
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002 251

dui(t)

dt
=� aiui(t) +

n

j=1

wijfj(uj(t))

+

n

j=1

w
T
ijfj(uj(t� �ij)) + Ii; i = 1; 2; . . . ; n: (1)

AI := fA = diag(ai) : A � A � A; i:e:; ai � ai � ai; i = 1; 2; . . . ; n; 8A 2 AIg

WI := fW = (wij)n�n : W � W � W; i:e:; wij � wij � wij ; i; j = 1; 2; . . . ; n;

8W 2 WIg

WT
I := fWT = (wT

ij)n�n : WT � WT � WT ; i:e:; wT
ij � wT

ij � wT
ij ; i; j = 1; 2; . . . ; n;

8WT 2 WT
I g

�I := f� = (�ij)n�n : � � � � � ; i:e:; �ij � �ij � �ij ; i; j = 1; 2; . . . ; n; 8� 2 �Ig:

: (2)
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In fact, it is not difficult to show that (5) does not hold as illustrated in
the following counter-example.

Example: For convenience, let
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That is, (6) holds. Therefore, it is concluded that (5) is not true, and
we are sure that the theorem of Liao and Yu is based on this wrong
inequality (5) does not in general hold.

Let us take a simple example: all intervals are single point. Then
!ij = �!T

ij implies thatB = diag(a1; . . . ; an) is a M-matrix. How-
ever, in this case the theorem in [1] is not valid generality. In fact
n = 1; f(u) = u; I = 0

du

dt
=� (1 + �)u(t) + u(t)� u(t� � )

=� �u(t)� u(t� � ): (7)

It is clear that zero is not a stable equilibrium point of (7).
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A General Backpropagation Algorithm for Feedforward
Neural Networks Learning

Xinghuo Yu, M. Onder Efe, and Okyay Kaynak

Abstract—In this letter, a general backpropagation algorithm is pro-
posed for feedforward neural networks learning with time varying inputs.
The Lyapunov function approach is used to rigorously analyze the conver-
gence of weights, with the use of the algorithm, toward minima of the error
function. Sufficient conditions to guarantee the convergence of weights for
time varying inputs are derived. It is shown that most commonly used back-
propagation learning algorithms are special cases of the developed general
algorithm.

Index Terms—Backpropagation, feedforward neural networks, stability,
training.

I. INTRODUCTION

Feedforward neural networks (FNN) have been widely used for var-
ious tasks, such as pattern recognition, function approximation, dynam-
ical modeling, data mining, and time series forecasting, to name just a
few [1], [2]. The training of FNN is mainly undertaken using the back-
propagation (BP)-based learning algorithms. A number of different
kinds of BP learning algorithms have been proposed, such as an on-line
neural-network learning algorithm for dealing with time varying inputs
[3], fast learning algorithms based on gradient descent of neuron space
[4], and the Levenberg–Marquardt algorithm [5], [6].
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In this letter, we will develop a general BP learning algorithm for
FNN with time varying inputs. This algorithm unifies variations of the
BP learning algorithms. The Lyapunov function approach, which has
been widely used in analyzing the stability of self-organizing neural
networks such as Kohonen and Hopfield types of networks [11], [12],
will be used to derive conditions to guarantee the convergence of
weights. We will show that trapping into local minima is inherent with
the learning algorithms based on the BP principle as they may only
enable the weights to converge to global minima if it happens that
either the initial weights are near a global minimum or the geometric
distribution of weights enables the weights to converge to a global
minimum. We will also show that major classes of BP learning
algorithms are special cases of the developed learning algorithm.

