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Obtaining a representative model in feedback control system design problems is a key step and

is generally a challenge. For spatially continuous systems, it becomes more difficult as

the dynamics is infinite dimensional and the well known techniques of systems and control

engineering are difficult to apply directly. In this paper, observer design is reported for

one-dimensional Burgers equation, which is a non-linear partial differential equation. An

infinite dimensional form of the observer is demonstrated to converge asymptotically to the

target dynamics, and proper orthogonal decomposition is used to obtain the reduced order

observer. When this is done, the corresponding observer is shown to be successful under cer-

tain circumstances. The paper unfolds the connections between target dynamics, observer and

their finite dimensional counterparts. A set of simulation results has been presented to justify

the theoretical claims of the paper.

1. Introduction

Investigating the behaviour of systems having many
states is a core research field particularly in spatially con-
tinuous systems. Without loss of generality, a system
characterized by Partial Differential Equations (PDE) is
a good example. In such cases, typically the modelling
approach assumes that the response of the system is
dominated by coherent modes and the task is to get a

useful dynamical model containing only the significantly
energetic modes. From this point of view, one can obtain
a reduced order model for an infinite dimensional system.
The question is whether this model can be used for con-
structing a state information. The approach adopted in
this paper demonstrates that it is possible for Burgers
equation, which captures essential features of the
Navier–Stokes equations. In fact one can argue that any
modelling and control technique aimed at flow problems

described by the Navier–Stokes equations has to work
for the Burgers equation. In other words, Burgers

equation is a good starting point to deal with more gen-
eral flow problems. What make the problem challenging
are the infinite dimensionality and non-linearity, and due
to these reasons, the classical design approaches of the
systems and control theory are difficult to apply directly.
Burgers equation has previously been considered for
model reduction and controller design purposes (Krstić
1999, Liu and Krstić 2000, Vedantham 2000, Liu and
Krstić 2001, Burns et al. 2002a, b, Hinze and Volkwein
2002, Park and Jang 2002, Efe and Özbay 2003a). This
paper approaches the observer design problem from a
control specialist’s point of view, i.e. a suitable low
dimensional modelling followed by a stability analysis
in terms of Lyapunov theory. From this point of view,
the contribution of this paper is that a low dimensional
observer could be used to estimate the most significant
temporal information in the dynamics of infinite dimen-
sional Burgers equation. Furthermore, the approach
stipulates that a similar scheme could be extended to
higher-dimensional PDEs.

Design of an observer for Burgers equation contains
three major issues that need to be studied carefully.
The first issue is the modelling, i.e. collecting the*Corresponding author. Email: onderefe@ieee.org

International Journal of Control
ISSN 0020–7179 print/ISSN 1366–5820 online � 2005 Taylor & Francis Group Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/00207170500158813



representative data and exploiting several techniques to
come up with a set of Ordinary Differential Equations
(ODEs). The second issue is to separate the effect of
external stimuli from the other terms by using the
boundary conditions. The third issue is to design an
observer that estimates the most dominant states. The
process is continuous over a physical domain (�), the
boundaries of which are the possible entries of external
stimuli. Choosing an adequately dense grid, say �d, lets
us obtain a finite size representation of the process u(x, t)
over �d. When the content of the observed data, say
u(x, t), is decomposed into spatial and temporal consti-
tuents (uðx, tÞ � h�ðxÞ,�ðtÞi�d

), the essence of spatial
behaviour appears as a set of spatially varying gains
(�ðxÞ ¼ f�1ðxÞ,�2ðxÞ, . . . ,�RL

ðxÞg), and the essence of
temporal evolution, �(t), appears as the solution of a
set of ODEs obtained after utilizing the orthogonality
properties of the spatial basis functions. Having this pic-
ture in front of us, the goal is to construct the temporal
evolution in the state space form. Needless to say, the
spatial gains will appear in the output equation.
When the low dimensional modelling issue is taken

into consideration, Proper Orthogonal Decomposition
(POD), or Singular Value Decomposition (SVD) in
cooperation with Galerkin projection are the popular
approaches utilized frequently in the literature
(Ravindran 2000, Ly and Tran 2001, Singh et al. 2001,
Efe and Özbay 2003a, b, 2004 and the references
therein). In Gügercin and Antoulas (2000), a good com-
parison of model reduction techniques is presented. The
decomposition based methods use a library of solutions
obtained from the process, and separate the content of
the data in such a way that the spatial components
(basis functions) display certain orthogonality proper-
ties and the temporal components synthesize the time
evolution over those spatial basis functions. The decom-
position yields meaningful information as long as
the data contains coherent modes. One has to know
that the result of POD or SVD schemes will be a set
of basis functions accompanied by a set of autonomous
ODEs.
The next issue, which is the separation of boundary

