response.
Generic parameter of fuzzy system.
Optimal value of the generic parameter.
Change in parameter.
Observed output error.
Desired output.
Realization cost.
Parametric cost.
Logarithmic mapping on .
Learning rate for parameter.
Sampling interval of update dynamics.
Switching function for parameter.
Gain of the switching scheme.
Gain of the switching scheme.
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Boundary layer parameter.
Backpropagated error value for parameter.
Scaling factor for parameter stabilizing law.
Learning rate for cost minimizing law.
Lyapunov function for parameter.
Weighting factor.
Membership function ofth rule’s th input.
Center of membership function .
th input of computationally intelligent architecture.

Shape parameters of membership function.
Vector of firing strengths.
Vector of normalized firing strengths.
Desired state trajectory.
Actual state trajectory.

I. INTRODUCTION

STABILITY and robustness of the systems having adjustable
parameters have been the primary focus of the field of sys-

tems science. The reason for this is mainly to maintain a de-
sired behavior under the existence of factors influencing the
performance and applicability adversely. In systems and con-
trol engineering practice, the applicability of an approach is di-
rectly relevant to the safeness of the approach. Strictly speaking,
a method violating the stability requirements constitutes a po-
tential danger from the safety point of view. The practice also
imposes that the framework developed must meet the desired
performance specifications, the achievement of which typically
suffer from the environmental conditions, i.e., the existence of
noise, time-varying parameters, or nonlinearities like saturation
or time delays. Therefore, the concept of stability and robustness
constitutes a central part particularly in the realm of control en-
gineering. However, the rapid growth in science and technology
has created complex systems having the capability of perceiving
the environment and decision making. The innovations in data
mining, data fusion, sensor technology, recognition technology,
and fast microprocessors together with computationally intelli-
gent system design have enabled the design and implementa-
tion of expert-machine interaction-based computation environ-
ments, which have the above mentioned capabilities.

Computational intelligence is a practical framework for
solving complicated problems by utilizing expert knowledge,
flexible architectures, and mathematical approaches deter-
mining the nature of artificial learning. The wordlearning in
this context should be understood in the sense of a machine’s
capability of self-adaptation (parametric), self-organization,
and self-diagnostics (architectural) in the face of varying envi-
ronmental conditions without external intervention. This clearly
implies a large spectrum in the domain of intelligence. In this
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respect, the degree of autonomy gains a crucial importance.
This quantity is referred to as machine intelligence quotient
(MIQ) in the related literature. Conceptually, the degree of
intelligence is closely related to the design methodology
followed. The limits of the intelligent behavior are determined
by the flexibility of the architecture, the ability to realize the
human expertise, laws of inference procedure, and the speed
of learning. All of these titles are the main constituents of the
research area calledcomputational intelligence.

Fuzzy inference systemsare the most popular constituent of
the area of computationally intelligent systems since they are
able to represent human expertise in the form ofIF antecedent
THEN consequentstatements. In the design of fuzzy systems,
the task to be achieved is modeled through the use of linguistic
descriptions. Although the earliest work by Prof. Zadeh on
fuzzy systems has not been paid as much attention as it de-
served in early 1960s, since then the methodology has become
a well-developed framework. The typical architectures of fuzzy
inference systems are those introduced by Wang [1], [2], Takagi
and Sugeno [3] and Jang [4]. In [1], a fuzzy system having
Gaussian membership functions, product inference rule, and
weighted average defuzzifier is constructed and has become
the standard method in most applications. Takagi and Sugeno
change the defuzzification procedure where dynamic systems
are used in the defuzzification stage. The potential advantage
of the Takagi–Sugeno fuzzy models is that under certain con-
straints, the stability of the system can be studied [5], [6]. Jang
et al. [4] propose an adaptive neuro-fuzzy inference system in
which a polynomial is used as the defuzzifier. This structure is
commonly referred to as ANFIS in the related literature. The
choice concerning the order of the polynomial and the variables
to be used in the defuzzifier are left to the designer.

