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In this paper, the existence of a solution for the transformation of the disturbances from the unmatched
cases to the matched one is investigated. The usage of matched/unmatched disturbance notions and
the underlying assumptions are clarified. Then, a simplified definition is introduced to obtain a set of
performance metrics to be used in observer design. Using bilinear pole shifting and multiple integral
augmentation to the plant, not only the stabilizability/detectability conditions but also infinity-norm
bounds for unstable MIMO systems are derived. Then, the solvability of the augmented Hamiltonian
matrices to get stabilizing solutions via standard H∞-Synthesis is explained. Finally, the solutions,
definitions, and assumptions are validated through numerical examples.
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1. Introduction

Stability and performance are the prime issues in feedback
ontrol systems. A major factor, which deteriorates the closed-
oop system’s performance, is the presence of external distur-
ances. These external disturbances are classified as matched and
nmatched(mismatched) disturbances based on whether they
atisfy the matching condition or not. The mathematical for-
ulation of the matching condition and its effects are defined

n [1,2]. Numerous methods have been discussed the effects of
he matching condition for disturbance compensation, includ-
ng fault detection–estimation[3,4], a dual disturbance observer
DDO) based nonsingular terminal sliding mode control [5] and
daptive fault tolerant control under actuator failure and un-
atched disturbances [6]. Moreover, as a significant challenge,

t is stated that using disturbance observer-based techniques
s restricted when the matching condition is not satisfied and
equires some modification, including sum-of-squares method for
ynthesizing disturbance observer [7].
On the other hand, Equivalent-Input-Disturbance (EID) defi-

ition, which is introduced by [8,9], is one common and strong
ay to handle unmatched disturbances. This definition allows
onsidering the exogenous disturbances in the equivalent form at
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the control input instead of rejecting them with a separate design
that is dedicated to unmatched ones. This idea was experimen-
tally validated in many control system design problems including,
active disturbance rejection control [10], disturbance/uncertainty
estimator based integral sliding mode control [11], and output
feedback autopilot design for hypersonic vehicles [12]. Recently,
researchers have been trying to improve EID-based control sys-
tems (so-called improved EID-IEID) to overcome the structural
limitations of the conventional EID-based estimators [13]. To the
best of our knowledge, although those EID and IEID methods
work well under the given disturbances practically, all those
works are leading us to [14] for guaranteeing the existence of
the EID theoretically. However, [14], which uses non-casual stable
inversion, is just valid under particular circumstances such as
the system must be square (i.e., the same number of inputs
and outputs), no zeros on the imaginary axis, and the output of
the system should be polynomial, sinusoidal, or multiplication of
these two.

Regardless of whether the disturbance is injected through the
control channels or not, there are many assumptions on the
disturbance or the system, which vary significantly. For instance,
in [6], the derivative of the disturbance is assumed to be bounded
by a known bound, [15] requires a square system, and [2,5]
assumes that the disturbance is slowly time-varying, i.e., ḋ ≈ 0.
For the interested readers, further reading about the types of the
disturbances can be found in [16]

Moreover, in the last decade, the necessity for a more gen-
eral form of a disturbance model has received attention since

some practical systems suffer from unbounded or fast-varying
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isturbances/references [7,17]. In [18], a generalized disturbance
bserver for estimating polynomial-type disturbances in the time
eries expansion, is offered and it is stated that the general
ynthesis problem is still open. The work in [19] investigates
he disturbance observer based control for uncertain nonlinear
ystems under polynomial-type disturbances and output mea-
urement errors. The research in [20] considers the reference
racking problem under a polynomial-type reference signal.

With polynomial-ordered exogenous signals, the internal
odel principle (IMP) is one of the fundamental approaches for

he reference tracking or the disturbance rejection. When the
odel of the exogenous signal is known, the IMP can stabilize

he system and can achieve the zero-error goal [21]. The major
imitation of the IMP is that it requires an accurate model of those
ignals a priori [22]. To solve this issue, some key and successful
emedies were offered. In [23], a modified IMP via polynomial dif-
erential operator was proposed for MIMO systems. The method
orks well under polynomial-ordered references. However, per-
urbing the references or under sinusoidal references, the stability
f the loop can be lost.
Considering the problems and the associated solutions re-

orted so far, first, a natural question asks under which condi-
ions/assumptions on the disturbance or the system could the EID
efinition be valid? The first contribution of the current study is
he answer to the aforementioned question. We expand the the-
retical analyses on the matching condition to catch the practical
esults of EID, which covers a wider range than theoretical results.
urther, to achieve asymptotic tracking under polynomial ordered
eferences or disturbances, a novel approach based on multiple
ntegral augmentation and H∞ based synthesis is postulated. The
proposed method relaxes some limitations on the disturbances,
i.e., slowly time-varying disturbances, boundedness, and thus it
extends some key studies like anti-disturbance control [5] to
a wider group of applications. A fundamental assumption on
Hamiltonian matrices emphasizes the solvability via H∞ synthe-
sis, which is violated by the integral augmentation of the plant
since no pole/zero is allowed on the imaginary-axis [24], and to
the best of our knowledge, limits of the stabilizability of such
systems have not been investigated for the MIMO case explicitly.
Compared to the related results, the main contributions of the
paper can be summarized as follows.

(a) Existence of the transformation of the unmatched distur-
bances to the matched ones is given analytically.

(b) Zero tracking error is achieved under unbounded
polynomial-ordered disturbances as well as unknown si-
nusoidal disturbances.

The rest of this paper is organized as follows: Section 2 gives
some fundamental definitions and assumptions about the trans-
formation of the disturbances. Section 3 presents the analytic
transformation for EID and then represents a Simplified-EID (S-
EID). Section 4 presents the control system synthesis procedure
and related theoretical manipulations of multiple integral aug-
mentation regardingH∞-Synthesis. Section 5 gives a comparative
study and numerical results for a non-square system. Finally,
Section 6 gives the concluding remarks.

2. Preliminaries

Consider the following state–space representation of a linear
time-invariant system

ẋ0(t) = Ax0(t) + Bu(t) + Bdd(t) , y0(t) = Cx0(t) (1)

where A ∈ Rn×n, B ∈ Rn×nu , Bd ∈ Rn×nd , C ∈ Rny×n, x0(t) ∈

Rn, y0(t) ∈ Rny , u(t) ∈ Rnu and d(t) ∈ Rnd . The system above is

unmatched as B ̸= Bd (so-called matching condition), and d(t) is Y
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the disturbance [1,2]. The definition of EID relies on the transfor-
mation of unmatched disturbances to the matched disturbances
as

ẋ(t) = Ax(t) + B(u(t) + ded(t)) , y(t) = Cx(t). (2)

where ded(t) is the Equivalent-Input-Disturbance. In this particu-
lar context, following definition is introduced in [8,9] .

Definition 1 ([8,9]). Let the control input u(t) = 0 for both
systems. For disturbance d(t), the output of system in (1) is y0(t)
and the output of system in (2) is y(t) for disturbance ded(t). The
disturbance ded(t) is called EID if y0(t) = y(t), ∀t ≥ 0.

Definition 1 is a strong definition and imposes a perfect trans-
formation between matched disturbance and unmatched ones
and using superposition principle, condition ‘‘u(t) = 0’’, which
tands for simplicity, can be substituted by ‘‘u(t) can be a non-
ero signal if it is identical in (1) and (2)’’. In addition, the
tandard assumptions on d(t) for the existence of EID are ex-
ressed as d(t) ∈ L1 ∩ L∞ [8] which is a very conservative
ondition. A relaxed yet sufficient condition on the disturbance
(t) could be given by the following assumption:

ssumption 1. The disturbance d(t) is a piecewise continuous
unction and it is of exponential order such that the Laplace
ransform of the disturbance exists.

emark 1. Analyses of the following section are valid under
ssumption 1. This assumption relaxes the major part of the
receding limits and suffices for control system design. However,
nmatched signals, whose Laplace transforms do not exist may
till be transformed into matched ones.