condition(s) (or the control input(s)) from the remaining
terms, is a key step. For example Krstić describes a
neatly selected Lyapunov function in Krstić (1999),
and the expression in its time derivative enables us to
apply integration by parts, then the boundary condition
emerges in an explicit manner. Although the approach
lets the designer manipulate Dirichlét and Neumann
type boundary conditions on Burgers equation, it is
still tedious to follow the same procedure for more
complicated PDEs. This can be because of the high
dimensionality of the PDE in particular, and difficulty
in finding an appropriate Lyapunov function in general.
Therefore, utilizing the numerical techniques is a

practical alternative to describe reduced order models
for complicated systems of PDEs. A key contribution
of this paper is to explain how the issue of control
separation is handled in numerical data based modelling
approaches.

A quick look at the literature on Burgers equation
unfolds the fact that the majority of the works focuses
on control system design. For example, receding horizon
optimal control approach in Hinze and Volkwein
(2002), stabilization by feedback control in Burns et al.
(2002a, b), optimal control design in Vedantham (2000),
iterative methods in Park and Jang (2002), adaptive
control in Liu and Krstić (2001), backstepping control
in Liu and Krstić (2000), Lyapunov mehods for stabili-
zation in Krstić (1999), simple schemes like linearization
based integral control in Efe and Özbay (2003a), and so
on. A common property in these works is that the design
is based on input–output information. It now becomes
evident that a finite dimensional observer would make
the state-space techniques applicable, which is the
topic of discussion in this paper.

The paper is organized as follows: x 2 introduces
the infinite dimensional form of the observer. Section 3
briefly presents the POD technique and its relevance to
the modelling strategy. In the x 4, development of
the reduced order model for the Burgers equation is
analyzed and a typical situation is studied. The connec-
tions between the reduced order models and full order
models are studied in x 5, and a simulation study is
described in x 6. The relationship between the techniques
presented in the paper and flow modelling and control
are briefly discussed in x 7. Finally, concluding remarks
are made in x 8.

2. An infinite dimensional observer

Consider the Burgers equation ut ¼ �uxx � uux, where �
is a known constant, and the subscripts x and t refer to
the partial differentiation with respect to x and time,
respectively. The spatial domain of the process is
� :¼ fxjx 2 ½0, 1�g. The initial conditions are uðx, 0Þ ¼
0 8x 2 �, and the boundary conditions are uð0, tÞ ¼ 0
and uð1, tÞ ¼ �ðtÞ, which is the free boundary input
(boundary condition, or the control input). Similarly,
for the observer, v(x, t), we will have jvðx, 0Þj <
1 8x 2 �, vð0, tÞ ¼ 0 and vð1, tÞ ¼ �ðtÞ.

Theorem 1: For the Burgers equation, an infinite
dimensional observer having the structure given by

vt ¼ �vxx � vvx þ Kðu� vÞ ð1Þ

with any positive K 2 < results in globally exponentially
stable reconstruction over ðx, tÞ 2 ½0, 1� � ½0,1Þ.
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Proof: Choose the following Lyapunov function
candidate

Vo ¼
1
2

ð
�

ðu� vÞ2 dx ¼ 1
2

ð1
0

ðu� vÞ2 dx: ð2Þ

_VVo ¼

ð1
0

ðu� vÞð _uu� _vvÞ dx

¼

ð1
0

ðu� vÞð�uxx � uux � �vxx þ vvx � Kðu� vÞÞ dx

¼ �2KVo þ

ð1
0

ð�uuxx � u2uxÞ dxþ

ð1
0

ð�vvxx � v2vxÞdx

�

ð1
0

ð�vuxx � vuuxÞ dx�

ð1
0

ð�uvxx � uvvxÞ dx ð3Þ

Since
Ð 1
0�uuxx dx ¼ ��uxð1, tÞ � �

Ð 1
0u

2
x dx, we have

_VVo ¼ �2KVo þ �� uxð1, tÞ þ vxð1, tÞð Þ � �

ð1
0

ðu2x þ v2xÞ dx

�

ð1
0

ð�vuxx � vuuxÞ dx�

ð1
0

ð�uvxx � uvvxÞ dx

�

ð1
0

ðu2ux þ v2vxÞ dx: ð4Þ

It is apparent that
Ð 1
0�vuxx dx ¼ ��uxð1, tÞ � �

Ð 1
0uxvx dx.