The approaches mentioned have widely been used for identi-
fication and control purposes [1]–[4], [6], [7]. As stated earlier,
issues of stability and robustness are of crucial importance from
safety and performance points of view. The implementation-ori-
ented control engineering expert is, therefore, always in pursuit
of a design that provides accurate tracking as well as insensi-
tivity to environmental disturbances and structural uncertainties.
At this point, it must be emphasized that these ambiguities can
never be modeled accurately. When the designer tries to min-
imize the ambiguities by the use of a detailed model, then the
design becomes so tedious that its cost increases dramatically.
A suitable way of tackling with uncertainties without the use of
complicated models is to introduce variable structure systems
(VSS) theory based components into the design procedure.

Variable structure control (VSC) has successfully been ap-
plied to a wide variety of systems having uncertainties in the
representative system models. The philosophy of the control
strategy is simple, being based on two goals. First, the system
is forced toward a desired dynamics. Second, the system is
maintained on that differential geometry. In the literature, the
former dynamics is named the reaching mode, while the latter is
called the sliding mode. The control strategy borrows its name
from the latter dynamic behavior and is called sliding mode
control (SMC).

Earliest notion of SMC strategy was constructed on a second-
order system in the late 1960s by Emelyanov [8]. The work stip-

ulated that a special line could be defined on the phase plane
such that any initial state vector can be driven toward the plane
and then be maintained on it, while forcing the error dynamics
toward the origin. Since then, the theory has greatly been im-
proved and the sliding line has taken the form of a multidi-
mensional surface, called thesliding surfaceand the function
defining it is called theswitching function.

Numerous contributions to VSS theory have been made
during the last decade; some of them are as follows. Hunget al.
[9] has reviewed the control strategy for linear and nonlinear
systems. In [9], the switching schemes, putting the differential
equations into canonical forms and generating simple SMC
strategies are considered in detail. In [10] and [11], appli-
cations of SMC scheme to robotic manipulators are studied
and the quality of the scheme is discussed from the point of
robustness. One of the crucial points in SMC is the selection
of the parameters of the sliding surface. Some studies devoted
to the adaptive design of sliding surfaces have shown that the
performance of a control system can be refined by interfacing
it with an adaptation mechanism, which regularly redesigns the
sliding surface [12], [13]. This eventually results in a robust
control system. The performance of SMC scheme is proven to
be satisfactory in the face of external disturbances and uncer-
tainties in the system model representation. Another systematic
examination of SMC approach is presented in [14]. In this
reference, the practical aspects of SMC design are assessed
for both continuous time and discrete time cases and a special
consideration is given to the finite switching frequency, limited
bandwidth actuators, and parasitic dynamics. In [15], the design
of discrete time SMC is presented with particular emphasis
on the system model uncertainties. Some studies consider the
robustness property of VSS technique by equipping the system
with computationally intelligent methods. In [7] and [16], fuzzy
inference systems are proposed for SMC scheme. A standard
fuzzy system is studied and the relevant robustness analyzes are
carried out. Particularly, the work presented in [16] emphasizes
that the robustness and stability properties of soft computing
based control strategies can be analyzed through the use of
SMC theory. It is shown in this reference that the approach is
robust, i.e., it can compensate the deficiencies caused by poor
modeling of plant dynamics and external disturbances.

The objective of this paper is to develop a training proce-
dure for computationally intelligent architectures. The proce-
dure enforces the adjustable parameters to settle down to a
steady-state solution, while meeting the design specifications.
This is achieved through an appropriate combination of error
backpropagation (EBP) algorithm [17] with VSS philosophy.
The early applications of VSS theory in training of computa-
tionally intelligent systems have considered the adjustment of
the parameters of simple models like adaptive linear elements
(ADALINE) [18]. The method presented in [18] is applied to
the forward and inverse dynamics identification of a Kapitsa
pendulum. A detailed analysis of VSS theory based training
strategies for computationally intelligent systems can be found
in [19]. The fundamental difference of the algorithm discussed
in this paper is the fact that the derivation is based on the mix-
ture of two different update values. Furthermore, the eventual
form of the parameter update formula alleviates the handicaps
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of the gradient based training algorithms, which are widely used
in the applications extending from speech processing to system
identification and nonlinear control [20]–[30].

