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Abstract

In this paper, variable structure control of a bioreactor is studied. The process has two state variables named cell mass and nutrient amount,
and two control inputs to maintain the state variables at their desired levels. Although the state space representation of the system seems simple,
the system displays several challenges that make it necessary to develop a good flowrate (control) management strategy. Due to the plant-model
mismatch, variable structure control technique is applied and it is seen that the sliding subspace is reached in finite time and the behavior thereafter
is insensitive to considerable degrees of variation in the parameters and disturbances. The design is based on the nominal model and a comparison
with a feedback linearizing controller is presented. The objective of the paper is to illustrate the efficacy of MIMO sliding mode control on a
benchmark problem. Overall, the results with the proposed controller demonstrate the following desirable characteristics: (i) very good tracking
precision (ii) small percent overshoot values and (iii) good decoupling of the process states.
c© 2007, ISA. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Chemical processes often display a complicated behavior
due to the strong interdependencies between the variables
involved. Although in some cases the process is described
by a few state variables, obtaining good disturbance rejection
with high tracking precision requires implementing nonlinear
control laws. The performance obtained with nonlinear
control laws cannot be achieved in general by utilizing
their counterparts designed through the use of linearized or
simplified models of the process. This aspect of chemical
processes makes them good test beds for benchmarking. A
review of nonlinear control techniques on chemical processes is
presented in [4], where the feasibility and efficacy of nonlinear
control laws are discussed with an emphasis on relevant control
challenges encountered in chemical process engineering.

Ungar [18] defines a Bioreactor Benchmark Problem that
excellently fits in the context. The state of the process is
described by two dimensionless variables named the cell mass
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denoted by c1(t) and the amount of nutrients denoted by c2(t)
(see [18]). In [16,8], the single input version of the problem is
addressed. The goal in that problem setting is to maintain only
the cell mass at desired levels while keeping the nutrient amount
bounded by altering the sole input of the reaction, which
is the pure water feed stream. Ungar [18] defines a further
complicated version of the single input setting by equipping
the reaction tank with another incoming flow, which is the
concentrated substrate feed stream. Thus the problem turns
into a multivariable control problem where the values of cell
mass and nutrient amount can be set independently. The sum
of the inflow streams in the Multi Input Multi Output (MIMO)
control problem is equal to the outflow value, hence the reaction
volume is kept constant during the course of operation. The
challenges associated with the control of this process are the
nonlinearity enabling the emergence of a rich set of dynamical
regimes, instabilities caused even by tiny variations in the
process variables and the presence of a long control sampling
interval in the feedback loop.

In the past, the single input version of this process was
used several times for modeling and feedback control purposes.
Efe et al. [8] consider this problem for developing a nonlinear
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control law forcing the process states to those of a first order
linear one. Feedforward neural networks are used to build the
nonlinear function in the control law and the plant is forced to
follow a reference model. Puskorius and Feldkamp [16] study
this problem in the context of demonstrating the efficacy of
a neural network learning algorithm and consider the control
problem about a setpoint in the stable region, another setpoint in
the unstable region and a transition between these regions. The
controller proposed in our study is able to keep the system states
in the unstable region as will be discussed in the following.
In [2], the bioreactor benchmark problem was used in the
justification of state dependent modeling approach. Brengel and
Seider [5] propose a multi step nonlinear controller based on
predictive control theory and validate the performance of the
closed loop control system on a variant of the model considered
here. The authors of that work emphasize the preferability of
operating at highest possible cell mass solutions, which are
desired to be reasonably away from the region of periodic
oscillations. Fossas et al. [9] discuss the design of a sliding
mode controller for the single input version of the process
considered here and follow the equivalent control approach
whereas we consider reaching law approach (see [12] for
details). In [3], it is emphasized that the controller design
even for the single input bioreactor benchmark problem is a
challenge due to the nonlinearity and a set of complicated
regimes that arise due to it. Clearly, the works mentioned
above motivate us to position the merit and effectiveness of
Variable Structure Control (VSC) techniques in the control of
continuously stirred tank reactors. In this paper, we consider
the MIMO control problem and analyze the limitations of the
design carried out with a thorough discussion.