II. M AIN RESULTS

Before we proceed, denote the inputs, weights, desired outputs, and
actual outputs of the FNN as

x(t) = (x1; x2; . . . ; xn)
T 2 Rn (1)

�(t) = (�1; �2; . . . ; �l)
T 2 Rl (2)

yd(t) = (yd1; yd2; . . . ; ydm)T 2 Rm (3)

y(t) = (y1; y2; . . . ; ym)T 2 Rm (4)

wherex(t) is the input vector,�(t) the weight vector,yd(t) the desired
output vector, andy(t) the output vector of the FNN. The error at any
instant is represented as

e(t) = 1

2
(y(t)� yd(t))

T (y(t)� yd(t))

= 1

2
ky(t)� yd(t)k

2 (5)

where the symbol “T ” represents the transpose. Note that here the input
x(t) is of a general type, and it can be discrete, continuous, and time
varying. The weight vector,�(t), represents weights for perceptrons
(single-layer FNN) as well as multilayer FNN.

We now develop the criterion for evaluating the performance of the
FNN learning. Since the inputs can be time varying, a time window
should be used to evaluate the training efficiency [3], [8], that is

J =
1

�

t

t��

e(�)d� (6)

where� is the length of the time window. The formulation (6) is partic-
ularly useful for on line continuous time learning as it considers evolu-
tion of learning in an average sense within a prescribed time window.
However, for discrete data sets, since the evaluation of errors can only
be done at “discrete moments,” (6) can be rewritten as

Jk = lim
�!0

1

�

t

t ��

e(�)d� = e(k) (7)

which becomes the usual form for training FNN with discrete data
sets.

We now develop the learning algorithm in the following. Most BP
based learning algorithms for FNN can be considered as finding zeros
of @J=@� which correspond to their local as well as global minima.
The search performance of this class of learning algorithms somehow
relies on initial weights and, oftentimes, it traps into local minima. To
investigate the convergence issue and develop the general algorithm,
we propose the following Lyapunov function with respect toJ and
@J=@�:

V (J; �) = �J +
1

2
�

@J

@�

2

(8)

wherek �k is the Euclidean norm, the parameters�; � > 0 determine
the relative importance of each term and

@J

@�

2

=
@J

@�

@J

@�T
(9)

with

@J

@�
=

@J

@�1
; . . . ;

@J

@�l

being the gradient represented in a row vector form [7]. For conve-
nience, we also denote

@J

@�T
=

@J

@�1
; . . . ;

@J

@�l

T

:

Note that the function (8) is locally positive definite with respect toJ

and@J=@� (at least around each local/global minimum).
The learning of the weights vector� is considered as a “control” to

be determined to minimize the functionV (J; �). One can easily see
that if such a “control” can be found, which minimizesV (J; �), that
is, the locally positive definite functionV with respect toJ and@J=@�
is minimized, then

J = 0 and
@J

@�
= 0: (10)

Note that (10) does not necessarily guarantee the uniqueness of the
global minimal solution, but rather corresponds to a set of solutions
which can make (10) hold. Therefore we can say that the optimal
learning is accomplished. The question is whether (10) can be
realized in theory. In the following, we will first establish the general
learning algorithm for FNN. We then show that for BP-based learning
algorithms, trapping into local minima is inherent.

Theorem: For a FNN structure whose input–output relationship is
y(t) = f(�(t); x(t)), @J=@� tends to zero asymptotically if

a) @J=@t � 0, and
b) The weights adaptation is shown in (11) at the bottom of the page

where&; � > 0 andIl is anl � l identity matrix.
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6= 0

0 Otherwise

(11)
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Proof: Clearly, the proposed function (8) is locally positive defi-
nite (around each local/global minimum) with respect toJ and@J=@�.
The equilibria ofV (J; �) are

J = 0 and
@J

@�
= 0 (12)

which, if achieved, correspond to one of the global minima,��, such
thatJ(��(t); x(t); y(t)) = 0 and@J=@�j�=� = 0. According to
the Lyapunov stability theory for nonautonomous systems [7], [9], for
the locally positive definite functionV (J; �), if in the neighborhood
around�� the time derivative ofV (J; �), _V , is seminegative definite,
then the equilibrium point�� is stable in the sense of Lyapunov. If_V is
negative definite, then the equilibrium point�� is asymptotically stable
in the sense of Lyapunov. Now we check negative definiteness of_V .
Differentiating(J; �) with respect to time yields
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Since J is an implicit function ofx(t), then @J=@x = 0 and
@2J=@x@�T = 0. Hence (13) becomes