This paper is organized as follows. The second section briefly
reviews the conventional EBP technique, which is responsible
for achieving the desired performance specifications. The pa-
rameter stabilizing part of the training methodology is derived
in the third section. The section starts with a continuous time
representation of the EBP algorithm and continues with an ex-
planation of how the VSS based training criterion and EBP-
based training strategy are combined. In the fourth section,
analysis of the imposed dynamics is presented. There it is
shown that the desired dynamics and imposed dynamics are
stable but structurally different. The fifth section gives the
global stability proof of the mixed training strategy and dis-
cusses the constraints on the design parameters. In the sixth
section, the standard fuzzy model is introduced and the appli-
cation of the devised training strategy is discussed. The seventh
section introduces a plant, which is to be controlled by using
the architecture and the proposed learning algorithm. Simula-
tion results are discussed in the eighth section and the conclu-
sions are presented at the end of the paper.

II. PARAMETER TUNING WITH ERRORBACKPROPAGATION

In most applications of computationally intelligent systems,
EBP method constitutes the central part of the learning. In this
section, the technique is briefly reviewed for systems in which
the outputs are differentiable with respect to the parameter of
interest. The method has first been formulated for parameter
adjustment in artificial neural networks by Rumelhartet al.[17]
in 1980s. The approach has successfully been applied to a wide
variety of optimization problems. Using the nomenclature, the
algorithm can be stated as follows:

(1)

(2)

(3)

The observation error in (1) is used to minimize the realization
cost in (2) by utilizing the rule described by (3), which is known
as gradient descent or error backpropagation in the related liter-
ature

(4)

The minimization proceeds recursively as given in (4) for which
the sensitivity derivative with respect to the generic parameter

is needed. Since the update value in (4) entails the observa-
tion error , the algorithm is quite sensitive to the noisy obser-
vations, which directly influence the value of the adjustable pa-
rameter and degrade the learning performance. The next section
presents the derivation of a method capable of reducing the ad-
verse effects of noise thereby increasing the robustness in this
sense.

III. PARAMETER TUNING WITH VARIABLE STRUCTURE

SYSTEMS APPROACH

A continuous-time dynamic model of the parameter update
rule prescribed by the EBP algorithm can be written as in

(5)

The above model is composed of the sampling time denoted
by , the gradient-based nonscaled parameter change denoted
by and a scaling factor denoted by
for the selection of which a detailed analysis is presented in the
subsequent discussion. Using Euler’s first-order approximation
for the derivative term, one obtains the following relation, which
obviously validates the constructed model in (5) and which leads
to the following representation:

(6)

(7)

By comparing (4) and (7), the equivalency between the contin-
uous and discrete forms of the update dynamics is thus clarified.
The synthesis of the parameter stabilizing component is based
on the integration of the system in (5) with variable structure
systems methodology. In the design of variable structure con-
trollers, one method that can be followed is the reaching law
approach [9]. For the use of this theory in the stabilization of
the training dynamics, let us define the switching function as in
(8) and its dynamics as in (9)

(8)

(9)

where and are the gains and is the width of the
boundary layer. In the derivations presented below, a key point
is the fact that the system described by (5) is also driven by,
which is known as learning rate in the related literature. Now
we demonstrate that some special selection of this quantity
leads to a rule that minimizes the magnitude of parametric
displacement. With the quantity defined in (10), equating (9)
and (5), and solving for yields the relation in

(10)

(11)

The values of the imposed by (11) might be seen as the de-
sired values at first glance. However, this selection cancels out
the backpropagated error value from (5), consequently, the
update dynamics exactly behaves as that defined by the adopted
switching function (9), which does not necessarily minimize the
cost in (2). Therefore, the further analysis explores the restric-
tions on as well as the construction of the mixed training
criterion.