Variable Structure Control (VSC), also known as Sliding
Mode Control (SMC), is a well established approach ensuring
some degrees of robustness against uncertainties in the
feedback loop. The underlying idea is to create a sliding
subspace, which is an attractor due to the philosophy of the
design, [12,19]. SMC technique, which has many successful
applications in motion control systems, is also applied for
feedback control of chemical processes. See for example [10],
where the process under investigation is modeled by a partial
differential equation, [6], where the design is based on a first
order model including dead time, and [7], where a second order
sliding mode control is performed after feedback linearization.
In [1], the technique is used in devising an uncertainty observer
acting in a process control loop. One fact in all these studies
needs emphasis: The sliding mode controller drives the system
toward the sliding manifold and maintains the behavior on that
loci, which is stable by the design and the error converges the
origin of the phase space. Once the trajectories are confined to
the sliding manifold, the control system displays some degrees
of robustness against disturbances and parameter variations in
system dynamics. This response is called invariance property
of sliding mode control, [13,14,12]. The underlying idea in this
paper is to implement a robust controller for the bioreactor
benchmark problem. The reaching law approach in [12] is
followed in the design.

Fig. 1. Reaction tank with equal inflow and outflow rates.

This paper is organized as follows. Section 2 introduces
the bioreactor benchmark problem and analyzes its behavior.
Section 3 emphasizes the main result of this work with the
design of the nonlinear feedback control laws. Section 4 is
devoted to the operating conditions, simulation results and their
interpretations. The concluding remarks are given at the end of
the paper.

2. Bioreactor benchmark problem

The bioreactor considered in this study is a tank in which
the biological cells are mixed with nutrients, water and
substrate as shown in Fig. 1. The cells and nutrients are in
a dynamical interaction modeled by (1) and (2), where c1(t)
denotes the dimensionless cell mass while c2(t) stands for the
dimensionless nutrient amount. The process is continuously
fed by pure water and concentrated substrate. The variable
characterizing the feed stream for pure water is denoted by w(t)
whereas the substrate concentration is tuned by altering wc(t).
In order to maintain the reaction volume constant, the contents
of the tank are removed at a rate denoted by z(t), which is equal
to the sum of the water and substrate feed streams. The goal
of the multivariable control problem is to achieve the tracking
of independent desired temporal profiles for the cell mass and
for the nutrient amount. The state variables of the process and
the nominal model seen below are assumed to be available for
constructing the controller.

ċ1(t) = −c1(t) (w(t) + wc(t)) + c1(t) (1 − c2(t)) e
c2(t)
γn (1)

ċ2(t) = −c2(t) (w(t) + wc(t)) + c1(t)

× (1 − c2(t)) e
c2(t)
γn

1 + βn

1 + βn − c2(t)
+ µnwc(t) (2)

where the state variables are constrained by Ω := 0 ≤

c1(t), c2(t) ≤ 1 and the feed streams 0 ≤ w(t), wc(t) ≤ 2.
In the nominal model of the plant given above, the growth rate
is characterized by the parameter βn = 0.02 and the nutrient
inhibition parameter is given by γn = 0.48. In (2), µn = 2
is the substrate feed stream gain. A subscript n indicates the
nominal value of the subscripted variable.

In Fig. 2, several trajectories are shown for a set of initial
conditions denoted by a circle. Each subplot depicts the
evolution of the system at a constant set of inflow streams
indicated on the top. Depending on the value of the inflow
streams, the attractors change their locations and new attractors
emerge as well. As seen from the top right subplot of Fig. 2,
one visible one is a limit cycle which becomes apparent when
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Fig. 2. The evolution of the process state for different initial conditions and at different feed streams. The trajectories are for 80 s time.

w = 1 and wc = 0. When w = 0.8290 and wc = 0, the
system changes its qualitative behavior radically. Computing
the equilibrium values corresponding to this pair of inflow
streams, one obtains c1 = 0.1331 and c2 = 0.8626. The
eigenvalues of the linearized system of equations at this point
stipulate that the system undergoes Hopf bifurcation at this
operating point and turns into an unstable one displaying
spontaneous oscillations due to the limit cycle. In this regime,
cell mass varies in between 0.1219 and 0.1466 while the
nutrient amount fluctuates in between 0.8243 and 0.8996. At
the points of crossing the imaginary axis, the eigenvalues of the
linearized model are approximately equal to 0 ± j1.7543, from
which we infer that the self sustained oscillations are quite fast.

A closer look at the subplots of Fig. 2 unfold the following
facts: The state vector of the unforced process dynamics (w =

0, wc = 0) terminates at a point on c2 = 1 boundary of Ω .
When w = 1 and wc = 0, a limit cycle is created as seen
in the top right subplot. This emphasizes that the system state
lies strictly within Ω . Physically, the cases w = wc = 1
and w = wc = 2 converge the equilibrium, where c2 = 1
and c1 = 0, i.e. within the tank, there are too much nutrients
but no cells to feed. In other words, the reaction is overfed.
The case with w = 2 and wc = 0 terminate at the origin
of the state space, i.e. no cells and no nutrients are available

in the reaction tank, i.e. the water feed stream is dominant
and extinction of the cells is the inevitable result. The bottom
left subplot of the figure demonstrates that the system states
converge to an attractor, on which cell mass is zero but some
amount of nutrients in between 0.5 and unity is available.