Without loss of generality, the initial conditions of the systems
bove are assumed to be zero to focus on the effect of the
isturbance. Let s denote the Laplace operator, let R(s) denote the
et of real rational transfer functions and let the Transfer Function
atrix (TFM) representation from the input u(t) to the output

0(t) or from the input u(t) to the output y(t) be

(s) = C(sI − A)−1B = [P(s)ij]ny×nu (3)

nd the TFM representation from the disturbance d(t) to the
utput y0(t) be

dist (s) = C(sI − A)−1Bd = [Pdist (s)ij]ny×nd (4)

here P(s) ∈ (R(s)ny×nu ,R(s)), Pdist (s) ∈ (R(s)ny×nd ,R(s)). Let I be
he identity matrix. Each element [P(s)ij]ny×nu (or [Pdist (s)ij]ny×nd )
f the matrix is the individual transfer function between jth
lement of the u(t) (or d(t)) and ith element of the y(t) (or y0(t)).

. Existence of solutions: EID/s-EID

In this section, the necessary and sufficient conditions for
xact output matching are investigated. Then, we will introduce
more practical definition of the matching condition, which is

uitable for the feedback case. Note that Section 3 is seeking for
nswers to the following question: Under which circumstances,
re we able to work with (2) (or (20) that will be introduced later)
nstead of (1)?.

.1. Exact solution for EID

To show the equivalence between (1) and (2), we start with
he Laplace transforms of y0(t) and y(t) as

0(s) = C(sI − A)−1BU(s) + C(sI − A)−1BdD(s) (5)
−1 −1
(s) = C(sI − A) BU(s) + C(sI − A) BDed(s) (6)
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t is noted that the Laplace transform of d(t) exists due to As-
umption 1 and Definition 1 implies that the output of linear
ime invariant (LTI) systems (5), (6) must be equal. For this
quivalence, the following equalities must hold true.

(s) = C(sI − A)−1BU(s) + C(sI − A)−1BDed(s)

≜ C(sI − A)−1BU(s) + C(sI − A)−1BdD(s) = Y0(s)

⇒ P(s)Ded(s) = Pdist (s)D(s) ≜ pd(s). (7)

Then, there exists a solution for Ded(s) of P(s)Ded(s) = pd(s) if and
only if

rank[P : pd] = rank[P]. (8)

Notice that considering the vector space defined after (4) allows
us to attack the problem by linear algebra. The linear equations
given by (7) have a solution if and only if (8) is valid. Thus, this
equation gives us the necessary and sufficient conditions.

We investigate the existence of EID (ded) (or the existence of
(8)) for three cases separately, namely, (i) nu > ny, (ii) nu = ny
and (iii) nu ≤ ny.

3.1.1. System has more inputs than outputs
Let nu > ny and

rank[P] = r ≤ min(ny, nu) = ny ⇒ r ≤ ny ≤ nu. (9)

The linearly independent columns of P could be grouped into a
new matrix ϑ as

ϑ := [ϑ1 ϑ2 ... ϑr ] s.t. ϑ{i=1,...,r} ∈ {colj P|
nu
j=1} (10)

such that
∑r

i=1 miϑi = 0 only for m1 = m2 = · · · = mr = 0
where colj P = [P1j P2j ... Pnyj]

T . Moreover, the spanning set of ϑ

is

S := span {ϑ1, ϑ2, . . . , ϑr} ⊂ R(s)ny×1. (11)

Therefore, there exists x ∈ R(s)ny×1 such that x /∈ S. So, the
existence of a solution requires that

pd(s) /∈ R(s)ny×1
\ S. (12)

Now, let

rank[P] = r = min(ny, nu) = ny ⇒ r = ny ≤ nu. (13)

Then, (10) can be rearranged as

ϑ := [ϑ1 ϑ2 ... ϑny ] s.t. ϑ{i=1,...,ny} ∈ {colj P|
nu
j=1} (14)

and the spanning set of ϑ is given by V := span
{
ϑ1, ϑ2, . . . , ϑny

}
⊆ R(s)ny×1. Since pd(s) ∈ R(s)ny×1, ∃m̄ = [m̄1 m̄2 . . . m̄ny ] ̸=

0 s.t. pd(s) =
∑ny

i=1 m̄iϑi = 0. Therefore,

rank[P : pd] = rank[P] (15)

condition always satisfied. This means that there always exists a
solution for Ded(s).

3.1.2. System is square
Let nu = ny. A system is said to be square when it has equal

numbers of inputs and outputs otherwise, it is called a non-
square system. Note that, all solutions given in Section 3.1.1 are
valid for this case such that there always exists a solution for
Ded(s) again. In this special case, if P−1 exists then the unique
solution is

D (s) = P−1(s)P (s)D(s). (16)
ed dist a
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3.1.3. System has more outputs than inputs
The third case implies that ny > nu, similar to the first case,

the existence of a solution requires that

pd(s) /∈ R(s)ny×1
\ S̄. (17)

where S̄ := span
{
ϑ̄1, ϑ̄2, . . . , ϑ̄r̄

}
⊂ R(s)ny×1 s.t. r̄ = rank[P] ≤

min(ny, nu) = nu. Moreover, to find a unique solution, if r̄ = nu
and (17) is satisfied then ∃P† s.t. P†P = Iny×ny , where P†

:=

(PTP)−1PT denotes left-side pseudo-inverse of P. Therefore, a
particular solution for Ded(s) is obtained as

Ded(s) = P†(s)Pdist (s)D(s) (18)

To sum up, instead of considering the effects of the disturbance
d(t) through the Bd on the output y0(t), we can employ the
transfer function matrix Pdist (s) whose control input is d(t) and
the output is y0(t). Then, in terms of transfer function matrices
and signals, the aim of EID can be re-defined as searching a
control input signal as Ded(s) for the transfer function matrix P(s)
hose output y(t) is identical to y0(t).
However, as it is stated in [9], computing ded(t) exactly is

omplicated and also requires some future information about the
utputs. Different from [9] and only for offline analysis, solving
7) under the subsequent conditions gives the exact form of the
quivalent disturbances, which cannot be used directly in closed-
oop systems real-time. Therefore, after checking (12) and (17),
hich are only possibilities of violating the existence of EID, one
an focus on the design of an estimator over ded(t).

emark 2. Stable inversion problem introduced in [14], mainly
ummoned by the EID-based works, is a special case of the ap-
roach introduced here. This is mainly because the system given
y (1)–(3) is required to be square and the time domain signals
eed to be bounded and integrable, which are not required in
ur study. Moreover, our approach only deals with the definition
f EID and it does not exploit any control/observer part of the
ID-estimator structure.

.2. Simplified definition: S-EID

This subsection is dedicated to the observer design and the
roperties of the estimated disturbance by defining some formal
onditions and performance metrics on the estimation. There-
ore, instead of presenting a new type of definition about the
quivalent form of the disturbances, S-EID revisits the original EID
efinition, which is totally valid on this study for the existence,
o analytically describe the effects of the disturbance estimation
n the output. The aim is to describe the observer on a rigorous
athematical base. Consider we have the ded(t), which describes

he polynomial-ordered disturbances in the following form. From
ow on, we will only deal with polynomial form of d(t). The
eason behind the choice of polynomial exogenous signals is
ue to the practical considerations, where polynomial signals are
ncountered much often than exponential ones.

ed(t) = [ded,1(t) ded,2(t) . . . ded,nu (t)]
T s.t. ded,j(t) =

kj∑
i=0

aijt i (19)

here j = 1, . . . , nu and unknown aij, kj ≤ ∞ ∀i, j but we know
coefficient k+

j ≥ kj that gives us a worst-case bound for the
rowth rate of the disturbance. Consider the following LTI system

˙̄(t) = Ax̄(t) + B(u(t) + d̄ed(t)) , ȳ(t) = Cx̄(t). (20)

here the estimated disturbance d̄ed is considered instead of true
ed with the same system matrices (A,B, C) of (2). Following
efinition enables us to design a disturbance observer such that
t can be constructed by using only the measurable signals as u(t)

nd y(t).
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Fig. 1. The estimator configuration.

efinition 2. Let the control input u(t) ensure the internal stabil-
ty of (1)–(2) and (20). Then, under Assumption 1, if limt→∞ (y(t)
−ȳ(t)) = 0 and ∥y(t) − ȳ(t)∥2 = ē ≤ ∞, (i.e. y(t) = y0(t) ≃ ȳ(t))
∀t ≥ 0, d̄ed(t) is called simplified-EID (S-EID).

