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Modelling and boundary control for the Burgers equation is studied in this paper. Modelling has been done via proces-
sing of numerical observations through proper orthogonal decomposition (POD) with Galerkin projection. This results
in a set of spatial basis functions together with a set of ordinary differential equations (ODEs) describing the temporal
evolution. Since the dynamics described by the Burgers equation are non-linear, the corresponding reduced-order
dynamics turn out to be non-linear. The presented analysis explains how the free boundary condition appears as a
control input in the ODEs and how controller design can be accomplished. The issues of control system synthesis are
discussed from the point of practicality, performance and robustness. The numerical results obtained are in good
compliance with the theoretical claims. A comparison of various different approaches is presented.

1. Introduction

An important problem in the aerospace community

is closed-loop aerodynamic flow control. The underlying

physical system is governed by Navier–Stokes equa-

tions. The efforts towards understanding the behaviour

of such systems have already started with simpler

systems, e.g. the Burgers equation, a one-dimensional

‘cartoon’ of Navier–Stokes equations. The reason for

this is the fact that the Burgers equation provides the

same kind of non-linearity but without turbulence. The

difficulty here is the infinite dimensionality, due to which

the classical approaches of the control theory are

difficult to apply directly. The Burgers equation has

previously been considered for modelling and control

design purposes (Krstić 1999, Liu and Krstić 2000,

2001, Vedantham 2000, Burns et al. 2002 a,b, Hinze and

Volkwein 2002, Park and Jang 2002, Efe and Özbay

2003 a). This paper approaches the modelling and control

problem from a control specialist’s point of view, i.e. a

suitable model reduction followed by a controller design

under the presence of several performance metrics, such

as settling time and percent overshoot.

Modelling and control of such a system contains

three major issues that need to be studied carefully.

The first issue is the modelling, i.e. collecting the repre-

sentative data and exploiting several techniques to come

up with a set of ODEs. The second issue is to separate

the effect of external stimuli from the other terms by
using the boundary conditions. The third issue is to
design a controller that meets a set of prescribed per-
formance criteria. The process is continuous over a
physical domain (O), the boundaries of which are the
possible entries of external stimuli. Choosing an ade-
quately dense grid, say Od , lets us obtain a finite size
representation of the process uðx, tÞ over Od . When
the content of the observed data, say uðx, tÞ, is
decomposed into spatial and temporal constituents
(uðx, tÞ � hFðxÞ,�ðtÞiOd

), the essence of spatial behaviour
appears as a set of spatially varying gains
(FðxÞ ¼ fF1ðxÞ,F2ðxÞ, . . . ,FRL

ðxÞg), and the essence of
temporal evolution, �ðtÞ, appears as the solution of a
set of ODEs obtained after utilizing the orthogonality
properties of the spatial basis functions. Having this
picture in front of us, the closed-loop control goal is
to observe a predefined behaviour at a set of physical
locations by altering the boundary condition(s)
appropriately.

When the low dimensional modelling issue is taken
into consideration, proper orthogonal decomposition
(POD), or singular value decomposition (SVD) in coop-
eration with Galerkin projection are the popular
approaches utilized frequently in the literature (see
Ravindran 2000, Ly and Tran 2001, Singh et al. 2001,
Efe and Özbay 2003 a, b) and the references therein). In
Gugercin and Antoulas (2000), a good comparison of
model reduction techniques is presented. The decom-
position based methods use a library of solutions from
the process, and separate the content of the data in such
a way that the spatial components (basis functions) dis-
play certain orthogonality properties and the temporal
components synthesize the time evolution over those
spatial basis functions. The decomposition yields mean-
ingful information as long as the data contains coherent
modes. One has to know that the result of POD or SVD
schemes will be a set of basis functions accompanied by
a set of autonomous ODEs.
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The next issue, which is the separation of boundary
condition(s) (or the control input(s)) from the remaining
terms, is a key step. For example Krstić describes a
neatly selected Lyapunov function, and the expression
in its time derivative enables us to apply integration
by parts, then the boundary condition emerges in an
explicit manner (Krstić 1999). Although the approach
lets the designer manipulate Dirichlét and Neumann
type boundary conditions on the Burgers equation, it
is still tedious to follow the same procedure for more
complicated PDEs. This can be because of the high
dimensionality of the partial differential equation
(PDE) in particular, and difficulty in finding an appro-
priate Lyapunov function in general. Therefore, utilizing
the numerical techniques is a practical alternative to
describe reduced-order models for complicated systems
of PDEs. A key contribution of this paper is to explain
how the issue of control separation is handled in
numerical data based modelling approaches.