In Fig. 3, the aforementioned limit cycle and the
convergence of some neighboring trajectories are illustrated for
w = 1 and wc = 0. In fact, limit cycles can occur for all values
of admissible feed streams, i.e. 0 ≤ w, wc ≤ 2. According to
Bendixson theorem (see [17,15]), since the quantity

H :=
∂

∂c1

(
−c1(w + wc) + c1(1 − c2)e

c2
γn

)
+

∂

∂c2

(
− c2(w + wc) + c1(1 − c2)e

c2
γn

×
1 + βn

1 + βn − c2
+ µnwc

)
= −2(w + wc) + h(c1, c2) (3)

does not vanish and does not change sign in Λ ⊆ Ω , no limit
cycles can exist entirely in Λ. For a given constant pair of
feed stream values, the curve of sign change for H is moved
to the curve described by h(c1, c2) = 2(w + wc). Therefore
one should run the quantity 2(w + wc) from 0 to 8 and
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Fig. 3. Limit cycle arising when w = 1 and wc = 0.

Fig. 4. Regions where limit cycles cannot occur are designated by white color.

determine where the sign change occurs. In Fig. 4, the regions
where the limit cycles cannot lie entirely within are depicted as
white regions, termed Λ above, and the value of 2(w + wc) is
contoured for 2(w + wc) equal to 0, 2, 4, 6 and 8. According
to this result, we figure out that it is possible to have other
limit cycle trajectories in the system dynamics and Ω \ Λ is a
significantly wide subspace of Ω . From the control engineering
point of view, this practically tells us that during the controlled
operation of the process, many attractors and/or repellers can be
created or destroyed depending on the values of w and wc, and
the controller must be overcoming the dynamical influence of
such difficulties while meeting the performance specifications
and revealing disturbance rejection.

Fig. 5. Contour plots for steady state feed streams. Non-white regions indicate
the existence of admissible feed stream values to maintain the system at an
equilibrium. The region below the curve P is the intersection of the non-white
and admissible regions in both subplots. The steady state values on or below
the curve P are maintainable without violating the input constraints.

Now consider the process at the steady state, i.e. ċ1 = 0 and
ċ2 = 0. This yields the steady state control actions given by

wss =

(
1
c1

+
1
µn

(
g −

c2

c1

))
f (4)

wc ss = −
1
µn

(
g −

c2

c1

)
f (5)

where

f := c1(1 − c2)e
c2
γn (6)

g :=
1 + βn

1 + βn − c2
. (7)

With these control signals, the system is at an equilibrium.
The stability of the equilibrium states with the constraints on
the feed streams let us generate the plots in Fig. 5, where the top
subplot indicates the location of steady state water feed stream
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Fig. 6. The stability of the equilibrium states.

value as the state vector moves within Ω . Particular values are
contoured and it is seen that there are no equilibrium states for
some subregion of Ω as w is constrained by 0 ≤ w ≤ 2.

Similarly in the bottom subplot of Fig. 5, we see that
the admissible values of the equilibrium states are below a
parabolic curve labeled by a symbol P , on which the steady
state substrate feed stream value is zero and above this curve,
negative wc values are needed to maintain the system at the
equilibrium point. The same parabolic curve is also indicated in
the top subplot to clarify the regions in which the equilibrium
states are maintainable by admissible feed stream values.

In Fig. 6, stability of the equilibrium values are shown.
The stability conclusion is drawn by linearizing the plant
at every particular operating point. Since these equilibrium
values are achievable only on or below the curve P , we focus
on that particular subspace of Ω . According to the figure,
unstable equilibrium points indicated by white regions while
the black region is the region where equilibrium points are
stable. Particularly along the vertical line c2 = 0.52, the
eigenvalues of the linearized system are both equal to zero
which make it necessary to consider higher order terms to draw
a stability conclusion.

A last point that should be emphasized is the effect of
sampling in the control loop. In [18], the equation system in (1)
is discretized by the Euler method and a step size ∆ = 0.01 s is
used. The sampling period for the control signal, called macro
time steps [16] is equal to 50∆s, which is long enough for
the bioreactor process to develop deviations and spontaneous
oscillations from a desired setpoint or a trajectory. In this paper,
we test the performance of the proposed controller by operating
it at a prolonged rate, 60∆s.