Note that the first part of the definition is dedicated to the
unstable (yet stabilizable) systems. Without having a stabilizing
control input, the design of the disturbance observer will not
be helpful. Moreover, some practical problems, including the
existence of measurement noise, make it hard to satisfy Defi-
nition 1. Instead of exact output matching, defining a sufficiently
small ē provides some robustness against the measurement noise.
Therefore, Definition 2 introduces some performance metrics in
a more practical way when a disturbance observer is aimed to be
designed.

4. Multiple integral augmentation and H∞-synthesis

In this section, with the help of Section 3, we are able to
consider only the ded type of the disturbances. In addition, instead
of offering a new structure for disturbance estimation, to enhance
the dynamic response of the control system under polynomial-
ordered disturbances, we update the design procedure of the
control systems of an existing disturbance observer scheme [25].
To do it; (i) Employ multiple integral augmentation (the number
of integrals can vary based on the application). (ii) Utilize bilinear
transformation (note that, the augmented system includes jω-axis
poles, which are infeasible for a standardH∞ problem). (iii) Check
the stabilizability & detectability conditions for the bilinear trans-
formed system. (iv) Build the Linear Fractional Transformation
form. (v) Minimize the lower infinity-norm bound of the closed-
loop system by adjusting the bandwidth of the virtual-loop. (vi)
Solve the Hamiltonian matrices to get the control system of
virtual-loop. (vii) Apply inverse bilinear transformation to get a
valid controller for the original (unshifted) system. (viii) Get the
final form of the control system by carrying the integrator block
from the plant to the controller.

Consider the estimator structure in Fig. 1. It is observed from
the figure that the system has no uncertainty Kobs is a dedicated
controller of the estimator loop. K is the main controller, ε(t) ∈

Rny×1 is the error for the estimator loop, and u(t) ∈ Rnu×1 is the
utput of the main controller. The output of Kobs, the estimated
isturbances, is denoted as d̄ed(t):= û(t) ∈ Rnu×1. The signal
(t) ∈ Rny×1 denotes the reference signal for the overall system
and yobs(t) ∈ Rny×1 is the output of the virtual loop. By equating
ded(t) to 0 in (2), yn(t) is obtained. The aim is to design such
a Kobs that the permissible disturbance estimation error defined
by Definition 2 is minimized. The relation between Kobs and the
rror will be introduced by Lemma 4 in the proceeding sections.
herefore, to satisfy the S-EID definition, design such a Kobs that
here will be no steady-state estimation error and have a faster
stimation d̄ed providing smaller ē.

roposition 1. Based on Definition 2, the exogenous signals are in
he polynomial order, which is denoted as (k−1)th, as r(t) or ded(t)
ead to y (t) := y(t) − y (t) that is of polynomial order.
d n
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Proof. It is observed from (1) and (2) that the difference between
y(t) and yn(t) is caused only by ded(t) (or equally d(t)) which is
iven by (19). Since the control input u(t) is identical for both

systems, we have[
ydp

]
ny×1

=

([
Pp,1

]
ny×nu

[ded1]nu×1 + · · · +
[
Pp,nu

]
ny×nu

[
dednu

]
nu×1

)
where p = 1, . . . , ny. Assume

|
[
dj

]
nd×1 | ≤

kj∑
i=0

aijt i ≤
(
akj,jt

k−1
+ akj−1,jtk−1

+ · · · + a0,jtk−1)
= a′

jt
k−1

(21)

for j = 1, . . . , nu and k := max{k1, k2, . . . , knu} + 1. Since we
are interested in the magnitude of the disturbance in (21), we
consider the coefficients of the polynomial positive, i.e. aij ∈

R+. It is straightforward to assume that the control structures K
and Kobs must satisfy internal stability (Definition 2 provides a
stabilizing u(t)) for their feedback loops. Then, we can define

sup
ω∈R+

σ (P) ≤ β ≤ ∞ s.t. sup
ω∈R+

σ (P(i, j)) ≤ β̄ij ≤ β

where i = 1, . . . , ny, σ̄ denotes the maximum singular value of
the transfer function matrix P and σ denotes the singular values
of transfer function P(i, j). So, following inequalities on yd can be
written[
ydj

]
ny×1 ≤

nu∑
i=1

β̄ji[dedi]nu×1 ≤

nu∑
i=1

β[dedi]nu×1

≤

nu∑
i=1

βa′tk−1
≤ K̄ ⋆tk−1

where a′
:= max{a′

1, . . . , a
′
ny}, β := ∥

[
β̄ij

]
nu×ny

∥∞, and K̄ ⋆
≤ ∞

and this completes the proof. □

4.1. Disturbance observer Kobs

The virtual loop shown in Fig. 1 only consists of a reference in-
put yd, a stabilizing controller Kobs and a nominal plant. Therefore
the loop is free from disturbances (input or output). The worst-
case reference input tracking occurs when yd(t) is of a polynomial
order as it was described by Proposition 1. Therefore, ensuring
ε ≡ 0 under a polynomial reference input is sufficient for all
yd(t) caused by d(t). To achieve this objective, first, k-fold multiple
integral augmentation to the plant is performed as follows

Paug := P(s)Ia(s) =

[ A+ 0 B+

BC+ A 0
0 C 0

]
=

[
A B
C D

]
(22)

here Ia(s) := diag[ 1
sk

1
sk

. . . 1
sk

] =

[
A+ B+

C+ D+

]
such that

Ia(s) ∈ R(s)nu×nu . Note that the present form of (22) cannot be
solved by standard H∞, since it violates the fundamental princi-
ple of the synthesis. Therefore, employing the bilinear transfor-
mation approach eludes this imaginary-axis pole problem. Then,
to ensure the solvability of the problem, the following assumption
is made.

Assumption 2. Let p1, . . . , pn denote the poles of P(s) and
z1, . . . , zm stand for the zeros of P(s) and choose sufficiently small
α and sufficiently large α such that every p and z are included
1 2 i i
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Fig. 2. Schematic limits of bilinear transformation on s-plane. The unallow-
ble poles are red labeled (x) and unallowable zeros are orange labeled (o)-
llustration.

y Φ, which is illustrated in Fig. 2.. pi and zi are assumed to
atisfy the equalities in (23) and (24).(
Re{pi} −

|α1 + α2|

2

)2

+ Im{pi}2 ̸=
|α1 − α2|

2

4
, i = 1, . . . , n

(23)

(
Re{zi} −

|α1 + α2|

2

)2

+ Im{zi}2 ̸=
|α1 − α2|

2

4
s.t. zi /∈ Ξ ,

for i = 1, . . . ,m □

(24)

emark 3. The reasons behind Assumption 2 are preserving the
dynamic behavior of the system and satisfying the fundamental
properties of the H∞-Synthesis. For instance, if (23) is violated,
then we have poles on the imaginary-axis, which is not possi-
ble due to [26]. Moreover, violating (24) causes a non-existent,
dominant and non-minimum phase behavior.

Under Assumption 2, applying bilinear pole-shifting [24] to
Paug yields

P⋆
aug =

[
(A − α1I)(I −

1
α2

A)−1 (1 −
α1
α2

)(I −
1
α2

A)−1B
C(I −

1
α2

A)−1 D +
1
α2

C(I −
1
α2

A)−1B

]
(25)

Without loss of generality, under Assumption 2 for 0 > α1 ≫

2, to reduce the computational complexity, from now on, the
ollowing equation can be used instead of (25).

⋆
aug (s) ≈ P(s)I+(s) =

[ A2 0 B2
BC2 A 0
0 C 0

]
=

[
A⋆ B⋆

C⋆ D⋆

]
(26)

here I+(s) := diag[ 1
(s−α1)k

1
(s−α1)k

. . . 1
(s−α1)k

] =

[
A2 B2
C2 D2

]
such that I+(s) ∈ R(s)nu×nu .

Assumption 3. (A,B, C) is stabilizable and detectable.

Lemma 1. The pairs (A⋆,B⋆) and (A⋆, C⋆) are stabilizable and
detectable.

Proof. The pair (A⋆,B⋆) is stabilizable if and only if
[
A⋆

− λI B⋆
]

has full rank for all unstable eigenvalues of A⋆ which is denoted
by λ.
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Since the I+ has a fixed structure, A2 := diag[Λ1, . . . , Λnu ],
B2 := diag[b1, . . . bnu ], C2 := diag[c1, . . . , cnu ] where

Λ(i=1,...,nu) =

⎡⎢⎢⎢⎢⎣
α1 1 0 . . . 0
0 α1 1 . . . 0

0 0
. . . . . .