Now we have a model described by (5) and an equality to be
enforced and formulated by (11). If one chooses a positive def-
inite Lyapunov function as given by (12), the time derivative of
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this function must be negative definite for stability of param-
eter change dynamics. Clearly, the stability in parameter
change space implies the convergence in system parameters

(12)

(13)

If (5) and (11) are substituted into (13), the constraint stated in
(14) is obtained for stability in the Lyapunov sense

(14)

Equation (14) can be rewritten in a more tractable form as fol-
lows:

(15)

Since and have the same signs, the roots of (15) clearly
have opposite signs. The expression on the left-hand side (LHS)
assumes negative values between the roots. Therefore, in order
to satisfy the inequality in (15), the learning rate must satisfy
the constraint given in

(16)

In order to preserve the compatibility between the traditional
gradient-based approaches and the proposed approach, the in-
terval of learning rate is restricted to positive values as described
above. An appropriate selection of could be as follows:

(17)

By substituting the learning rate formulated in (17) into the
equality given in (11), the stabilizing component of the
parameter change formula is obtained as

(18)

where on the right-hand side (RHS) is the final update value
yet to be obtained. The law introduced in (18) minimizes the cost
of stability, which is the Lyapunov function defined by (12). The
question now reduces to the following. “Can this law minimize
the cost defined by (2)?” The answer is obviously not because
the stabilizing criteria in (18) is derived from the displacement
of the parameter vector denoted by , whereas the minimiza-
tion of (2) is achieved when tends to regardless of the
displacement. In order to minimize (2), the parameter change
anticipated by gradient-based optimization technique, which is
reviewed in the second section, should somehow be integrated
into the final form of parameter update mechanism. As intro-
duced in the second section, EBP algorithm evaluates a param-
eter change as given in

(19)

where is the learning rate in the conventional sense. It is rea-
sonable to expect that under certain constraints, a combination
of the laws formulated in (18) and (19) in a weighted average

will meet the objectives of both the parametric stabilization and
the cost minimization, which means the fulfillment of the de-
sign specifications. The parameter update rule will then be as in

(20)

The parameter update formula given by (20) carries mixed dis-
placement value containing both the parametric convergence,
which is introduced by VSS part, and the cost minimization,
which is due to the EBP technique. The balancing in this mixture
is left to the designer by an appropriate selection of the positive
weights and . More explicitly, if the displace-
ment given to the parameterhas a strong tendency to maintain
the current value of the parameter. However, when
the mobility of the parameter vector increases and the important
part of the parametric displacement value is dominated by the
cost minimizing component. This clarifies how the selection of
the weight parameters should be made in terms of the relative
importance of the two subtasks.

IV. A NALYSIS OF THE IMPOSEDDYNAMICS

In the previous section, the mixed training algorithm is de-
rived. This part analyzes the implications of the learning rate in
(17) on the domain of parametric change space. If the learning
rate in (17) is substituted into the dynamic model of (5), one ends
up with the dynamics formulated in (21), which characterizes the
behavior of the system driven solely by the learning rate in (17)

(21)

In (21), two different cases can be of interest these are namely,
or . In the analysis presented below,

the following two facts must be kept in mind.

Fact 1: where .
Fact 2: , where . For the
first case, (21) becomes

(22)

Since , the imposed dynamics is globally stable. For
the second case, (21) turns out to be as follows with the aid
of Fact 3.
Fact3:
where , which is the admissible interval for the
boundary layer width. The lower bound onis due to the
physical meaning, whereas the upper bound is due to the
inequality given above

(23)

If the term is constrained to be less than unity, the
imposed dynamics becomes globally stable. The analysis pre-
sented in this section reveals that the imposed dynamics is some-
what different from the adopted switching function because of
the constraints on the learning rate selection, nevertheless,
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the imposed dynamics is globally stable. In the next section, the
overall stability proof of the training algorithm is discussed.