Ungar [18] points out that although this system is not a
completely realistic model of any bioreactor, as seen from
the presented discussion, the system considered in this paper
displays several challenges highlighted also by Anderson and
Miller [3] with a similar motivation. Due to the presented
properties of the system, the model constitutes a good candidate

for scrutinizing the merits and effectiveness of conventional
nonlinear control laws as emphasized by Ungar [18].

3. Main result: MIMO sliding mode control of the
bioreactor

Theorem 3.1. Let r1(t) and r2(t) be independently chosen
differentiable desired profiles for the cell mass c1(t) and the
nutrient amount c2(t), respectively. Let e1(t) := r1(t)−c1(t) be
the error in the cell mass and e2(t) := r2(t)−c2(t) be the error
in the nutrient amount. Let s1(t) := e1(t) and s2(t) := e2(t) be
the switching variables and define the zero dimensional sliding
subspace (sliding manifold) for i-th state variable by si (t) = 0,
i = 1, 2. With ζi , ηi > 0 and the nominal plant nonlinearities
f (·, ·) and g(·), the two control laws describing the pure water
feed rate and the substrate feed rate given by

w(t) = −
c2 − µn

c1µn
( f − ṙ1 + ζ1 sgn(s1) + η1s1)

+
1
µn

( f · g − ṙ2 + ζ2 sgn(s2) + η2s2) (8)

wc(t) =
c2

c1µn
( f − ṙ1 + ζ1 sgn(s1) + η1s1)

−
1
µn

( f · g − ṙ2 + ζ2 sgn(s2) + η2s2) (9)

ensure hitting the sliding subspace in finite time and the errors
in both state variables are maintained around the origin of the
corresponding sliding subspace.

Remark 1. Note that for the phase space of each state variable
we have si (t) ∈ R1, therefore, the sliding subspace is a point in
R0. In other words, the origin of the phase space R1 coincides
with the sliding subspace by the definition of si (t).

Proof. Consider the nominal representation seen in (1) and (2)
and choose the Lyapunov function candidate

V =
1
2

s2
1 +

1
2

s2
2 . (10)

The time derivative of the Lyapunov function in (10) is given
by

V̇ = ṡ1s1 + ṡ2s2

= (ṙ1 − ċ1) s1 + (ṙ2 − ċ2) s2

= (ṙ1 − (−c1 (w + wc) + f )) s1

+ (ṙ2 − (−c2 (w + wc) + f · g + µnwc)) s2 (11)

where f and g are defined in (6) and (7), respectively.
Substituting the proposed pair of inflow rates given by (8) and
(9) into (11), one obtains

V̇ = (−ζ1 sgn(s1) − η1 s1) s1 + (−ζ2 sgn(s2) − η2 s2) s2

= −ζ1|s1| − ζ2|s2| − η1s2
1 − η2s2

2

= < 0. (12)

In particular, we have ṡi = −ζi sgn(si ) − ηi si resulting in
ṡi si = −ζi |si |−ηi s2

i < 0 and all trajectories are attracted by the
locus described by si = 0, i = 1, 2. Once the trajectories are



Author's personal copy

464 M.Ö. Efe / ISA Transactions 46 (2007) 459–469

confined to the locus si = 0, then they converge to the origin.
The proof of this is straightforward.

Note that when hitting occurs, si (th, i ) = 0 and ṡi (th, i ) = 0
are satisfied. Here, th, i denotes the hitting time for the i-th state,
i.e. the time elapses till a nonzero initial value si (0) reaches the
sliding subspace.

si (th, i ) = si (0) −

∫ th, i

0
ζi sgn(si (τ )) + ηi si (τ ) dτ. (13)

The quantity sgn(si (t)) is constant and does not change sign
until the time of hitting. Therefore we have

si (th, i ) = si (0) − sgn(si (0))

∫ th, i

0
ζi + ηi |si (τ )| dτ = 0. (14)

Or alternatively

sgn(si (0))

(
|si (0)| −

∫ th, i

0
ζi + ηi |si (τ )| dτ

)
= 0. (15)

Paraphrasing and rearranging (15) yields

|si (0)| =

∫ th, i

0
ζi + ηi |si (τ )| dτ ≥

∫ th, i

0
ζi dτ = ζi th, i . (16)

The hitting time th, i satisfies th, i ≤
|si (0)|

ζi
, which puts a

finite upper bound on the time interval for reaching the sliding
subspace, i.e. ei (t) = 0 is reached in finite time. Once the
system is in the sliding mode, the motion is confined to the
sliding subspace thereafter. This result guarantees that the
desired state profiles are followed. �

For a detailed discussion on the relevance of SMC
technique and the types of switching functions, handling of
parasitic dynamics and steady state behaviors, one should refer
to [19,17,20,11].