_V =
@J

@�
�Il + �

@2J

@�@�T
_�+ �

@J

@t
+ �

@J

@�

@2J

@t@�T
: (14)

It is sufficient that if the adaptation law (11) is chosen, then

_V =
�&

@J

@�

2

� �J2 < 0 if
@J

@�
6= 0

�
@J

@t
Otherwise.

(15)

From (15), it can be seen that ifk@J=@�k = 0, then@J=@� = 0,
which means� reaches a minimum which may not be a global min-
imum, then _V = �(@J=@t). Therefore if@J=@t � 0 then _V � 0 at
@J=@� = 0, which will ensure the convergence trend toward��. On
the other hand, ifk@J=@�k 6= 0, _V = �&k@J=@�k2 � �J2 < 0,
which is negative definite with respect toJ and@J=@� at least locally.
This means thatk@J=@�k ! 0 asymptotically butJ may not tend to
zero even when_V = �&k@J=@�k2��J2 is negative definite with re-
spect toJ and@J=@�, since this negative definiteness is conditional to
k@J=@�k 6= 0. Oncek@J=@�k ! 0, from (15), _V = �(@J=@t) and
the learning stops. Hence there is no mechanism to further decreaseJ .
The above analysis suggests that the conditions a) and b) are only suf-
ficient for @J=@� to tend to zero asymptotically, but not forJ to con-
verge to zero asymptotically. Due to the inherent association of@J=@�

and _� with _V , only the stability (not the asymptotical stability) around
�� in the sense of Lyapunov can be guaranteed. QED

Remark: The theorem demonstrates that any BP learning algorithm
cannot be guaranteed to reach a global minimum because the term
@J=@� is inherently associated with the learning law_� as shown in the
first term of (14). Any learning will stop once@J=@� becomes zero.
It is also shown that for time varying inputs, the condition@J=@t � 0

has to be satisfied, especially when@J=@� = 0 so that the conver-
gence trend ofJ can be maintained. It is interesting to note that since
@J=@t = (1=�)(e(t) � e(t � � )), then the condition@J=@t � 0 is
equivalent toe(t) � e(t� � ) which gives a constraint for the conver-
gence of weights for the time varying inputs when learning is stopped.

The theorem can interpret many existing BP learning algorithms. For
example, a common FNN learning task is to train FNN with discrete
input data sets. In this case, we have

@J

@t
= 0;

@2J

@t@�T
= 0:

Since the learning is in discrete time, the learning algorithm is then
generally expressed as

�(k + 1) = �(k)��t _�

where the term_� acts as a “gradient” and the approximation_� =

(�(k + 1) � �(k))=�t is used with�t being the sampling time in-
terval. We now demonstrate how to derive several classes of commonly
used BP learning algorithms.

The Conventional Gradient Descent Learning Algorithm:The con-
ventional gradient descent learning algorithm can be easily obtained by
setting� = 0 and� = 0. Since@2Jk=@t@�T = 0, then from (11) we
have

_� = ���1&
@Jk
@�T

= ��
@Jk
@�T

; � = ��1&:

The Gauss–Newton Algorithm:The Gauss–Newton algorithm
can be obtained by setting� = 0, � = 0. Since@Jk=@t = 0 and
@2Jk=@t@�

T = 0, then from (11) we have

_� =� �
@2Jk
@�@�T

�1

&
@Jk
@�T

=��
@2Jk
@�@�T

�1

@Jk
@�T

with � = ��1&:

The Levenberg–Marquardt Algorithm:The Levenberg–Marquardt
algorithm can be easily obtained by setting� = 0. Since@Jk=@t = 0

and@2Jk=@t@�T = 0, then from (11) we have

_� = � �+ �
@2Jk
@�@�T

�1

&
@Jk
@�T

:

An On Line Learning BP Algorithm for Time Varying Inputs:In [3],
an on line learning BP algorithm for time varying inputs was proposed.
This algorithm can be easily derived by setting� = 0 and� = 0, which
gives rise to exponentially convergent learning.
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III. CONCLUSION

A general FNN training algorithm has been proposed. Its conver-
gence has been completely analyzed using the Lyapunov stability
theory. It has been shown that the proposed algorithm covers major
classes of commonly used BP learning algorithms. However, it should
be emphasized that the strength of the general learning algorithm lies
in its ability to handle time varying inputs. Sufficient conditions for
the convergence of FNN weights have been given.

REFERENCES

[1] J. M. Zurada,Introduction to Artificial Neural Systems. St. Paul, MN:
West, 1992.

[2] P. Mehra and B. W. Wah,Artificial Neural Networks: Concepts and
Theory: IEEE Comput. Society Press, 1992.

[3] Y. Zhao, “On-line neural network learning algorithm with exponential
convergence rate,”Electron. Lett., vol. 32, no. 15, pp. 1381–1382, July
1996.

[4] G. Zhou and J. Si, “Advanced neural network training algorithm with
reduced complexity based on Jacobian deficiency,”IEEE Trans. Neural
Networks, vol. 9, pp. 448–453, May 1998.

[5] R. Parisi, E. D. Di Claudio, G. Orlandi, and B. D. Rao, “A general-
ized learning paradigm exploiting the structure of feedforward neural
networks,”IEEE Trans. Neural Networks, vol. 7, pp. 1450–1459, Nov.
1996.

[6] M. T. Hagan and M. B. Menhaj, “Training feedforward neural networks
with the Marquardt algorithm,”IEEE Trans. Neural Networks, vol. 5,
pp. 989–993, Nov. 1994.

[7] J.-J. Slotine and W. Li,Applied Nonlinear Control. Englewood Cliffs,
NJ: Prentice-Hall, 1991.

[8] H. Bersini and V. Gorrini, “A simplification of the backpropagation
through time algorithm for optimal neurocontroller,”IEEE Trans.
Neural Networks, vol. 8, pp. 437–441, Mar. 1997.

[9] M. Krstic, I. Kanellakopoulos, and P. Kokotovic,Nonlinear and Adap-
tive Control Design. New York: Wiley, 1995.

[10] Z. Artstein, “Stabilization with relaxed controls,”Nonlinear Anal., vol.
TMA-7, pp. 1163–1173, 1983.

[11] X. B. Liang and J. Wang, “Absolute exponential stability of neural net-
works with a general class of activation functions,”IEEE Trans. Circuits
Syst. Part I, vol. 47, pp. 1258–1263, 2000.

[12] Z. Guan, G. Chen, and Y. Yin, “On equilibra, stability, and instability of
Hopfield neural networks,”IEEE Trans. Neural Networks, vol. 11, pp.
534–540, 2000.

Errata to “Learning Efficiency of Redundant
Neural Networks in Bayesian Estimation”

S. Watanabe

Abstract—This paper proves that the Bayesian stochastic complexity of a
layered neural network is asymptotically smaller than that of a regular sta-
tistical model if it contains the true distribution. We consider a case when a
three-layer perceptron with input units, hidden units and output
units is trained to estimate the true distribution represented by the model
with hidden units and prove that the stochastic complexity is asymp-
totically smaller than (1 2) ( + )+ log where is the
number of training samples and is a function of , , and

that is far smaller than the number of redundant parameters. Since the
generalization error of Bayesian estimation is equal to the increase of sto-
chastic complexity, it is smaller than(1 2 ) ( + ) + if it
has an asymptotic expansion. Based on the results, the difference between
layered neural networks and regular statistical models is discussed from
the statistical point of view.
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