The third stage is the design of a suitable controller.
In Hinze and Volkwein (2002), a receding horizon opti-
mal control approach is studied for the Burgers equa-
tion with control input explicitly available in the PDE.
The works presented by Burns et al. (2002 a,b) demon-
strate the stabilization by feedback control. More expli-
citly, if uðx, tÞ is the variable of interest, a control signal
of the form �ðtÞ ¼ �

R
x2� kðxÞuðx, tÞ dx is suggested in

Burns et al. (2002 a,b) to minimize a particularly defined
quadratic cost function. In Efe and Özbay (2003 a,b), it
is discussed that an integral controller of the form �ðtÞ ¼
KiðxmÞ

R t
0 ðud ðxm, �Þ � uðxm, �ÞÞ d�, can be obtained upon

linearization. The aim is the tracking based on the feed-
back signal obtained from a given measurement point
xm. The way in which the gain KiðxmÞ is selected is based
on the gain margin analysis, yet the model in Efe and
Özbay (2003 a,b) is valid only for low frequencies. This
restricts the operating conditions to low frequencies.
This problem is addressed in the present paper.

An alternative approach to the design of an opti-
mal controller for the Burgers equation is presented in
Vedantham (2000). This reference demonstrates the
Cole–Hopf transformation to obtain a linear diffusion
type problem. The drawback of this approach is two-
fold: first it converts the cost function into a relatively
complicated equivalent one; second, the applicability of
the technique is highly dependent on the structure of the
governing PDE. For this reason, approaches such as the
one in Park and Jang (2002) are developed to extract
valuable information from numerical data. A quadratic
cost function is defined and the process of minimization
is achieved through the conjugate gradient method. In
Liu and Krstić (2000), backstepping control is presented
with the assumption that actuators are available at
the boundaries. In Liu and Krstić (2001), the viscosity
coefficient is assumed to be unknown, and an adaptive

control scheme has been presented particularly for the
Burgers equation.

Aside from the several novelties highlighted above,
the motivation of this paper is to draw a clear path
between a given PDE system and closed-loop controller
design alternatives. With this in mind, the paper is
organized as follows. The second section presents briefly
the POD technique and its relevance to the modelling
strategy. In the third section, development of the
reduced-order model for the Burgers equation is ana-
lysed. Section 4 demonstrates the modelling issues with
an example. The fifth section presents the design of con-
trollers, and simulation results. In the sixth section, a
short discussion on the relationship with flow control
is presented. Concluding remarks are given at the end
of the paper.

2. Proper orthogonal decomposition

Consider the ensemble UiðxÞ, i ¼ 1, 2, . . . ,Ns, where
Ns is the number of elements. Every element of this set
corresponds to a snapshot observed from a process, say
for example, the one-dimensional Burgers equation

utðx, tÞ ¼ �uxxðx, tÞ � uðx, tÞuxðx, tÞ ð1Þ

where � is a known constant, and the subscripts x and t
refer to the partial differentiation with respect to x and
time, respectively. The continuous time process takes
place over the physical domain O :¼ fx j x 2 ½0, 1�g and
the solution is obtained on a grid denoted by Od , which
describes the coordinates of the pixels of every snapshot
in the ensemble.

The goal is to find an orthonormal basis set letting us
write the solution as

uðx, tÞ � ûuðx, tÞ ¼
XRL

i¼1

�iðtÞFiðxÞ ð2Þ

where �iðtÞ is the temporal part, FiðxÞ is the spatial part,
ûuðx, tÞ is the finite element approximate of the infinite
dimensional PDE and RL is the number of independent
basis functions that can be synthesized from the given
ensemble, or equivalently that spans the space described
by the ensemble. It will later be clear that if the basis set
fFiðxÞg

RL

i¼1 is an orthonormal set, then the modelling task
can exploit the Galerkin projection technique.

Let us summarize the POD procedure.

Step 1. Start calculating the Ns�Ns dimensional corre-
lation matrix L, the ðijÞth entry of which is
Lij :¼ hUi,UjiOd

, where h:, :iOd
is the inner

product operator defined over the chosen spatial
grid Od .

Step 2. Find the eigenvectors (denoted by vi) and the
associated eigenvalues (�i) of the matrix L.
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Sort them in descending order in terms of the
magnitudes of �i. Note that every vi is an Ns � 1
dimensional vector satisfying vTi vi ¼ 1=�i. Here,
for simplicity of the exposition, we assume that
the eigenvalues are distinct.

Step 3. Construct the basis set by using

FiðxÞ ¼
XNs

j¼1

vijUjðxÞ ð3Þ

where vij is the jth entry of the eigenvector vi,
and i ¼ 1, 2, . . . ,RL, where RL ¼ rankðLÞ. It
can be shown that hFiðxÞ,FjðxÞiOd

¼ �ij with
�ij being the Kronecker delta function. Notice
that the basis functions are admixtures of the
snapshots (Ly and Tran 2001, Efe and Özbay
2003 b).

Step 4. Calculate the temporal coefficients. Taking the
inner product of both sides of (2) with FiðxÞ, the
orthonormality property leads to

�iðt0Þ ¼ hFiðxÞ, ûuðx, t0ÞiOd
� hFiðxÞ,Ut0iOd

: ð4Þ

Without loss of generality, an element of the ensem-
ble fUiðxÞg

Ns

i¼1 may be Uðx, t0Þ. Therefore, in order to
generate the temporal gain, �kðtÞ, of the spatial basis
FkðxÞ, one would take the inner product of FkðxÞ with
the elements of the ensemble as given below:

hU1ðxÞ,FkðxÞiOd
� �kðt1Þ

hU2ðxÞ,FkðxÞiOd
� �kðt2Þ

..