...

0 0 . . . α1 1
0 0 . . . 0 α1

⎤⎥⎥⎥⎥⎦
[k×k]

, (27)

b1 = b2 = · · · = bnu = [0 0 . . . ⋆]T
[k×1],

c1 = c2 = · · · = cnu = [⋆ 0 . . . 0][1×k].

First, let λ ∈ eig(A)\ eig(A2). Then, the column rank condition for
stabilizability is

rankM = rank
[
A2 − λI 0 B2
BC2 A − λI 0

]
= rank

[
A2 − λI B2 0
BC2 0 A − λI

]
= rank

[
A′ B′

C′ D′

]
(28)

ote that, A′ is nonsingular and N (B′) ⊆ N (A′) = 0 where N (.)
enotes the null-space. Consider the Aitken block-diagonalization
ormula [27] as

I 0
−C′(A′)−1 I

][
A′ B′

C′ D′

][
I −(A′)−1B′

0 I

]
=

[
A′ 0
0 M/A′

]
here M/A′

= D′
− C′(A′)−1B′. Then, by using Guttman rank

dditivity [27], following rank relations can be derived.

ank[M] = rank[A2] + rank

×

[
[0 A − λI] − [(BC2)(A2 − λI)−1(B2 0)]

]
= rank[A2] + rank[−BC2(A2 − λI)−1B2

... (A − λI)]

= rank[A2] + rank
[
−

1
(λ − α1)k

B
... (A − λI)

]
(29)

nd since (A,B) is stabilizable (by Assumption 3), we get

ank[M] = rank[A′
] + rank[D′

− C′(A′)−1B′
] = (nu × k) + n (30)

Now, let λ = α1 ∈ eig(A2) and λ /∈ eig(A). Rewriting (28) yields

rank[M] = rank[D′
] + rank[A′

] (31)

where A′
= [A2 − λI B2], B′

= 0, C′
= [BC2 0], D′

= [A − λI]
such that ∃(D′)−1. Since dim[ker(A2 − λI)] = nu and using (27),
we get

rank[A2 − λI] = (nu × k) − nu (32)

rank[A′
] = rank

[
[A2 − λI B2]

]
= (nu × k)

rank[D′
] = n ⇒ rank[M] = n + (nu × k) .

The detectability property is the dual of stabilizability and this
completes the proof. □

Then, lower LFT based on the scheme given by Fig. 3 is
employed where K̄obs denotes the control system of the bilinear
transformed P⋆

aug , WP,obs denotes the performance weight WU,obs
denotes input usage weight.

A possible way to define WP,obs is [26]

WP,obs(s) = diag

⎡⎢⎣
⎛⎝ s

kp
√

Mp
+ ωb,1

s + ωb,1
kp
√

ξp

⎞⎠kp

. . .

⎛⎝ s
kp
√

Mp
+ ωb,ny

s + ωb,ny
k
√

ξp

⎞⎠kp
⎤⎥⎦

(33)
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Fig. 3. LFT of the virtual loop.

where ωb is a cut-off frequency for the sensitivity function, Mp is
the maximum allowable overshoot for WP,obs and integer kp >

. The estimation error of the disturbance (ded − d̄ed) can be
een as a decreasing function of the cut-off frequency ωb and
he low-frequency roll-off rate of WP,obs. Thus, increasing ωb or
low-frequency roll-off rate can decrease ded − d̄ed.

A general form for the weight WU,obs is

U,obs(s) = diag

[(
s + ωϑc/

ku
√
Mu

s ku
√

ξu + ωϑc

)ku

. . .

(
s + ωϑc/

ku
√
Mu

s ku
√

ξu + ωϑc

)ku
]

(34)

where ωϑc is cut-off frequency for K̄obs(I + P⋆
aug K̄obs)−1, Mu is

the maximum permissible input usage for K̄obs(I + P⋆
aug K̄obs)−1ε,

ξu ≪ 1 to prevent high frequency control input usage and ku is
some integer greater than 1.

Then, although the virtual-loop (as disturbance observer) does
not have any measurement noise naturally, still the noise of the
main loop must be considered in the design of the virtual loop.
The reason is that it is hard to distinguish between disturbance,
which should be rejected, and noise, which should not be com-
pensated, by observing just the output and input of the system
with the disturbance observer. Thus, the measurement noise ny
in Fig. 1 can be carried to the output of the virtual-loop by
equating ny = −nϑ . Note that measurement noise has high
frequencies and is typically zero-mean [28]. This transportation
is done virtually and only for the design/analysis of the K̄obs.
Then, consider D̄ed(s)

Nv (s)
:= K̄obs(I + P⋆

aug K̄obs)−1 which is a trans-
fer function matrix from the nϑ to the d̄ed. The design aim is
shaping this special TFM so-called noise sensitivity function for
smooth control input (or equivalently, disturbance estimation)
that has not been affected by measurement noise. To do so, we
introduced the weight WU,obs. Using (34), a schematic way for
WU,obs selection (for disturbance observer design particularly) can
be represented by Fig. 4 where γ denotes the infinite norm of
the closed-loop system, σ̄

(
WU,obs

)−1
(
σ

(
WU,obs

)−1
)
denotes the

aximum (minimum) singular value of the inverse of WU,obs and
the regions of ‘‘Disturbance Estimation’’ and ‘‘Noise Reduction’’
are forbidden zones. In addition, the frequencies higher than ωϑc
can be considered as noise dominant region, smaller than ωϑc can
be considered as disturbance dominant region. The selection of
the ωϑc can vary based on the measurement sensor’s dynamics
and disturbance profile. For further discussions about weight
selection, see [29].

The representation of the augmented plant Gobs is

Gobs(s) =

⎡⎣ WP,obs −WP,obsP⋆
aug

0 WU,obs
I −P⋆

aug

⎤⎦ =

[
G11(s) G12(s)
G21(s) G22(s)

]

=

[
Ag Bg
Cg Dg

]
=

[ Ag Bg,1 Bg,2
Cg,1 Dg,11 Dg,12
Cg,2 Dg,21 Dg,22

]
(35)
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Fig. 4. A schematic way for WU,obs selection.

nd the transfer function matrix from w to z in Fig. 3 as in lower
FT form is

¯obs = Fl(Gobs, K̄obs) = G11 + G12K̄obs(I − G22K̄obs)−1G21

The aim is to design a K̄obs that satisfies the following expression
if it is feasible.

∥Fl(Gobs, K̄obs)∥∞ = ∥T̄obs∥∞ ≤ γ ≤ ∞ (36)

Due to the nature of the integral augmentation and (36) requires
no unstable pole/zero cancellation, T̄obs always contains one or
more unstable poles at the same point (i.e., p = α1+ j0), thus, the
following lemma is immediately necessary, particularly for many
RHP poles.

Lemma 2. The complementary sensitivity function of the virtual
loop satisfies the following inequality

log ∥T̄obs∥∞ ≥

k
(
(2θp − π ) log(ωc

σp
)
)

+ Ĩ(θp)

2θp
(37)

where

θp = tan−1 ωc

σp
, Ĩ(θ )

=
1
2

(
−

∫ 2θ

0
log(2 sin

z
2
)dz −

∫ π−2θ

0
log(2 sin

z
2
)dz

)
Proof. First note that, any complementary sensitivity function
can be modeled as

σ̄ (T̄obs(jω)) ≤ (
ωc

ω
)k, T̄obs ∈ Cny×ny (38)

where C denotes the set of complex numbers and by definition
T̄obs,ij ≈ 0 for i ̸= j. We can define multiple cut-off frequen-
ies for T̄obs,ii, i = 1, . . . , ny as ωc1, . . . , ωcny and define ωc =

in{ωc1, . . . , ωcny}. For simplicity, we only consider RHP poles of
hifted-augmented integrals and with the help of Assumption 2,
e can assume that there are no RHP zeros. Now, consider the
nstable poles are given by p = σp + jωp and then set ωp =

, σp = α1 caused by the bilinear transformation as p = σp and
¯ = σp and thus θp = tan−1( ω ) = θ̄p ∈ [0, π/2] and dθp

=
σp

2 .