In the derivations presented so far, we have assumed that
when the sliding mode starts, si = 0 and ṡi = 0 are satisfied.
Yet in the application domain, it is difficult to encounter these
idealized conditions due to the plant-model mismatch and
inevitable disturbances. Practically, due to the infinite gain
when si = 0, unnecessarily fast switching control signals
are produced and very small variations in si can provoke
this phenomenon, which is highly undesired. This is called
chattering and is a prime drawback of sliding mode control
systems. A significant number of research studies addressed
obtaining chattering free sliding control, and one practical
solution is to introduce a boundary layer using a function that
is smooth around si = 0 instead of the sign function (see [17,
6] and the references therein). Among other alternatives, in this
study, we adopt the following widespread approximation with
δ > 0 for smoothing the switching element.

sgn(si ) ≈
si

|si | + δ
. (17)

The function in (17) resembles the original sign function
as δ gets closer to zero. Conversely, the discontinuity of the
sign function is changed into a very smooth transition as δ gets
larger. In the next section, we discuss the details regarding the
justification of the proposed controller.

4. Operating conditions, results and discussion

The true process considered in justifying the analytical
claims is given in (18) and (19), where the variables x1 and
x2 correspond to the true values of the state variables c1 and c2,
respectively.

ẋ1(t) = −x1(t) (w(t) + wc(t)) + x1(t)

× (1 − x2(t)) e
x2(t)
γ (t) + d1(t) (18)

ẋ2(t) = −x2(t) (w(t) + wc(t)) + x1(t) (1 − x2(t)) e
x2(t)
γ (t)

×
1 + β(t)

1 + β(t) − x2(t)
+ µ(t)wc(t) + d2(t) (19)

c1(t) = x1(t) + ε1(t) (20)
c2(t) = x2(t) + ε2(t). (21)

According to the procedure introduced, the control laws in (8)
and (9) are realized under the following operating conditions
and plant-model mismatch issues.

• The observations for the state variables c1(t) and c2(t)
are noisy. The Gaussian noise sequences corrupting the
state variables lie within the interval [−0.0156, 0.0156]

with a probability very close to unity. The noise in the
observations is a difficulty influencing the closed loop
control performance adversely. We utilize the following
partial observer for suppressing the effect of noise on c1(t);

ĉ1(t) = −ĉ1(t)(w(t) + wc(t)) + ĉ1(t)(1 − c2(t))e
c2(t)
γn

+ K (c1(t) − ĉ1(t)) (22)

where K > supc2∈ [0,1](1−c2(t))e
c2(t)
γn makes it sure that the

time derivative of the Lyapunov function W =
1
2 (c1 − ĉ1)

2

is negative definite if c1(t) 6= ĉ1(t). It is straightforward to
show that this observer removes the spurious content from
the measured value of c1(t). During the tests, the inflow rates
entering the observer dynamics are corrupted by zero mean
noise sequences, which lie in between ±0.02.

We study the noisy measurements in c2(t) too. Due to
the tedious stability proof, we leave the alleviation of the
difficulties caused by this fact to the controller instead of
utilizing an observer for c2(t) dynamics.

According to the above discussion, we exploit ĉ1(t) and
c2(t) as the state variables in constructing the control signals
in (8) and (9).

• In [18], it is emphasized that small variations from the
nominal values γn and βn lead to significant deviations from
the target cell mass for the single input problem setting. For
example, given perfect state measurements, 2% change in
γn and 20% change in βn may cause 50% deviation in the
cell mass, c1(t), (see [5,18]). In this paper, we consider the
nominal values of these parameters for the design of the
controller and in the justification of the proposed scheme,
we study these parameters with some variation in time.
The necessity for investigating the behavior under parameter
variations is tightly relevant to the need of exploring the
controller performance under extreme conditions. The top
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Fig. 7. The evolution of nutrient inhibition parameter (γ (t)) and growth rate parameter (β(t)) and substrate gain (µ(t)).

subplot of Fig. 7 depicts the change of growth rate parameter,
β(t) for a period of 30 s. The evolution of this parameter
displays a variation in [0.1276 , 3.7543]× 10−2 indicating a
maximum of 93.62% deviation from the nominal value given
by βn = 0.02. Likewise, in the middle subplot of Fig. 7, γ (t)
is illustrated for the first 300 s of the simulation. The value of
this variable changes within the interval [0.4225 , 0.5375],
which means maximum 12% change from the nominal value
of the nutrient inhibition parameter (γn). Lastly, the value of
substrate feed stream gain changes as shown in the bottom
subplot of Fig. 7, where the deviation from the nominal value
µn = 2 is at most 11.87%.