.

hUNs
ðxÞ,FkðxÞiOd

� �kðtNs
Þ: ð5Þ

Note that the temporal coefficients satisfy orthogo-
nality properties over the discrete set t 2 ft1, t2, . . . , tNs

g

(see (6)). For a more detailed discussion on the POD
method, the reader is referred to (Ravindran 2000, Ly
and Tran 2001, Singh et al. 2002, Efe and Özbay 2003 b)
and the references therein

XNs

i¼1

hUiðxÞ,FkðxÞi
2
Od

�
XNs

i¼1

�2
i ðtiÞ ¼ �k: ð6Þ

Standing Assumption: The majority of works dealing
with POD and model reduction applications presume
that the flow is dominated by coherent modes and
the quantities on both sides of uðx, tÞ and ûuðx, tÞ are
indistinguishable (Ravindran 2000, Ly and Tran 2001,
Singh et al. 2002, Efe and Özbay 2003 a,b). Because
of the dominance of coherent modes, the typical
spread of the eigenvalues of the correlation matrix

turns out to be logarithmic and the terms decay very
rapidly in magnitude. This fact further enables us to
assume that a reduced-order representation, say with
M modes (M � minðRL,NsÞ) can also be written as an
equality

ûuðx, tÞ ¼
XM
i¼1

�iðtÞFiðxÞ; ð7Þ

and the reduced-order model is derived under the
assumption that (7) satisfies the governing PDE.
Unsurprisingly, such an assumption results in a model
having uncertainties. However, one should keep in mind
that the goal is to find a model, which matches the infi-
nite dimensional system in some sense of approximation
with typically M � RL � Ns. To represent how good
such an expansion is, a percent energy measure is
defined as

E ¼ 100

PM
i¼1 �iPRL

i¼1 �i
ð8Þ

where the tendency of E ! 100% means that the model
captures the dynamical information contained in the
snapshots well. Conversely, an insufficient model will
be obtained if E is far below 100%. In the next section,
we demonstrate how the boundary condition is trans-
formed to an explicit control input in the ODEs.

3. Low dimensional modelling of Burgers system

In this section, we apply the POD technique to the
viscous Burgers equation described by

utðx, tÞ ¼ �uxxðx, tÞ � uðx, tÞuxðx, tÞ ð9Þ

where �¼ 4 is a known process parameter, x 2 O and
O ¼ ½0, 1�. The problem is specified with the initial con-
dition uðx, 0Þ ¼ 0 8x, the homogeneous boundary condi-
tion at x¼ 0 as uð0, tÞ ¼ 0 and Dirichlét boundary
condition at x¼ 1 as uð1, tÞ ¼ �ðtÞ, where �ðtÞ is the
free external input (boundary condition, or the control
input) of the system. Since the POD scheme yields
the decomposition in (2), according to the standing
assumption, inserting ûu in the place of u in (9) results in

XM
i¼1

_��iðtÞFiðxÞ ¼
XM
i¼1

�iðtÞ�
@2FiðxÞ

@x2

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞFiðxÞ
@FjðxÞ

@x

 !
: ð10Þ

Taking the inner product of both sides of (10) with
FkðxÞ, which corresponds to the Galerkin projection,
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results in the equality in (11)

_��kðtÞ ¼
XM
i¼1

�iðtÞ�hFkðxÞ, �iðxÞiOd

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞhFkðxÞ,FiðxÞ�jðxÞiOd

 !
ð11Þ

where �iðxÞ :¼ @2FiðxÞ=@x
2 and �iðxÞ :¼ @FiðxÞ=@x. As

mentioned earlier, the effects of the external stimulus

are implicit in the above equation. For this reason,

choose the grid O�
d :¼ fx jx 2

SS�2
i¼0 ði�xÞg, where S is

the number of grid points considered for the numerical

solution satisfying ðS � 1Þ�x ¼ 1. Clearly, O�
d

S
1 	

Od , or equivalently the boundary @Od :¼ fx j x ¼ 1g.

According to these definitions, h f ðxÞ, gðxÞiO ¼ h f ðxÞ,

gðxÞi�d
¼ h1=Nsif ðxÞ

TgðxÞ, where the column vector x

contains the elements of Od in ascending order. In a

similar fashion, one can define x� as the column vector

containing the elements of O�
d in the same way. Taking

the above partitioning into account, and rewriting (11)

yields

Ns _��kðtÞ ¼
XM
i¼1

�iðtÞ�F
T
kðxÞ�iðxÞ

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞF
T
k ðxÞðFiðxÞ ? �jðxÞÞ

 !

¼
XM
i¼1

�iðtÞ�F
T
kðx

�
Þ�iðx

�
Þ þ

XM
i¼1

�iðtÞ�Fkð1Þ�ið1Þ

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞF
T
kðx

�
ÞðFiðx

�
Þ ? �jðx

�
ÞÞ

 !

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞFkð1ÞFið1Þ�jð1Þ

 !
ð12Þ

where ? denotes the elementwise product operator.