σp dω σp +ω2
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hen noting Theorem 4.2 with (4.14) in [30] and using (38) yields

≤

∫
∞

−∞

log σ̄ (T̄obs(jω))dθp = 2
∫

∞

0
log σ̄ (T̄obs(jω))dθp

=2
∫ ωc

0
log σ̄ (T̄obs(jω))dθp + 2

∫
∞

ωc

log σ̄ (T̄obs(jω))dθp

≤2 log ∥T̄obs∥∞[θp(ωc) − θp(0)] + (−2kp)
∫

∞

ωc

log
ω

ωc
dθp.

Then following Theorem 2 in [31] completes proof. □

Corollary 1. The adverse effects of adding RHP poles to the bound
of the complementary sensitivity function of the bilinear transformed
system can be reduced (or eliminated totally) by increasing the
cut-off frequency ωc .

Proof. For the increasing values of ωc with constant σp, the con-
vergent rate of the tan−1

(
(ωc

σp
)
)
function to the π is higher than

the divergent rate of the k log
(
(ωc

σp
)
)
. In addition, for the second

term of the right side of the (37), Ĩ(θp) is positive but a decreasing
function of ωc merely since the RHP poles are real and have the
constant position. Therefore, limωc→∞ k

(
(2θp − π ) log(ωc

σp
)
)

= 0

nd limωc→∞ Ĩ(θp) = 0 + ϵ for some positive ϵ → 0, which
omplete proof. □

The developed analyses up to now allow to consider the solv-
bility of the problem with standard H∞-Synthesis as its current
orm (36). The following theorem combining Section 1, Theo-
em 2.1 and Theorem 3.1 of [32] about Schur–Hamiltonian De-
omposition is utilized.

heorem 1. Let M̄ =

[
F1 N1

Z1
−F1

]
is Hamiltonian and there

s no eigenvalue of M̄ on the jω-axis. Then there exists a unitary
1

=

[
Q1

11 Q1
12

−Q1
12 Q1

11

]
∈ C2n×2n where Q1

11 , Q1
12 ∈ Cn×n such that

Q1)T M̄Q1
=

[
T1 R1

0 −T1

]
where T1, R1

∈ Cn×n, R1
= (R1)T , T1

s upper triangular. In this discussion, Q1 can be chosen such that
1

∈ C− and also it satisfies[
F1 N1

Z1
−F1

][
Q1

11

−Q1
12

]
=

[
Q1

11

−Q1
12

]
T1

≡

[
F̂1 N̂1

Ẑ1
−F̂1

][
Σ1

−∆1

]
=

[
Σ1

−∆1

]
T̂1 (39)

here, using symplectic singular value decomposition, there exist
× n unitary matrices U and V such that UTQ1

11V = Σ1
=

iag(σ1, . . . , σn), 0 ≤ σ1 ≤ · · · ≤ σn, UTQ1
12V = ∆1

=

iag(δ1, . . . , δn), δi = ±(1 − σ 2
i )

1/2, F̂1 = UTF1U, N̂1
= UTN1U,

ˆ1 = UTZ1U and T̂1
= VTT1V. Define the Algebraic Riccati Equations

s

− XN1X + X + (A1)TX + Z1
= 0 (40)

− X̂N̂1X̂ + X̂ + (Â1)T X̂ + Ẑ1
= 0 (41)

here X = UX̂UT and X̂ = diag(δ1/σ1, . . . , δn/σn) are the
ermitian solutions of (40) and (41) respectively. Then, σ1 ̸= 0
mplies that there exists a positive semi-definite diagonal matrix X.

roof. See [32] □

Then, describe the Hamiltonian matrices as in (42) and (43)

1
∞

=

[
F1 N1

1 1

]
(42)
Z −F
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J1
∞

=

[
Ag 0

−Bg,1BT
g,1 −Ag

]
−

[
[Cg,1 Cg,2]

−Bg,1[Dg,11 Dg,21]

]
× R̄−1

[
Dg,11
Dg,21

]
BT
g,1

[
Cg,1
Cg,2

]
(43)

where F1 = Ag + [Bg,1 Bg,2]R−1

[
Dg,11
Dg,12

]
Cg,1, N1

= −[Bg,1 Bg,2]

R−1
[Bg,1 Bg,2]

T , Z1
= −CT

g,1

(
I + [Dg,11 Dg,12]R−1

[
Dg,11
Dg,12

])
Cg,1,

F1 =

(
Ag + [Bg,1 Bg,2]R−1

[
Dg,11
Dg,12

]
Cg,1

)T

, R =

[
Dg,11
Dg,12

]
[Dg,11 Dg,12]−

[
γ 2I 0
0 0

]
and R̄ =

[
Dg,11
Dg,21

]
[Dg,11 Dg,21]−

[
γ 2I 0
0 0

]
.

From now on, we only consider H1
∞

Hamiltonian matrix. To get
G0
obs, P

⋆
aug is replaced with P in (35) and following (36), (42), (43)

yields for the unaugmented system’s Hamiltonian matrices H0
∞

and J0
∞

respectively.

Assumption 4. The systems defined by Gobs and G0
obs satisfy A1–

A6 from [33]. Then, assume that H0
∞

∈ dom(Ric) and Ric(H0
∞
) =

X0
≥ 0 where dom(Ric) denotes Riccati Domain that is de-

fined by all-Hamiltonian matrices which have no pole/zero on
their imaginary-axis and there exist non-singular bases for stable
invariant subspace of the corresponding Hamiltonian matrix.

Theorem 2. If there exist X0
≥ 0 satisfying Theorem 1 and

Assumption 4, then ∃X ≥ 0 that satisfies (40) for H1
∞

Hamiltonian
matrix.

Proof. Reorganize Σ1 and ∆1 as

Σ1
=

[
Σ1

1 0
0 Σ1

2

]
, ∆1

=

[
∆1

1 0
0 ∆1

2

]
(44)

and suppose

0 = σ1 = · · · = σi ≤ σi+1 (45)

Σ1
1 = diag(σ1, . . . , σi) = 0 (46)

Σ1
2 = diag(σi+1, . . . , σn) s.t. ∃(Σ1

2 )
−1 (47)

∴ ∆1
1 = diag(δ1, . . . , δi) = Ii×i (48)

for some i ≤ n. Note that (45) violates the existence of X. Using
(44), reorganizing (39) yields⎡⎢⎢⎢⎢⎣

F̂111 F̂112 N̂1
11 N̂1

12

F̂121 F̂122 N̂1
21 N̂1

22

Ẑ1
11 Ẑ1

12 −F̂111 −F̂121
Ẑ1
21 Ẑ1

22 −F̂112 −F̂122

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Σ1
1 0
0 Σ1

2

Ii×i 0
0 −∆1

2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Σ1

1 0
0 Σ1

2

Ii×i 0
0 −∆1

2

⎤⎥⎥⎥⎦
×

[
T̂1
11 T̂1

12

T̂1
21 T̂1

22

]
.

By comparing (1,1) blocks in the equation, we find that N̂1
11 = 0.

Then,

N̂1
11 =

[
1 0 . . . 0 0
0 0 . . . 0 1

]T

N̂0
11

[
∗ 0 . . . 0
0 0 . . . ∗

]
(49)

where ∗ ̸= 0 ∈ R. Reorganizing H0
∞

in (49) and using Assump-
tion 4 show that Σ0

̸= 0 and N̂0
11 ̸= 0 therefore N̂1

11 ̸= 0, which
is a contradiction. Thus, Σ1

1 ̸= 0 and following Theorem 1, (40)
and (41) gives X ≥ 0. □

Then, following the design procedure described in [33] yields
an admissible control system, which satisfies (36) and the struc-

ture of the control system is given by K̄obs =

[
Āco B̄co
¯ ¯

]
.

Cco Dco
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Now, the below inverse bilinear transformation procedure
should be applied to K̄obs to get a realizable control system.

K̃obs =

[
(−Āco − α1I)(−I −

1
α2

Āco)−1 (1 −
α1
α2

)(−I −
1
α2

Āco)−1B̄co

C̄co(−I −
1
α2

Āco)−1 D̄co +
1
α2

C̄co(−I −
1
α2

Āco)−1B̄co

]
(50)

inal form of Kobs is obtained as follows.