V. EXTRACTING THE CONDITIONS FOR THEGLOBAL STABILITY

OF THE MIXED TRAINING DYNAMICS

In this section, the global stability of the mixed training
strategy is analyzed. For this purpose, a Lyapunov function
given in (24) is defined. In (24), is a positive constant and
its properties are discussed at the end of the section

(24)

The time derivative of the Lyapunov function is as given in

(25)

Since the analysis in this section concerns the stability of the
mixed training strategy, the combined form of the learning al-
gorithm, as given below, should be used in the formulation

(26)

If the of (18) and of (19) are substituted into
(26), one obtains the following relation, which can assume two
different forms due to the minimum operator:

(27)

Case 1: .
Since , (27) can be rewritten as follows:

(28)

(29)

Due to Section IV, Fact 3, the equality in (29) satisfies the fol-
lowing inequality:

(30)

(31)

If the RHS of (30) is rearranged with Section IV, the Fact 2, (31)
is obtained. The inequality in (31) constitutes a time varying
quantity, which is always larger than the quantity in (28). The
further analysis for this case will proceed together with the result
of the second case.

Case 2:

(32)

(33)

(34)

(35)

Fact 1: and .
Fact 2: and

and .
Due to the facts given above, the following rearrangements

can be made:

(36)

(37)

(38)

(39)
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(40)

If the negativity of the quantity on the RHS of the inequality (40)
is ensured, the negativity of the quantity in (31) becomes trivial.
Therefore, the two inequalities can be reduced to one inequality,
which is given below. The global stability of the mixed training
dynamics will clearly require the negativity of the quantity on
the RHS of

(41)

where

(42)

Set

(43)

where is the least nonzero value of observed during
a training course. It should be noted here that one may not
know the numerical value of this number, but there exists such
a number in the course of each training trial. With this value of

, (41) becomes as follows:

(44)

(45)

Inequality in (45) follows from the inequality

(46)

Since for all

(47)

(48)

In order to ensure the negativeness of the RHS of (48), the fol-
lowing inequality must be satisfied:

(49)

This selection of the learning rate for EBP part ensures the
negative definiteness of the time derivative of the Lyapunov
function in (24). It is clear that the parameterexists, nonzero,
nonnegative, and finite. These facts justify the particular chosen
form of the Lyapunov function and the analysis proves that the

solution given in (20) leads to the stable training of computa-
tionally intelligent systems.

It is clear that the derivation and the analysis presented im-
pose some conditions on the design parameters. In the rest of
this section these conditions are discussed.

1) Due to the requirement on the negative definiteness of the
time derivative of the Lyapunov function, the following
must be satisfied:

(50)

The selection for the learning rate imposes the fol-
lowing condition:

(51)

The inequality in (51) ensures the learning rateto as-
sume positive values. Since the condition in (51) includes
the condition in (50), the constraint in (51) is one of the
restrictions on the design parameters.

2) In order to ensure the stability of the imposed dynamics,
which has already been analyzed in the fourth section, the
following condition must hold true:

(52)

VI. TRAINING OF FUZZY INFERENCESYSTEMS BY THE

DEVELOPEDMETHOD

This section considers the standard fuzzy system approach in-
troduced in [2] as the computationally intelligent architecture.
The architecture utilized in this study uses bell-shaped member-
ship functions as described by

(53)

In above, defines the center of the membership function,
and characterize the slope and flatness of the function,

respectively. The structure of the fuzzy system is illustrated in
Fig. 1 for which the following type of a rule base structure is
adopted:

IF is AND is AND AND is

THEN

In the IF part of this representation, the lowercase variables de-
note the inputs and the uppercase variables stand for the fuzzy
sets corresponding to the domain of each linguistic label. The
THEN part is comprised of the prescribed decision in the form
of a scalar number.

The overall realization performed by the system considered is
given in (54), where weighted average defuzzifier is used with
algebraic product aggregation method

(54)

where is the number of rules contained in the rule base and
is the number of inputs. In (54), the vector of firing strengths de-
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Fig. 1. Architecture of the standard fuzzy system.

noted by is normalized and the resulting vector is represented
by

(55)

With the definition given by (55) and the realization described
by (54), the adjustable parameter set is selected as theparam-
eters of the defuzzifier. The backpropagated error measure can
now be formulated as given by

(56)

By construction of the algorithm presented, the internal pa-
rameter is defined as follows:

(57)

The parameter that defines the boundary layer is selected as
unity for all adjustable parameters and for all simulations pre-
sented in this study. The parameter stabilizing law defined in
(18) imposes the update rule formulated in (58), whereas the
cost minimizing update rule, which is the ordinary EBP method,
predicts the necessary parameter change value as described by
(59). The final form of the proposed update rule can now be for-
mulated as a weighted average of these two values as described
by (60)

(58)

(59)

In order to satisfy the conditions for the global stability, the
learning rate for the EBP part is selected as follows:

(60)

(61)

Fig. 2. View of the direct drive robotic manipulator.