Since the external inputs are not seen explicitly in

(12), in what follows, the terms will be manipulated

such that the two dynamics, namely the one entered

directly with the boundary condition and the one gov-

erned by the PDE along the spatial direction, are sepa-

rated properly. The driving point is to notice that the

solution in (7) must be satisfied at the boundaries as

well. This gives the information

uð1, tÞ ¼ �ðtÞ ¼
XM
i¼1

�iðtÞFið1Þ: ð13Þ

Or �kðtÞFkð1Þ ¼ �ðtÞ �
PM

i¼1 ð1� �ikÞ�iðtÞFið1Þ. Inserting
this into the second summation in (12) yields

XM
i¼1

�iðtÞ�Fkð1Þ�ið1Þ

¼ �kðtÞ�Fkð1Þ�kð1Þ þ
XM
i¼1

ð1� �ikÞ�iðtÞFkð1Þ�ið1Þ

¼ �ðtÞ��kð1Þ þ
XM
i¼1

�iðtÞ�ðFkð1Þ�ið1Þ �Fið1Þ�kð1ÞÞ: ð14Þ

Similarly, considering (13) for the last term of (12), we
can perform the rearrangement

XM
i¼1

XM
j¼1

�iðtÞ�jðtÞFkð1ÞFið1Þ�jð1Þ

¼ Fkð1Þ
XM
i¼1

�iðtÞFið1Þ
XM
j¼1

�jðtÞ�jð1Þ

¼ Fkð1Þ�ðtÞ
XM
j¼1

�jðtÞ�jð1Þ: ð15Þ

Summing up the four terms of (12) results in

Ns _��kðtÞ ¼
XM
i¼1

�iðtÞ�F
T
kðx

�
Þ�iðx

�
Þ

 !
þ �ðtÞ��kð1Þ

þ
XM
i¼1

�iðtÞ� Fkð1Þ�ið1Þ � Fið1Þ�kð1Þð Þ

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞF
T
kðx

�
ÞðFiðx

�
Þ ? �jðx

�
ÞÞ

 !

� Fkð1Þ�ðtÞ
XM
j¼1

�jðtÞ�jð1Þ

 !

¼
XM
i¼1

�iðtÞ�ðF
T
kðxÞ�iðxÞ � Fið1Þ�kð1ÞÞ

 !

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞF
T
kðx

�
ÞðFiðx

�
Þ ? �jðx

�
ÞÞ

 !

þ ��kð1Þ � Fkð1Þ
XM
j¼1

�jðtÞ�jð1Þ

 !
�ðtÞ: ð16Þ

Defining the state vector as � ¼ ð�1 �2 
 
 
 �MÞ
T, it

becomes obvious that the above model implies the
following dynamical system for temporal components
of the POD

_�� ¼ A�� Cð�Þ þ ðB�D�Þ� ð17Þ
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where A,D 2 <
M�M and B,C 2 <

M . We have

ðAÞki ¼
1

Ns

� FT
kðxÞ�iðxÞ � Fið1Þ�kð1Þ

� �
ð18Þ

Cð�Þ ¼ �TC1� �TC2� 
 
 
 �TCM�
� �T

ð19Þ

where ðCkÞij ¼ ð1=NsÞF
T
k ðx

�
ÞðFiðx

�
Þ ? �jðx

�
ÞÞ

ðBÞk ¼
1

Ns

��kð1Þ ð20Þ

and

ðDÞki ¼
1

Ns

�ið1ÞFkð1Þ ð21Þ

with �ð0Þ ¼ 0. In the next section, the issues of model-
ling are discussed with numerical results.

4. Modelling results

In this section, we discuss the important issues in the
modelling phase and demonstrate that the developed
model performs well under the chosen conditions. In the
model derivation stage, we chose �¼ 4 and collected
the snapshots according to the following procedure:
the end time is 1 sec and the time step is 1msec, i.e. we
have 1001 snapshots at each solution trial, and the nth
trial is performed with uðx, 0Þ ¼ 0, uð0, tÞ ¼ 0,

uð1, tÞ ¼ �ðtÞ ¼ sin 2	
2n� 1

1:024
t

� �

where n ¼ 1, 2, . . . , 101. Such a boundary excitation
scheme covers frequencies approximately up to 196
Hz. The snapshot collection scheme linearly samples
ten snapshots from each trial to build up the ensemble
of snapshots, fUiðxÞg

Ns

i¼1. During this procedure, the
Crank–Nicholson method is used as the numerical sol-
ver with S¼ 100 spatial grid points, i.e. �x ¼ 1=99
(Farlow 1993). Running this kind of boundary regime
excites a reasonably large number of dynamical consti-
tuents of the Burgers system. In Efe and Özbay (2003 b),
the locality of the POD models has been emphasized and
this problem is alleviated by maintaining the spectral
diversity in the snapshots. In other words, executing the
above-described experiments gives us a model capturing
those frequencies to some extent. Nevertheless, reli-
ability of the resulting dynamical model should be
viewed as a decreasing quantity as the operating con-
ditions become dissimilar from the model generation
conditions.