Kobs(s) = K̃obs(s)Ia(s). (51)

imilar to [24], the following inequalities show that the con-
rol system designed using the bilinear transformed augmented
lant has better infinity norm characteristics after inverse bilinear
ransformation.

> ∥Fl(Gobs, K̄obs)(jω̃)∥∞ = sup
ω̃

σ̄ (Fl(Gobs, K̄obs)(jω̃))

= sup
R(s̃)>0

σ̄ (Fl(Gobs, K̄obs)(s̃))

≥ sup
s∈C\Ω

σ̄ (Fl(Gobs, K̄obs)(
s − α1

1 −
s

α2

)) = sup
s∈C\Ω

σ̄Fl(G0
obs,Kobs)(s)

≥ lim
s→jω

sup
ω

Fl(G0
obs,Kobs)(jω). (52)

emma 3. According to (36) and (52), for polynomial order yd(t),
he steady-state error of the virtual loop will be zero.

roof. Noting properties (1-3) from [24] with S

out
obs (s) :=

⎡⎢⎣ Sout
obs 1,1 . . . Sout

obs 1,ny
...

. . .
...

Sout
obs ny,1

. . . Sout
obs ny,ny

⎤⎥⎦ = (I + PKobs)−1
∈ RH∞

where Sout
obs (i, j) = gsk

(∏n−k
m=1(s − am)

) (∏n
m=1 (s − bm)

)−1, g is
the appropriate gain of the corresponding minor and am, bm ∈

C, ∀m and these are functions of i and j for i = 1, . . . , ny, j =

1, . . . , ny. Then using the final value theorem as
lims→0(sSoutobs(s)Yd(s)) with Proposition 1 completes the proof. □

Lemma 4. The estimation performance of the observer can be
specified by the input complementary sensitivity function of the
virtual loop Tinp

obs. Specifically

û :=d̄ed = Tinp
obsded . (53)

Proof. Similar with the proof of Lemma 1 in [34]. □

Corollary 2. The harmonic components of the disturbance whose
(k + 1)-fold derivatives are not constant or zero are directly com-
pensated by enlarging the bandwidth of the observer’s controller.

Proof. Consider (31) in [35] as

d(t) = β1 sin (ω1t + γ1)

Then using Lemma 4 with sufficiently large bandwidth causes
20 log10 S

inp
obs(jω1) = −∞ dB and 20 log10 T

inp
obs(jω1) = 0 dB. Thus,

we get

d̄(t) = 10
(
20 log10 Tinpobs(jω1)/20

)
β1 sin (ω1t + γ1)

= β1 sin (ω1t + γ1) = d(t)

which completes the proof. □
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Remark 4. Corollary 2 implies that enlarging the bandwidth of
the controller provides perfect rejection of the sinusoidal dis-
turbances. However, the existence of measurement noise as a
practical constraint limits the arbitrary bandwidth enlarging. To
decide the bandwidth of the observer under noisy measure-
ments, Lemmas 2–4, Corollaries 1–2 and Fig. 4 should be tackled
together.

4.2. Main controller K

The goal of the control system K of the main loop is to satisfy
the internal stability when only the residual disturbance (i.e,
ded−d̄ed) is injected into the main loop. For simplicity, we assume
that there is no uncertainty on the plant. Then, the procedures
given by [25,34] are valid without uncertainties in our numerical
simulations.

Remark 5. Note that the goal of the K is to assure the internal
stability under residual disturbance. The worst-case consideration
of the disturbance model directly affects the number of integra-
tors used in augmentation. However, the augmentation procedure
is employed just for the virtual-loop. Although less knowledge
about the disturbance model increases the conservativeness, em-
ploying the augmentation procedure just for the virtual loop,
which is an active loop if and only if ded ̸= 0, reduces the
conservatism.

5. Illustrative examples

In this section, two MIMO examples are presented as simula-
tions. In the first one, 2 × 2 square MIMO case is investigated.
This 2 × 2 example covers the Section 4.1 and includes a com-
parison of the proposed method and state-of-art. In the second
example, the proposed method is investigated entirely (i.e. this
example deals with a range of notions from matching conditions
to the whole control system including K and Kobs) for a 2 × 3
non-square system.

5.1. Square MIMO system: A comparative study

In this subsection, to have a fair comparison, the virtual loop
of Fig. 1 that is shown in Fig. 5(a) is employed merely to focus
on the result of Section 4.1. Thus, we only discuss the perfor-
mance of control system Kobs with respect to the state-of-art
methods against polynomial ordered disturbances, sinusoidal dis-
turbances and modeling error. All simulations are carried out
through Matlab/Simulink environment using ODE 45 solver.

MIMO four-steering wheel vehicle is taken as a benchmark
system. It is a square system with 2-inputs which are steering
angles of front and rear tires as u(t) = [δf δr ]

T and 2-outputs
which are side-slip angle and yaw rate as y(t) = [β r]T . The
interested reader should refer to [36] for a detailed discussion of
the modeling phase, here, the vehicle model is taken directly from
there and is given as

A =

[
−3.41 −0.9045
46.5451 3.173

]
,B =

[
1000 2069
18.046 −37.3367

]
,

C =

[
1 0
0 1

]
(54)

For comparison we used the polynomial differential operator
based internal model principle discussed in [23] and we are able
to reproduce their results exactly. We then implemented the pro-
posed method on the same complex benchmark and compared
the results. The schematic of the IMP controller is shown by
Fig. 5(b).
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Fig. 5. Compared methods: (a) proposed method - H∞ , (b) IMP via polynomial
ifferential operator.

Table 1
Test scenarios.
Scenarios r(t) = [rβ (t) rr (t)]T Uncertainty

I rβ (t) = 3t2 + 6t + 4 P = P × 1
rr (t) = 3t2 + 6t + 4 (No uncertainty)

II rβ (t) = 3t2 + 6t + 4 + 1.5 sin(9.42t) P = P × 1
rr (t) = 3t2 + 6t + 4 + 1.5 sin(9.42t) (No uncertainty)

III rβ (t) = 3t2 + 6t + 4 + 1.5 sin(9.42t) P = P × 0.35
rr (t) = 3t2 + 6t + 4 + 1.5 sin(9.42t)

In this comparison, both methods are tested by three different
cenarios and evaluated through two meaningful metrics. These
cenarios are given with Table 1 . Note that, the reference signal
(t) is applied to both systems exactly. Moreover, multiplying
B×0.35 in (54) yields the uncertain systems for the third scenario.
n the other hand, to measure the performance of the closed-loop
ystems, two different metrics on the error of the feedback loop
re used. Those are e(t) = [eβ (t) er (t)]T = [rβ (t) − yβ (t) rr (t) −

yr (t)]T = r(t) − y(t) and ∥e(t)∥2 =
√
eβ (t)2 + er (t)2.

5.1.1. Design of Kobs for H∞

From this point on the proposed design is carried out by
following the procedure in Section 4.1. First, Proposition 1 is sat-
isfied by problem’s nature since the polynomial ordered reference
signal r(t) is directly chosen as in Table 1 (yd(t) is represented as
(t)). To ensure e ≡ 0, we start with 3-fold integral augmentation
o get Paug in (22) as

aug := PIa = P diag
[
(1/s3) (1/s3)

]
(55)

Then, noting Assumption 2, to attack (55) with standard tools
f H∞, we need to employ bilinear transformation with 0 >
−0.05 = α1) > (−1000 = α2). The resulting system is given by
⋆
aug whose LFT schematic is shown by Fig. 3. Then aim is to design
control system for P⋆

aug via H∞ with the following weights

WP,obs = diag
[
0.5(s + 24.32)3

(s + 0.8959)3
0.5(s + 24.32)3

(s + 0.8959)3

]
(56)

U,obs = diag
[

5000(s + 59.61)2

(s + 1.333 × 104)2
5000(s + 59.61)2

(s + 1.333 × 104)2

]
. (57)

aving a steeper slope on sensitivity function subjected to Wp
ields the convergent error (to zero) if the growth rate of the
xogenous signals have smaller slope than the sensitivity func-
ion. Therefore, following (33) provides a bound on the transient
ynamics of the closed-loop system if the preceding synthesis
s achieved. Moreover, following the schematic guideline that is
iven in Fig. 4 provides the noise reduction systematically. The
raphical representations of (56) is given by Fig. 6(b) As a result,
e get (36) as ∥T̄obs∥∞ ≈ 1.48 which confirms Lemma 1 and
heorem 2 since we can get a stabilizing controller that satisfies
nternal stability over (26).