VII. PLANT MODEL

In the simulations, the dynamic model of a two degrees of
freedom direct drive robotic manipulator (illustrated in Fig. 2)
is used as the test bed. Since the dynamics of such a mecha-
tronic system is modeled by nonlinear and coupled differen-
tial equations, precise output tracking becomes a difficult ob-
jective due to the strong interdependency between the variables
involved. Besides, the ambiguities on the friction related dy-
namics in the plant model make the design much more compli-
cated. Therefore, the methodology adopted must be intelligent
in some sense.

The general form of robot dynamics is described by (62)
where , , , and stand for the state varying in-
ertia matrix, vector of coriolis terms, applied torque inputs, and
friction terms, respectively. The plant parameters are given in
Table I in standard units

(62)

If the angular positions and angular velocities are described as
the state variables of the system, four coupled and first-order
differential equations can define the model. In (63) and (64),
the terms seen in (62) are given explicitly

(63)

(64)

In above, , ,
and . Here denotes the payload
mass. The details of the plant model are presented in [31].

VIII. SIMULATION RESULTS

In the simulations, the plant introduced in the Section VII
is controlled by the standard fuzzy system considered in Sec-
tion VI. The architecture of the control system is illustrated in
Fig. 3.

The main objective of the design presented is to achieve pre-
cise state tracking together with small parameter update effort.
This is achieved through a suitable combination of EBP algo-
rithm and VSS methodology. During the simulations,
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TABLE I
MANIPULATOR PARAMETERS

Fig. 3. Control of a plant using the proposed training method.

and parameters of the membership functions are kept con-
stant and the adaptation is carried out on theparameters of
defuzzifier. The initial values of the membership functions are
selected such that the region of interest is covered appropriately.

The reference angular position and velocity profiles used in
all simulations are depicted in Fig. 4. The simulations are started
with initial rest conditions.

In order to demonstrate the robustness property of the ap-
proach discussed, a payload of 2.5 kgs is regularly grasped and
released by the robot. The time behavior of the payload condi-
tions is demonstrated in Fig. 5. Another difficulty to be allevi-
ated by the algorithm discussed is the observation noise. It is
assumed that the encoders provide noisy measurements to the
controller. The noise sequence is Gaussian distributed and has
the same statistical properties for all four state variables, namely,
each sequence has zero mean and variance equal to . The
perturbing signal is illustrated in Fig. 6. It is expected that the
stabilizing forces created on the adjustable design parameters
will lead to the elimination of the adverse effects of the noisy
observations, which excites the high frequency dynamics of the
learning algorithm. Therefore, the results obtained will enable
the designer to make a fair comparison between the pure gra-
dient descent and the proposed combination especially in the

Fig. 4. Reference position and velocity trajectories.

sense of rejecting the high-frequency components entering into
the training dynamics.
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Fig. 5. Time behavior of the load mass.

Fig. 6. The noise sequence added to the state variables.

In the training of the controller structures discussed in the
paper, the squared sum of parametric changes is defined to be
the cost of stability

(65)

Since there are two controllers producing the necessary signals
for each link, the summation in (65) is over the adjustable pa-
rameter set of both of the controllers.