The simulations have shown that for M<5, the
energy content is insufficient to rebuild the numerical
data. On the other hand, for M>7, the basis functions
are steeper and numerical differentiation errors become
significant. For this reason, we set M¼ 5, which cap-
tures E ¼ 99:9875% of the total energy. One should
note that the application of the above-described pro-

cedure gives us the terms seen in (17) as well as the
basis functions of the output equation in (7). Our
expectation is to have a good match between the
response to a test signal obtained from the numerical
solver and from the dynamical system. For this purpose,
we choose a chirp signal added to a 10Hz sinusoid given
by (22) and illustrate the relevant subdomain of fast
Fourier transform (FFT) magnitude components in
figure 1. It should be visible that the chosen signal con-
tains an admissible spectral richness to validate that the
model works appropriately nearly below 200Hz. It has a
distinguishable low frequency component to excite the
diffusion term �uxx, where the larger the � the more
diffusive the behaviour along the x-direction

�ðtÞ ¼ sinð2	150ð1� tÞtÞ

þ sinð2	10tÞ for 0 � t � 1:023 sec: ð22Þ

In order to obtain the � values of the numerical solu-
tion, we applied the POD scheme with linearly sampled
256 snapshots out of 1024. The original � values and
those obtained from the dynamical model have been
illustrated in figure 2. The subplots in the first column
depict the original and reconstructed signals together,
whereas the second column illustrates the difference
between them. The results here suggest that the dynam-
ically important modes are synthesized precisely,
whereas the modes having higher indices are not. Since
the latter modes have little effect on the overall result,
any mismatch after the third mode seems tolerable.
The mean squared error over 102 400 points (due to
(22), 1024 points along time, and S¼ 100 points along
the spatial direction) has the value 0.0148, which is quite
reasonable to utilize this model for control system
design purposes. A comparison of the numerical and
approximate solutions is depicted in figure 3.

5. Controller design

Design of a suitable feedback controller for the
plant, whose dynamics are governed by the Burgers
equation, is discussed in this section. We start with a
simple controller, namely the one based on Ziegler–
Nichols PID tuning using the step response method.
The design of this does not necessitate the reduced-
order model, yet at the fine tuning stage, the information
contained in the basis functions helps significantly. The
second one is based on the linearization of the reduced-
order model around u¼ 0 or equivalently �¼ 0. At the
controller design stage, we consider the local system
obtained for xm ¼ 0:5 and design a root-locus based
controller. Then the fine tuning is performed to
meet the performance specifications uniformly over
the spatial domain. The third scheme is based on
the expert knowledge. A fuzzy controller admitting the
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measurement point (x¼ xm) and the error as the inputs
and outputting _��ðtÞ is constructed. Again, the hidden
spatial implications in fFiðxÞg

RL

i¼1 have been exploited.
The controller is operated non-adaptively to provide a

fair comparison between the three approaches. In all
three cases, once the design is completed, the tests are
carried out on the embedded finite element Burgers
equation solver in Matlab/Simulink environment.
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Figure 2. Obtained temporal information and the basis set.
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5.1. A Ziegler–Nichols based PI controller

Due to their widespread use, it is a natural starting
point to perform the first trials with a PID type con-
troller. In this subsection, we follow the step response
method for a PI controller. Since the derivative action
introduces undesired effects particularly for noisy observ-
ations, we omit the derivative action and apply a unit
step signal from x¼ 1 and choose a measurement point
x¼ xm. According to the procedure described by
Aström and Hägglund (1995), the point at which the
slope is maximum is found. The tangent line is drawn
and the intersection of this line with the horizontal axis
is determined. The distance between this point and the
origin is denoted by ‘ðxmÞ. The tangent line is further
drawn to observe the intersection with the vertical axis.
The distance between the intersection point and the origin
is called a(xm). According to this, defining eðxm, tÞ as the
discrepancy between a desired signal and uðxm, tÞ, the con-
troller is �ðtÞ ¼ KpðxmÞeðxm, tÞ þ KiðxmÞ

R t
0 eðxm, 
Þd
 and

its gains are given by

KpðxmÞ ¼
0:9

aðxmÞ
and KiðxmÞ ¼

0:3

aðxmÞ‘ðxmÞ
: ð23Þ

This formulation clearly implies that the controller
gains are functions of xm. Repeating this procedure for
all the nodes considered in the spatial grid, one may
have a biased initial selection for the controller gains
for every xm 2 ½0, 1�.

Apparently, the design presented so far is not
involved with the information provided by the low
dimensional modelling effort, but the vector norm of
the basis functions guides the designer in fine-tuning of
the gains in (23). In what follows, it will be clear that the
vector norm is a good indicator of how the instanta-
neous power of �ðtÞ spreads over the spatial direction.
For this purpose define the instantaneous power of �ðtÞ
(or equivalently uð1, tÞ) as

Pð1, tÞ :¼
1

2
�ðtÞ2 ¼

1

2

XM
i¼1

�iðtÞFið1Þ

 !2

ð24Þ

and that of uðxm, tÞ as

Pðxm, tÞ :¼
1

2
uðxm, tÞ

2
¼

1

2

XM
i¼1

�iðtÞFiðxmÞ

 !2

: ð25Þ

Utilizing these quantities, one can define a power trans-
fer ratio as given in (26)

Tðxm, tÞ :¼
Pðxm, tÞ

Pð1, tÞ
¼

�ðtÞTCðxmÞCðxmÞ
T�ðtÞ

�ðtÞTCð1ÞCð1ÞT�ðtÞ
ð26Þ

where CðxmÞ :¼ ðF1ðxmÞ F2ðxmÞ 
 
 
 FMðxmÞÞ
T.