To get the control system given Kobs by Fig. 5(a), first, apply
nverse bilinear transformation to obtain K̃ and then virtually
obs

307
Fig. 6. Sensitivity/Complementary Sensitivity Functions and the weights of the
virtual loop.

Fig. 7. Results of Scenario I.

augmented integrators should be carried to the controller by
re-calling (51). The resulting Kobs is 14th-order.

5.1.2. Design of IMP
The design of the IMP based control is taken from [23] since

it is one of the most recent/key studies using IMP for MIMO
systems. The parameters that are used in Fig. 5(b) are

Fx =

[
1.2630 1.5923

−0.5862 0.7711

]
Fz

=

[
−100.7003 −23.1968 −1.5543 899.5088 271.1928 30.4197
66.9356 15.7626 1.2687 −437.1666 −131.6198 −14.7434

]

ζ̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ζ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
e

5.1.3. Results
The design of the Kobs allowed us to successfully achieve the

sensitivity and complementary sensitivity functions as in Fig. 6.
The IMP design is resulted in stable closed-loop poles whose
places are {−10, −11, −12, . . . ,−17}.

For the scenario I, both control systems behave similar in
terms of the measure metrics. This similarity is shown by Fig. 7.
IMP and H∞ achieve the tracking of the polynomial-ordered
references with zero steady state error, thus, Lemma 3 is vali-
dated. Then for the scenario II, the complexity of the problem is
increased by adding a sinusoidal extra reference signal in addition
to the polynomial one as it described in Table 1. Based on the
main design principle and the disadvantages of IMP based control
that are mentioned in the Introduction, the performance of the
IMP is degraded with respect to H∞ as it seen in Fig. 8. This figure
also validates the results in Corollary 2 directly. Although it is said
that the virtual-loop does not have any uncertainty by its nature
since we choose the plant (nominal plant) of the loop virtually,
still it is useful to compare the control systems under uncertainty
to have a full comparison that covers all aspects. However, with
scenario III, IMP and H can be distinguished from each other in
∞
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Fig. 8. Results of Scenario II.

Fig. 9. Results of Scenario III.

erms of tracking performance significantly as it can be seen in
ig. 9.
On the other hand, in order to validate the designed control

ystem under the measurement noise, we have added a new type
eference input while preserving all the design operations above.
ince the robustness against measurement noise is at the center
f interest for this paper, only the proposed method is tested
or the noisy case. Here the reference input vector for t ≥ 0 is
elected as unit step signal r(t) = [1 − 1]T and nϑ is selected
s band-limited white noise, whose parameters are 3 × 10−6 for
he noise power 5 × 10−5 for the sample time. The closed-loop
ystem was also tested for noise free case to represent the noise
ensitivity in a comparative manner.
In Fig. 10, controlled system’s outputs, control inputs and

he band-limited white noise are given as a function of time.
his test is repeated two times to get ‘‘under noise’’ condition
nd ‘‘noise free’’ conditions respectively. Although the control
ystem Kobs includes 3-fold pure integrators on the imaginary-
xis, noisy error, which is inevitable, yields a bounded control
nput signal as anticipated. For the control input, noise free case
long with the case under measurement noise are given in Fig. 10.
he simulations have shown that results are in good compliance
ith the theoretical analysis given in Section 4.1 since there is no
ignificant amplifications on the error signal as well as the output
esponse exceeding the bounds of the measurement noise.

.2. Non-square MIMO example

In this section, as a numerical example, a 2 × 3 MIMO system
s studied to show the effectiveness of the proposed approach.

Consider the following system with the unmatched distur-
ance as

ẋ0(t) =

[
−9.7 3 2
1.4 −18 0.6
5.1 2.2 −8

]
x0(t) +

[ 0 2.2 2
0 0.4 0
0.5 8.3 0

]

× u(t) +

[1 0 0 2
1 1 1 2
0 0 1 0.4

]
d(t)

0(t) =

[
0.5 2 −1.01

−0.2 −0.8 0.43

]
x0(t)
308
Fig. 10. Control inputs, system outputs and noise signal.

Fig. 11. Sensitivity/complementary sensitivity functions.

here initial conditions are zero, d(t) = [t3 t3 t3 t3]T /∈ L1 ∩

∞. Since d(t) is of polynomial order, Ia = diag[ 100
s4

100
s4

]. The
performance weights used in the synthesis of K and Kobs are given
s follows respectively.

WP = diag[
0.5(s + 125.7)
(s + 0.0006)

0.5(s + 125.7)
(s + 0.0006)

] ,

WP,obs = diag[
0.5(s + 12.24)4

(s + 0.5789)4
0.5(s + 23.78)4

(s + 0.63)4
]

WU = WU,obs = diag[0.00001 0.00001 0.00001]

The solutions of the corresponding H∞-Synthesis are given in
Fig. 11 in terms of sensitivity/complementary sensitivity func-
tions. The resulting Kobs is 27th-order.Following the procedure
described in Section 3.1 yields ded and d̄ed that are shown in
Fig. 12. For identical u(t) for both systems, the difference be-
tween (1)–(2) (i.e., y0(t)−y(t)) is depicted in Fig. 13 which shows
that conditions of Definition 1 are satisfied under unbounded
polynomial disturbances. Using d(t) and ded(t) in Fig. 12, in Fig. 14,
we can observe that limt→∞(y(t)− ȳ(t)) = 0 and ∥y(t)− ȳ(t)∥2 ≈

0.001 such that Definition 2 is satisfied.
The reason behind the difference between the exact-equival-

ent disturbances and the estimator output given by Fig. 12, there
is no unique solution as it can be seen in Section 3.1.1. In addi-
tion, the errors in Fig. 13 are very small and are mostly due to
numerical computations.

6. Conclusions

In this paper, necessary and sufficient conditions for the trans-
formation between matched and unmatched disturbances have
been investigated and a new and more relaxed definition for EID
(namely S-EID) has been given. Analytical solutions and numeri-
cal examples have shown that there exist matched equivalents of
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Fig. 13. The error between y0(t) − y(t) (i.e. for Bdd(t) and Bded(t) cases).

Fig. 14. Overall architecture’s performance with active disturbance rejection
nder polynomial disturbances and the one with equivalent case.

he unmatched disturbances for a wide range of disturbance and
ystem types. Therefore, focusing on the rejection and estimation
f the EID would be sufficient for many cases. Theoretical results
ave shown that the existence of the EID/S-EID depends on both
he system and the disturbance characteristics. In addition, it has
een observed that under polynomial references/disturbances, it
s possible to design a control system such that the effects of those
xogenous signals can be minimized with the help of multiple
ntegral augmentation and standard H∞-synthesis. It has been
lso worth mentioning that considering unit step, impulse, and
amp type, as well as harmonic disturbance, is sufficient for
ost real-world problems. However, as noted in the introduction
ection, the number of applications affected by polynomial-type
309
disturbances is spreading. Thus, having the mathematical foun-
dations of dealing with polynomial-type disturbances enables
solving new types of robust control problems.

The proposed method includes several theoretical and practi-
cal challenges. As the number of integrators increases, the diffi-
culties of finding a stabilizing controller under high-performance
conditions against polynomial type disturbances/references and
low noise sensitivity of the feedback loop increases. In the prac-
tical sense, augmenting multiple integrators increases the order
of the resulting control system additionally even though the order
of the synthesized controllers of H∞ is high in its nature.

Future research directions include expansion of the theory to
unmatched uncertainties and nonlinear systems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Khalil HK, Grizzle JW. Nonlinear systems, Vol. 3. Upper Saddle River, NJ:
Prentice hall; 2002.

[2] Yang J, Chen W-H, Li S. Non-linear disturbance observer-based robust con-
trol for systems with mismatched disturbances/uncertainties. IET Control
Theory Appl 2011;5(18):2053–62.

[3] Han J, Liu X, Gao X, Wei X. Intermediate observer-based robust distributed
fault estimation for nonlinear multiagent systems with directed graphs.
IEEE Trans Ind Inf 2019;16(12):7426–36.