• Two other sources of disturbance are indicated by d1(t) in
(18) and d2(t) in (19), which are absent in the nominal
model. In the justification phase, random signals satisfying
−0.15 ≤ d1(t), d2(t) ≤ 0.15 are utilized.

Clearly the variations in β(t), γ (t) and µ(t), the presence
of measurement noise and the presence of other disturbance
terms require certain degrees of robustness to meet the
stability and performance requirements.

• Another difficulty is the large initial errors in the state
variables. If e1(0) and e2(0) are large, then the designed
controller must force them toward zero with a sequence of
admissible feed streams, w(t), wc(t), while maintaining the

stability during the transient phase. This paper also addresses
the issue of handling the large initial errors.

• The choice of the reference signal is another important
issue in closed loop control. As shown in the top left
subplot of Fig. 8, the desired cell mass (dashed curve)
claims the management of three different regimes, namely
the simulation is started with a trapezoidal profile that lasts
800 s, continued with a sinusoidal profile for another 800 s
and finally we choose a discontinuous desired profile to see
how the controller stabilize the system at different cell mass
levels during 1600 ≤ t ≤ 3200 s. The whole course of the
desired nutrient amount is to follow a sinusoidal reference
profile with offset equal to 0.4 and amplitude and frequency
are 0.15 Hz and 0.005 Hz respectively.

Aside from the numerical details given above, the
reference signal r1(t) is chosen according to the facts
presented in Fig. 5, where the equilibrium states are
maintainable with admissible feed streams only on or below
the curve P . This obviously puts an upper bound to the
desired values of cell mass as r1(t) <

1+βn
4 = 0.255.

According to the same figure, the mean value of the nutrient
amount can be increased yet in that case the state c2 might
get trapped to the attractor at c2 = 1. This is better seen in
Fig. 2, where most trajectories have a tendency either to pass
closely or toward the region described by c2 = 1.
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Fig. 8. The evolution of the cell mass and the nutrient amount for the given desired profiles are illustrated with the tracking error.

• Finally, the effect of actuation interval for the controller will
be emphasized. Ungar [18] defines T = 50∆ = 0.5 s.
as the control interval. In other words, the inflow streams
maintain their values during nT ≤ t < (n + 1)T , where
n is a discrete time index. Consequently, the computation
of the control signals applied during this interval is based
on the observations at t = nT . The practical drawback of
such an actuation scheme is the following: As discussed in
the second section and shown in Fig. 2, the system may
get trapped to a limit cycle or an attractor during this time
and this makes it necessary to implement a perfect flow rate
management strategy. This paper adopts T = 60∆ = 0.6 s.
to further increase the practical applicability of the controller
while making the control problem more demanding.

The other parameters of the SMC are ζ1 = 0.06, η1 = 0.01,
ζ2 = 0.1, η2 = 0.1 and δ = 0.05, which have been set
after a few trials. As shown in the top subplots of Fig. 8, the
state variables (solid curves) closely follow the desired profiles
(dashed curves). The bottom subplots depict the discrepancy
between the desired values and achieved values of the state
variables, i.e. e1(t) and e2(t). The results seen emphasize
that admissibly small tracking errors are maintained. When
the initial transients are taken into consideration, we observe
th,1 = 4.832 s and th,2 = 42.4 s, however the values set
by Theorem 3.1 are th,1 ≤

|s1(0)|
ζ1

≈ 1.33 s and th,2 ≤

|s2(0)|
ζ2

≈ 3.034 s. We attribute these results to the presence
of uncertainties and unmodeled dynamics effective during the
justification phase. The use of (17) introduces a thin boundary
layer whose thickness is determined by δ. If si (t) is within the
boundary layer, then it approaches the origin smoothly. This
modification of the original pair of control laws is another
reason of the delays in hitting. If the tests are carried out for
the nominal system, it is seen that hitting the sliding subspace
occurs much earlier than the computed time values and they

satisfy the upper bound given in Theorem 3.1. Nevertheless, the
hitting in our experiments occur slightly later and the motions
thereafter take place in the vicinity of the origin of each sliding
subspace as they attract all trajectories within the corresponding
phase space.