Clearly, when the time is frozen, the above expression
puts an upper bound to the power that can be

transferred from boundary input to the spatial location
x¼ xm. The maximum value can be given as

Tðxm, tÞ �
k�ðtÞk22�maxfCðxmÞCðxmÞ

T
g

�ðtÞTCð1ÞCð1ÞT�ðtÞ

¼
k�ðtÞk22CðxmÞ

TCðxmÞ

�ðtÞTCð1ÞCð1ÞT�ðtÞ

¼
k�ðtÞk22

�ðtÞTðCð1ÞCð1ÞT=Cð1ÞTCð1ÞÞ�ðtÞ

 !

�
CðxmÞ

TCðxmÞ

Cð1ÞTCð1Þ

� �
¼ FðtÞKnðxmÞ: ð27Þ

The interpretation of the last expression is interest-
ing: no matter what the instantaneous power of the
boundary input is, its distribution over O is managed
by the basis functions. The function Kn(xm) is close to
unity if the feedback is obtained from nodes close to the
x¼ 1 boundary. On the other hand, it decreases as xm
gets closer to the x¼ 0 boundary, at which Knð0Þ ¼ 0.
The information contained in Kn(xm) lets us use a con-
troller globally as it has a normalization effect on the
spatial distribution of power. In other words, before
performing the fine tuning of the controller gains, one
should modify (23) to

KpðxmÞ ¼ K�1
n ðxmÞ

0:9

aðxmÞ

and KiðxmÞ ¼ K�1
n ðxmÞ

0:3

aðxmÞ‘ðxmÞ
: ð28Þ

It can now be claimed that the PI controller gains are
valid on O and are ready for fine tuning. We choose the
signal udðxm, tÞ ¼ signðsinð2	ftÞÞ as the reference signal
to be tracked at x¼ xm. In order to test the designed
controller, we embedded the Crank–Nicholson PDE
solver into the Matlab/Simulink environment which
lets us maintain realistic test conditions. We chose
f ¼ 0:2Hz and ended up with final gains given in (29)
and the results given in the second column of table 1:

KpðxmÞ ¼ 0:001K�1
n ðxmÞ

0:9

aðxmÞ

and KiðxmÞ ¼ 0:01K�1
n ðxmÞ

0:3

aðxmÞ‘ðxmÞ
: ð29Þ

In order to see the robustness against load disturb-
ances, we have applied the signal shown at the left
subplot of figure 4 at the control input. In the right
subplot of figure 4, the behaviour of K�1

n ðxmÞ is demon-
strated. The trend suggests that observing a desired
behaviour is possible with relatively smaller control
effort as xm approaches 1-boundary. Conversely, enfor-
cing the same task will necessitate a higher control effort
if xm is close to 0-boundary.
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As highlighted by Aström and Hägglund (1995), and
as seen from the comparison of (28) and (29), the step

response method overestimates the parameters of the

controller gains. As an alternative method, it is recom-

mended to utilize frequency response methods, yet,
since the system considered is a non-linear one, those

approaches are therefore not applicable. For a better

transient behaviour, one should figure out the internal
dynamical composition of the system at hand. The next

section presents the controller design problem from the

root-locus point of view, which lets us modify the modal
components of the response.

5.2. A root-locus based controller

In this section, we design a root-locus based control-
ler for the system

_��ðtÞ ¼ A�ðtÞ þ B�ðtÞ

ûuðxm, tÞ ¼ CðxmÞ
T�ðtÞ ð30Þ

Ziegler–Nichols Based PI Root locus Fuzzy logic

Region of validity x-min 0.10 0.15 0.15

Region of validity x-max 0.99 0.99 0.99

2% Settling time at x¼ 0.2 (ud¼ 1) 0.274 sec 0.487 sec 0.095 sec

2% Settling time at x¼ 0.9 (ud¼ 1) 0.134 sec 0.354 sec 0.032 sec

Overshoot at x¼ 0.2, positive step at t¼ 0 0% (well-damped) 0% (well-damped) 0.04%

Overshoot at x¼ 0.9, positive step at t¼ 0 0% (well-damped) 0% (well-damped) 3.21%

Overshoot at x¼ 0.2, negative step at t¼ 0 0% (well-damped) 0% (well-damped) 33.48%

Overshoot at x¼ 0.9, negative step at t¼ 0 0% (well-damped) 0% (well-damped) 0.36%

Overall disturbance rejection at x¼ 0.2 Average Very good Very good

Overall disturbance rejection at x¼ 0.9 Average Very good Very good

Ringing during transitions Low High Medium

Practicality (computational simplicity) High Medium Medium

Interpretability (understandability) Medium Low High

Table 1. A comparison of the results.