[4] Liu X, Gao X, Han J. Distributed fault estimation for a class of
nonlinear multiagent systems. IEEE Trans Syst Man Cybern: Syst
2018;50(9):3382–90.

[5] Qiao J, Li Z, Xu J, Yu X. Composite nonsingular terminal sliding mode
attitude controller for spacecraft with actuator dynamics under matched
and mismatched disturbances. IEEE Trans Ind Inf 2019;16(2):1153–62.

[6] Guo B, Chen Y. Adaptive fault tolerant control for time-varying de-
lay system with actuator fault and mismatched disturbance. ISA Trans
2019;89:122–30.

[7] Misra G, Bai X. Robust disturbance observer-based control for relative
attitude tracking using sum-of-squares programming. J Guid Control Dyn
2020;43(4):806–13.

[8] She J-H, Kobayashi H, Ohyama Y, Xin X. Disturbance estimation and
rejection-An equivalent input disturbance estimator approach. In: 2004
43rd IEEE conference on decision and control (CDC)(IEEE Cat. No.
04CH37601), Vol. 2. IEEE; 2004, p. 1736–41.

[9] She J-H, Fang M, Ohyama Y, Hashimoto H, Wu M. Improving disturbance-
rejection performance based on an equivalent-input-disturbance approach.
IEEE Trans Ind Electron 2008;55(1):380–9.

[10] Li M, She J, Zhang C-K, Liu Z-T, Wu M, Ohyama Y. Active dis-
turbance rejection for time-varying state-delay systems based on
equivalent-input-disturbance approach. ISA Trans 2021;108:69–77.

[11] Kürkçü B, Kasnakoğlu C, Efe MO. Disturbance/uncertainty estima-
tor based integral sliding-mode control. IEEE Trans Automat Control
2018;63(11):3940–7.

[12] Tian J, Zhang S, Zhang Y, Li T. Active disturbance rejection control
based robust output feedback autopilot design for airbreathing hypersonic
vehicles. ISA Trans 2018;74:45–59.

[13] Du Y, Cao W, She J, Wu M, Fang M, Kawata S. Disturbance rejection
and control system design using improved equivalent input disturbance
approach. IEEE Trans Ind Electron 2019;67(4):3013–23.

[14] Hunt L, Meyer G, Su R. Noncausal inverses for linear systems. IEEE Trans
Automat Control 1996;41(4):608–11.

[15] Xargay E, Hovakimyan N, Cao C. L 1 adaptive controller for multi-input
multi-output systems in the presence of nonlinear unmatched uncertain-
ties. In: Proceedings of the 2010 American control conference. IEEE; 2010,
p. 874–9.

[16] Guo K, Jia J, Yu X, Guo L, Xie L. Multiple observers based anti-disturbance
control for a quadrotor UAV against payload and wind disturbances.
Control Eng Pract 2020;102:104560.

[17] Do TD, Nguyen HT. A generalized observer for estimating fast–varying
disturbances. IEEE Access 2018;6:28054–63.

http://refhub.elsevier.com/S0019-0578(22)00208-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb1
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb2
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb3
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb3
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb3
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb3
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb3
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb4
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb5
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb5
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb5
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb5
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb5
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb6
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb7
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb8
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb8
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb8
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb8
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb8
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb8
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb8
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb9
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb9
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb9
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb9
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb9
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb10
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb11
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb12
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb12
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb12
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb12
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb12
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb13
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb14
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb14
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb14
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb15
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb15
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb15
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb15
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb15
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb15
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb15
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb16
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb17
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb17
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb17


B. Kürkçü, C. Kasnakoğlu, M.Ö. Efe et al. ISA Transactions 131 (2022) 299–310
[18] Kim K-S, Rew K-H, Kim S. Disturbance observer for estimating higher
order disturbances in time series expansion. IEEE Trans Automat Control
2010;55(8):1905–11.

[19] Yan Y, Zhang C, Liu C, Yang J, Li S. Disturbance rejection for nonlinear
uncertain systems with output measurement errors: Application to a
helicopter model. IEEE Trans Ind Inf 2019;16(5):3133–44.

[20] Cordero R, Estrabis T, Gentil G, Batista E, Andrea C. Development of a
generalized predictive control system for polynomial reference tracking.
IEEE Trans Circuits Syst II 2021.

[21] Francis BA, Wonham WM. The internal model principle of control theory.
Automatica 1976;12(5):457–65.

[22] Serrani A, Isidori A, Marconi L. Semi-global nonlinear output reg-
ulation with adaptive internal model. IEEE Trans Automat Control
2001;46(8):1178–94.

[23] Kim SB, Kim DH, Pratama PS, Kim JW, Kim HK, Oh SJ, Jung YS. MIMO
robust servo controller design based on internal model principle using
polynomial differential operator. In: AETA 2015: Recent advances in
electrical engineering and related sciences. Springer; 2016, p. 469–84.

[24] Chiang R, Safonov M. H-infinity synthesis using a bilinear pole shifting
transform. J Guid Control Dyn 1992;15(5):1111–7.

[25] Kürkçü B, Kasnakoğlu C, Efe MO. Disturbance/uncertainty estimator
based robust control of nonminimum phase systems. IEEE/ASME Trans
Mechatronics 2018;23(4):1941–51.

[26] Zhou K, Doyle JC. Essentials of robust control, Vol. 104. Upper Saddle River,
NJ: Prentice hall; 1998.

[27] Zhang F. The Schur complement and its applications, Vol. 4. Springer
Science & Business Media; 2006.
310
[28] Åström KJ, Murray RM. Feedback systems: an introduction for scientists
and engineers. Princeton, NJ: Princeton university press; 2008.

[29] Lundström P, Skogestad S, Wang Z-Q. Performance weight selec-
tion for H-infinity and µ-control methods. Trans Inst Meas Control
1991;13(5):241–52.

[30] Chen J. Logarithmic integrals, interpolation bounds, and performance
limitations in MIMO feedback systems. IEEE Trans Automat Control
2000;45(6):1098–115.

[31] Looze DP, Freudenberg JS. Limitations of feedback properties imposed
by open-loop right half plane poles. IEEE Trans Automat Control
1991;36(6):736–9.

[32] Paige C, Van Loan C. A schur decomposition for Hamiltonian matrices.
Linear Algebra Appl 1981;41:11–32.

[33] Glover K, Doyle JC. State-space formulae for all stabilizing controllers that
satisfy an H-norm bound and relations to relations to risk sensitivity.
Systems Control Lett 1988;11(3):167–72.

[34] Kürkçü B, Kasnakoğlu C. Robust autopilot design based on a distur-
bance/uncertainty/coupling estimator. IEEE Trans Control Syst Technol
2019;27(6):2622–9.

[35] Coral-Enriquez H, Pulido-Guerrero S, Cortés-Romero J. Robust distur-
bance rejection based control with extended-state resonant observer
for sway reduction in uncertain tower-cranes. Int J Autom Comput
2019;16(6):812–27.

[36] Lv H, Liu S. Closed-loop handling stability of 4WS vehicle with yaw rate
control. Stroj Vestnik-J Mech Eng 2013;59(10):595–603.

http://refhub.elsevier.com/S0019-0578(22)00208-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb18
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb19
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb19
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb19
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb19
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb19
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb20
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb21
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb22
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb23
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb24
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb24
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb24
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb25
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb26
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb27
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb28
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb28
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb28
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb29
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb30
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb31
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb32
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb32
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb32
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb33
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb33
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb33
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb33
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb33
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb34
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb34
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb34
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb34
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb34
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb35
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb36
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb36
http://refhub.elsevier.com/S0019-0578(22)00208-7/sb36

	On the existence of Equivalent-Input-Disturbance and multiple integral augmentation via H-Infinity Synthesis for unmatched systems
	Introduction
	Preliminaries
	Existence of Solutions: EID/S-EID
	Exact Solution for EID
	System has more inputs than outputs
	System is square
	System has more outputs than inputs

	Simplified Definition: S-EID

	Multiple Integral Augmentation and H∞-Synthesis
	Disturbance Observer Kobs 
	Main Controller K

	Illustrative Examples
	Square MIMO system: A comparative study
	Design of Kobs for H∞
	Design of IMP
	Results

	Non-square MIMO Example

	Conclusions
	Declaration of Competing Interest
	References