A substantially important measure for practical applicability
is the cost of physical realizability of the signals produced
by the controller. The time evolution of the feed stream
values yielding the results shown in Fig. 8 are illustrated
in Fig. 9 and three essential merits of the presented MIMO
sliding mode controller are highlighted below. First, although
the signals seem to have fast fluctuations, 0.6 s of (control
interval) macro time steps and the long course of the simulation
indicate that the shown signals are admissibly smooth. Second,
fluctuations observed at the instants when step changes
occur at the command signals are convergent. Note that in
Theorem 3.1, it is assumed that the command trajectories are
differentiable. Choosing this sort of a command profile violates
this assumption yet it enables us to monitor the momentary
response against such sharp changes and the interaction of
nutrient amount and cell mass dynamics. In the right subplots of
Fig. 8, we see instant but stable peaks in the behavior of c2 and
e2 due to the step changes in the desired cell mass profile. Third,
the substrate feed stream (wc) is saturated for very short periods
at the level wc = 0, and almost no saturations take place in the
course of water feed stream (w) including the reaching phase.
These are the prominent features associated with the controller.

According to the obtained results, the controller possesses
highly desirable characteristics such as very good disturbance
rejection capability and guaranteed tracking precision under
the presence of uncertainties. From a practical point of view,
smoothness of the control signal makes it possible to implement
the control law with hardware having no or little extraordinary
properties.
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Fig. 9. The inflow rates generated by the proposed SMC.

One might wonder what happens if other values for ζi s are
used. According to the tests we have carried out, larger values
of ζi s provoke oscillations in the state variables. Larger values
of ηi s deteriorate the tracking performance significantly too. In
fact, the choice of ζi s is tightly dependent upon the quantity
supĉ1,c2∈Ω |Σ1| and supĉ1,c2∈Ω |Σ2|, where Σ1 and Σ2 denote
the collective form of uncertainties when the control laws in
(8) and (9) are substituted into the dynamics in (18)–(21). This
would yield

ṡ1 = −ζ1 sgn(s1) − η1 s1
+Σ1(c1, ĉ1, c2, ε1, ε2, d1, d2, γ, β, µ,∆) (23)

ṡ2 = −ζ2 sgn(s2) − η2 s2
+Σ2(c1, ĉ1, c2, ε1, ε2, d1, d2, γ, β, µ,∆). (24)

It has been shown that the i-th sliding subspace is an
attractor, i.e. si ṡi < 0 is satisfied if |Σi | < ζi holds true
for i = 1, 2. In our case, the chosen values of ζi assure this
condition without provoking any undesired oscillation in the
state variables.

Finally, tests carried out with smaller values of the macro
time steps have shown that the controller performs much better
as the control interval is decreased yet this would require high
sampling rates and fast computing facilities entailing costly
hardware in practice.

For a comparison, since the functions f and g with the
nominal parameter values are computable, we consider a
Feedback Linearizing Controller (FLC).

Theorem 4.1. Let r1(t) and r2(t) be independently chosen
differentiable desired profiles for the cell mass c1(t) and the
nutrient amount c2(t), respectively. Let e1(t) := r1(t) − c1(t)
be the error in the cell mass and e2(t) := r2(t) − c2(t) be the
error in the nutrient amount. With λ1, λ2 > 0, the two control
laws describing the pure water feed rate and the substrate feed
rate given by

w(t) =
f − λ1e1(t)

c1(t)

(
1 −

c2(t)
µn

)
+

f · g − λ2e2(t)
µn

(25)

wc(t) =
c2(t)

c1(t)µn
( f − λ1e1(t)) −

f · g − λ2e2(t)
µn

(26)

force the following globally exponentially stable closed loop
dynamics

ċ1(t) = −λ1(c1(t) − r1(t)) (27)
ċ2(t) = −λ2(c2(t) − r2(t)). (28)

Proof. By direct substitution. �

Remark 2. In the above, λ1 > 0 and λ2 > 0 are the parameters
that adjust the speed of response in each state variable. Though
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Table 1
A comparison of the peak values and overshoot percentages at some particular instants of time

Time instant (t)(s) rb ra c1(tp) and Mp in SMC c1(tp) and Mp in FLC

t = 1900 0.12 0.02 −0.1020 102% −0.1020 102.0%
t = 2200 0.02 0.12 0.1932 73.2% 0.2200 100.0%
t = 2500 0.12 0.18 0.2103 50.5% 0.2565 127.5%
t = 2800 0.18 0.12 0.0633 79.1% 0.0636 79.5%

Table 2
A comparison of decoupling performances at some particular instants of time

Time instant (t)(s) e2(tp) in SMC e2(tp) in FLC

t = 2200 −0.4085 −0.6042
t = 2500 −0.1242 −0.2924

not specified in this problem setting, in practice, λ1 and λ2
are chosen according to the physical constraints such as time
constants of the process and the actuation periphery.