Figure 3. Numerical and approximate solutions.
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which can be obtained upon linearization of the
dynamics in (17) around �¼ 0. We consider xm ¼ 0:5
and design a controller such that percent overshoot
is less than 4% and settling time is less than 0.1 sec.
The transfer function is

GðsÞjxm¼0:5

¼�80:1153
ðs�220:3Þðsþ171:9Þðs2�261:7sþ1:716e5Þ

ðsþ234:7Þðsþ106:6Þðsþ19:08Þðs2þ259:1sþ2:195e6Þ

ð31Þ

and the controller is

Hðxm, sÞ

¼KHðxmÞ
ðsþ 19:08Þðs2 þ 145:7sþ 9494Þðs2þ 258:7sþ 2:194e6Þ

sðsþ 191:6Þðsþ 162:5Þðs2 þ 533:9sþ 7:175e4Þ

ð32Þ

where KHð0:5Þ ffi 0:323. According to the specifications,
the best performance has been obtained with adding a
pole at s¼ 0, and cancelling several stable poles of the
plant and adding new poles in such a way that the above
criteria are met at a simultaneously good level. The
linear system settles down in 0.128 sec but the non-linear
system, as table 1 indicates, has a longer time to settle
down. The fine-tuned controller gain is given as

KHðxmÞ ¼ 0:075K�1
n ðxmÞ: ð33Þ

In figure 5, we depict the overall shape of the locus,
and the dominant poles are depicted in figure 6. The
design specifications are depicted as fade-out lines and
the chosen configuration is good enough to try with the
non-linear system, i.e. the embedded numerical solver.

We further investigated the behaviour of the Nyquist
plot for the xm ¼ 0:5 case and justified that it has very
good stability and robustness margins. Due to the space
limitations, this is skipped. One should note that the
system in (31) is complicated enough and so is the con-
troller (see (32)). This is a visible difficulty to follow
a rigorous design approach. Instead of this, we followed
a trial-and-error based strategy to place the necessary
controller poles and zeros so that the dominant dyna-
mics approach the desired one.

5.3. A non-adaptive fuzzy controller

The design experience one gains through the PI con-
troller and root locus based controller design examples
contains a good expert knowledge about the controller.
A very rough look at the results shows that an integral
action is required to make the open-loop system Type-1.
We adopt a fuzzy gain scheduling mechanism here,
and depending on the value of the error signal and the
measurement location (xm), we set the gain of a pure
integral controller.

The triangular membership functions are used at the
fuzzification stage. These are described as:

�N ðeÞ ¼ maxð0,minð1,� 5eÞÞ

�ZðeÞ ¼ maxð0,minð5ðeþ 0:2Þ, 5ð�eþ 0:2ÞÞÞ

�PðeÞ ¼ maxð0,minð1, 5eÞÞ

�LðxmÞ ¼ maxð0,minð1,� 2xm þ 1ÞÞ

�MðxmÞ ¼ maxð0,minð2xm,� 2xm þ 2ÞÞ

�HðxmÞ ¼ maxð0,minð1, 2xm � 1ÞÞ

9>>>>>>>>>=
>>>>>>>>>;

ð34Þ
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Figure 4. Desired trajectory and the load disturbance (left), function K�1

n ðxmÞ (right).
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where eðxm, tÞ ¼ ud ðxm, tÞ � uðxm, tÞ and N , Z, P, L, M,

and H stand for the linguistic labels negative, zero, posi-

tive, low, medium and high, respectively. The param-

eterization of the above membership functions has

been performed by trial and error. The membership

functions are organized symmetrically with respect to

the centre point of the relevant domain, and the value

of the sum of them at every point in the domain is unity.

Having this picture in front of us, it can fairly be claimed

that the choices made at this subsection are absolutely

up to what the designer expects. If the operating

conditions are too demanding, one may increase the

resolution of fuzziness by increasing the number of

rules, thereby ending up with some extra computational

burden. Furthermore, one may of course improve the

fuzzy decision mechanism with an adaptive one yet the

goal of this paper is not to prove how superior the fuzzy

control schemes are, rather, the goal is to exploit the

experience to get an expert control system.

The fuzzy controller used here runs the algebraic

product inference mechanism and weighted sum (or

equivalently the weighted average due to the fact

mentioned above) defuzzification scheme. The defuzzi-

fier has the singletons, which are described in table 2.

The rule structure is clearly like IF e is Ze
r AND xm is

Zr
xm

THEN � ¼ �r, where r is the rule number, � is the

conclusion, �r is the conclusion value for the rth rule

(see table 2), and Ze and Zxm
are the linguistic labels
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Figure 5. Complete view of the root locus of Hð0:5, sÞGðsÞ for xm ¼ 0:5.
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Figure 6. Zoomed view of the root locus of Hð0:5, sÞGðsÞ for xm ¼ 0:5.
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quantifying e and xm, respectively. For a detailed
discussion on fuzzy logic and fuzzy controllers, the
reader is referred to Jang et al. (1997) and Passino and
Yurkovich (1998) and references therein.