The choice concerning the initial values of the membership
function parameters is made by trial and error. Fuzzy quanti-
zation of the input variables is illustrated in Fig. 7. The state
tracking errors and applied torque inputs are depicted in Figs. 8
and 9, respectively. It is evident from Fig. 8 that the proposed

combination results in precise state tracking under the existence
of disturbances stated above. Furthermore, Fig. 9 emphasizes
that the control signals evaluated by the controllers lie within
the limits of applicable control ranges. Therefore, the signal is
directly applied to the manipulator without requiring saturation.
The behavior of the total parametric cost described by (65) is fig-
ured out in the top row of Fig. 10. The upper left plot of Fig. 10
indicates that the cost in (65) reaches to very small values during
the early phases of the simulation. This is due to the parameter
stabilizing property of the approach discussed. As is discussed
throughout the paper, the best convergence that can be attained
by pure EBP technique reveals a marginally stable behavior,
which is highly sensitive to the environmental disturbances. In
order to visualize this behavior, the cost in (65) is mapped to
another quantity defined below. Since , the map-
ping in (66) is a valid mapping

(66)

The function in (66) reveals the inverse power behavior of its ar-
gument. When (66) is plotted in polar coordinates, the globally
stable behavior of the proposed technique and the marginally
stable behavior of the traditional EBP technique can fairly be
compared. This is because of the logarithmic nature of the ra-
dial direction, which makes the near origin activity more com-
prehensible. The bottom row of Fig. 10 illustrates the behavior
of this function. In these subplots, time flows along the counter-
clockwise direction and one revolution corresponds to one pe-
riod of the reference signal, i.e., 8 s period isradians in these
plots. Clearly, the existence of observation noise and the require-
ments of the problem in hand stimulate the unstable internal dy-
namics of EBP method. This is apparent from the right subplots
of Fig. 10 in which the average magnitudes are increasing in
time.
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Fig. 7. Definitions of membership functions.

Fig. 8. State tracking errors with proposed method.

For the use of the proposed algorithm, is set to 20 while
is equal to 1. State tracking errors under the same conditions

but only with EBP technique is illustrated in Fig. 11.
As is clearly seen, the results stipulate a divergent characteristic
and the controller produces nonapplicable control signals. Due
to the space limit, only the state tracking error behavior of the
system under control is depicted. The simulation settings are
tabulated in Table II in which it is apparent that the constraints
stated in (51) and (52) are satisfied.

IX. CONCLUSION

One of the major problems in applications of gradient-based
training strategies is the lack of stabilizing forces to prevent

Fig. 9. State tracking errors in fuzzy control with proposed method.

the adjustable parameters to grow unboundedly. This aspect of
training without safety conditions constitutes a barrier between
the theoretical developments and industrial applications whose
prime concern is stability and robustness. The application ex-
amples utilizing the gradient information in training have, there-
fore, used the methods of computational intelligence, which are
typically trained off-line witha priori data. In this paper, we pro-
pose a generalized method for creating stabilizing forces on the
training dynamics of computationally intelligent systems, more
specifically the typical forms of which are artificial neural net-
works, fuzzy inference systems, or systems capable of learning
and generalizing knowledge.

The proposed method is based on the integration of EBP
strategy with VSS technique to benefit from the robustness
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Fig. 10. Behavior of the parametric cost measures.

Fig. 11. State tracking errors with pure EBP technique.

property of VSS approach as well as the cost minimizing prop-
erty of the EBP method. An analytical study of the conditions
of stability in the parameter change space is presented. Since
the extracted forms of the components and
are mutually independent, the performance of the algorithm
depends on the compatibility between the design objectives.
More specifically, the applications entailing continuous evo-
lution on the adjustable parameters can adversely be affected
from the VSS based component as it enforces the parameters
to converge.

Simulation studies carried out aim to compare the perfor-
mance of the proposed scheme with that obtained with pure EBP
technique. For this purpose, a standard fuzzy system is used

TABLE II
SIMULATION SETTINGS

as the computationally intelligent architecture and the adap-
tation is performed on the parameters of the defuzzifier. The
task assigned to the fuzzy system is the control of a two de-
grees of freedom direct drive manipulator. Despite the represen-
tational simplicity of the plant, the existence of a considerable
amount of observation noise corrupting the state variables and
time-varying payload mass make the problem challenging for
conventional learning schemes.

The comparison strongly recommends the use of the algo-
rithm for the applications requiring on-line tuning of the param-
eters, stability in the parametric displacement space and insen-
sitivity to environmental disturbances.
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