FLC is tested under the identical operating conditions used
with SMC. Although the tracking of the reference profiles yield
similar results at a first glance, as seen from Table 1, SMC
performs better in terms of overshoots caused by step changes
in r1(t). We define the percent overshoot value for the problem
in hand as follows

Mp =
c(tp) − ra

ra − rb
× 100% (29)

where c(tp) is the quantity of interest at the peak time denoted
by tp, which is slightly later than the instant of step change.
The value of the reference signal before the step is denoted by
rb and that after the step is ra . According to these definitions,
the computed values are summarized in Table 1.

A comparison in terms of the peak values and overshoot per-
formances indicate that SMC performs better than FLC partic-
ularly at step-up instants. When the two sets of control laws
are substituted into the system dynamics, one sees that both ap-
proaches have the goal of decoupling the cell mass dynamics
and the nutrient amount dynamics from each other. However,
the instant fluctuations observed in the nutrient amount coin-
ciding with the step-up change times in the cell mass indicate
that the two components of the reaction are not perfectly de-
coupled. Indeed, they cannot be perfectly decoupled with the
chosen forms of the control laws due to 60∆ s of control sam-
pling interval. In order to quantify the decoupling performance,
we measure the maximal deviation from the desired value of
the nutrient amount, i.e. the error e2(tp) and tabulate the results
given in Table 2. The observations with SMC emphasize that
the behavior in the nutrient amount is less sensitive to instant
changes in the cell mass response than that observed with FLC.
This conclusion is due to the fact that the values with SMC are
smaller in magnitude than the values with FLC.

Another comparison measure would be the variance of
the error signals. For this purpose, we present the results
in two tables, namely the ones concerning the whole course
of the simulation in Table 3, and the one considering only
after the reaching occurs in Table 4. Clearly the variances

Table 3
A comparison of the error variances for the whole course of the simulation

Variance In SMC In FLC

σ1
2 6.2736 × 10−5 5.4715 × 10−5

σ2
2 500 × 10−5 94.356 × 10−5

Table 4
A comparison of the error variances after hitting occurs

Variance In SMC In FLC

σ 2
1 (t ≥ 5 s) 4.9725 × 10−5 4.7582 × 10−5

σ 2
2 (t ≥ 50 s) 38.3400 × 10−5 56.3890 × 10−5

defined as σ1
2

= var{e1(t)} and σ2
2

= var{e2(t)} indicate
that FLC performs better than SMC in producing smaller
error variances including the initial transient, yet the results
considering the periods after the hitting occurs do not show a
dramatic difference.

The tabulated values of the observations with the result
visualized in Fig. 8 indicate that the tracking performance,
robustness, disturbance rejection capability and decoupling
performance are worthwhile merits of the MIMO sliding mode
controller.

5. Concluding remarks

This paper considers the MIMO sliding mode control of a
chemical process exhibiting several difficulties for achieving
and maintaining a satisfactory closed loop performance. The
challenges associated with the plant are discussed and the
derivation of a MIMO SMC is presented. The controlled
variables are the cell mass and the nutrient amount within the
tank and these variables are shown to follow desired profiles
precisely. This is analyzed thoroughly and the theoretical
claims are justified through simulations. It is observed that
the feedback loop with the designed MIMO SMC displays
insensitivity to the variations in the plant parameters, the
noise in the measured quantities and disturbances. The results
obtained with the sliding mode controller are compared with
a feedback linearizing controller and it is seen that the SMC
approach presented in this study performs better in terms of
(i) decoupling the dynamics describing the behavior of the
two state variables and (ii) smaller percent overshoot values
compared to the FLC approach.

This paper differentiates from the existing body of literature
in terms of (i) demonstrating how such a distinguishable
degree of robustness can be observed with a design based on
nominal plant dynamics, (ii) providing graphical results with
physical interpretation of the conditions that are likely to occur
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in practice, and finally (iii) postulating a fairly simple and
low cost multivariable control law based on a reaching law
approach of sliding mode control framework for a problem that
is considered a challenging control problem in the literature.
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