The same input and disturbance signals have been
used in the simulations and the third column of table 1
is filled out. Depending on the priorities of an infinite
dimensional control problem, several entries determine
the overall cost dominantly. We believe that table 1
conveys adequately informative knowledge to a control
specialist.

Lastly in this section, we mention why we confined
ourselves to these three approaches only. When the
output equation (7) is rewritten as

_̂uûuuðxm, tÞ ¼ CT
ðxmÞ A�ðtÞ � Cð�ðtÞÞð Þ

þCT
ðxmÞ B�D�ðtÞð Þ�ðtÞ ð35Þ

the low-order model exhibits orthogonality in between
the vectors CðxmÞ and �ðtÞ for some t and xm values.
This clearly means that the control signal �ðtÞ has no
effect on the output dynamics of the low dimensional
model at those (t, xm) pairs. Just to exemplify, design
of feedback linearization or variable structure control
techniques based on the low dimensional model would
be potentially dangerous from the stability point of
view. For this reason, we followed methods that do
not require inversion of such potentially dangerous
terms and that utilize input/output readings only.

As an overall assessment, since the procedure
described here is based on the numerical observations
obtained from a process, one should see that the
approaches discussed in this paper can enjoy a variety
of PDE systems that are currently being researched.
From this point of view, it is our understanding that
the overall feasibility is quite promising.

6. Relationship with flow control

This paper is related to the notion of flow control
in such a way that it describes a way to obtain a repre-
sentative dynamic model, and demonstrates that the
well-known techniques are straightforward to apply
afterwards. The authors’ primary goal is to apply these
techniques to the real-time cavity flow control problem.
A detailed discussion on this matter describing the
available experimental facility, modelling efforts and

the most recent results can be found in Samimy et al.
(2004) and the references therein. Briefly, after collecting
a set of snapshots, the POD technique is to be applied
and the control separation technique presented here will
be exploited for building the dynamic model. If necess-
ary, interpolation techniques for local models will be
investigated. Next, the boundary control techniques
and the associated performances will be assessed.

Although the model reduction by POD is one alter-
native towards modelling, there are other alternatives
for the same purpose (see, e.g. Gugercin and Antoulas
2000, Baramov et al. 2002 a,b, Lassaux and Willcox
2003 and references therein). Likewise, once the model
is developed, it is possible to utilize quadratic optimal
control techniques (Bewley 2001, Ravindran 2000, Ly
and Tran 2001), H1 control (Baramov et al. 2002 a,b)
and the techniques presented here. It is noteworthy to
emphasize that a significant amount of reported flow
control studies deal with the optimality due to the
state disturbances and measurement noise; and robust-
ness against dynamics that are lost upon model reduc-
tion. Parallel to the literature, this paper assesses
the results from a set of performance measures and
describes the way to implement such techniques in
real-time. The contribution of the research presented
in this paper is to develop a useful model with an explicit
control input (boundary excitations), and to establish
a link between the classical finite dimensional tools
of control theory and infinite dimensional systems
in general, and aerodynamic cavity flows in particular.
In doing this, we figure out how the power transfer
ratio normalizes the controller gains. In all stages,
the practical implementability has been the central point
as our ultimate goal is to apply these approaches in
real time.

7. Conclusions

It is a well-known fact that the modelling is a core
issue in all control system design problems. Particularly
for systems having spatial continuum, the dynamics
are governed by PDEs and the standard tools of classi-
cal control theory are very difficult to apply directly.
In such instances, one strategy is the reduce-then-design
approach that is adopted in this paper. As a test
example, the Burgers equation is chosen in one dimen-
sion, and its solutions under various boundary regimes
have been decomposed into its dominant components.
This is achieved by a successful application of the POD
technique. This yields a set of orthonormal basis func-
tions that enables us to devise the autonomous model.
One important contribution of this paper is to clarify
how the design can proceed from the available
autonomous model to a model having the control
input(s) explicitly. Having obtained the dynamical

e is N e is Z e is P

x is L �100 0 20

x is M �70 0 80

x is H �50 0 150

Table 2. Fuzzy rule base and defuzzifier parameters.
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model, three controller design alternatives have been
considered: Ziegler–Nichols based PI controller, root-
locus based controller and a fuzzy logic controller. A
power transfer ratio concept is developed to describe
how the power of the boundary signal is distributed
over the physical domain, and how this information can
be used to generalize controllers devised for a single point.

The results obtained have shown that all three
approaches are successful depending on what the
designer’s priorities are. The PI controller is simple,
valid on a comparably larger domain and highly prac-
tical. The root-locus based controller performs very well
in terms of rejecting the disturbances. These two appro-
aches result in minimal overshoot, which is a very
desirable objective. The fuzzy logic controller is very
promising in terms of settling time, interpretability
and disturbance rejection, but it comes with some over-
shoot. This set of overall assessment items demonstrates
that the application of any of them will come with a
tradeoff.

Finally, it should be emphasized that the reduced-
order model can display several undesired properties
that are not available in the original system dynamics,
and this fact may limit the available design alternatives
as emphasized in the fifth section.
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