This lets us have the equality

�

ð1
0

�ðvuxx þ uvxxÞ dx ¼ ��� uxð1, tÞ þ vxð1, tÞð Þ

þ 2�

ð1
0

uxvx dx ð5Þ

and by the use of this relation, (4) can be rewritten as
follows:

_VVo ¼ �2KVo � �

ð1
0

ðux � vxÞ
2 dxþ

ð1
0

ðuvvx þ vuuxÞ dx

�

ð1
0

ðu2ux þ v2vxÞ dx: ð6Þ

Rearranging (6) yields

_VVo ¼ �2KVo � �

ð1
0

ðux � vxÞ
2 dxþ

ð1
0

ðu� vÞðuux � vvxÞdx

¼ �2KVo � �

ð1
0

ðux � vxÞ
2 dxþ

ð1
0

ðu� vÞ

�
1

2

@

@x
ðu2 � v2Þ

� �
dx ð7Þ

Set ��� ¼ u2 � v2 and note that ���ð0, tÞ ¼ u2ð0, tÞ �
v2ð0, tÞ ¼ 0 and ���ð1, tÞ ¼ u2ð1, tÞ � v2ð1, tÞ ¼ �2 � �2 ¼ 0.

Defining �ð ���, u, vÞ ¼ ðu� vÞð1=2Þð@ ���=@xÞ, and using the

above identities we have the following result

_VVo ¼ �2KVo � �

ð1
0

ðux � vxÞ
2 dxþ

ð ���ð1, tÞ¼0

���ð0, tÞ¼0

�ð ���, u, vÞ d ���

¼ �2KVo � �

ð1
0

ðux � vxÞ
2 dx < 0: ð8Þ

According to the above result, regardless of the differ-

ence between uðx, 0Þ and vðx, 0Þ, the integral of the
square of uðx, tÞ � vðx, tÞ converges asymptotically to

zero. This clearly forces vðx, tÞ ! uðx, tÞ exponentially
as t ! 1. It is worth emphasizing that the key technical

assumption is the match at the boundary, i.e.

uð0, tÞ ¼ vð0, tÞ and uð1, tÞ ¼ vð1, tÞ. So, the knowledge
of the boundary values is sufficient to design an infinite

dimensional observer.

3. Proper orthogonal decomposition

Consider the ensemble UiðxÞ, i ¼ 1, 2, . . . ,Ns, where Ns

is the number of elements. Every element of this set

corresponds to a snapshot observed from a process,

say for example, one-dimensional Burgers equation

utðx, tÞ ¼ �uxxðx, tÞ � uðx, tÞuxðx, tÞ: ð9Þ

The continuous time process takes place over the

physical domain � :¼ fx j x 2 ½0, 1�g and the solution is

obtained on a grid denoted by �d, which describes
the coordinates of the pixels of every snapshot in the

ensemble.
The goal is to find an orthonormal basis set letting us

to write the solution as

uðx, tÞ � ûuðx, tÞ ¼
XRL

i¼1

�iðtÞ�iðxÞ, ð10Þ

where �iðtÞ is the temporal part, �iðxÞ is the spatial part,

ûuðx, tÞ is the finite element approximate of the

infinite dimensional PDE and RL is the number of
independent basis functions that can be synthesized

from the given ensemble, or equivalently that spans
the space described by the ensemble. It will later be

clear that if the basis set f�iðxÞg
RL

i¼1 is an orthonormal set,

then the modelling task can exploit Galerkin projection
technique.

Let us summarize the POD procedure.

Step 1: Start calculating the Ns�Ns dimensional

correlation matrix L, the ðijÞth entry of which is
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Lij :¼ hUi,Uji�d
, where h�, �i�d

is the inner product
operator defined over the chosen spatial grid �d.

Step 2: Find the eigenvectors (denoted by wi) and the
associated eigenvalues (�i) of the matrix L. Sort them in
a descending order in terms of the magnitudes of �i.
Note that every wi is an Ns � 1 dimensional vector satis-
fying wT

i wi ¼ 1=�i. For simplicity of the exposition, we
assume here that the eigenvalues are distinct.

Step 3: Construct the basis set by using

�iðxÞ ¼
XNs

j¼1

wijUjðxÞ, ð11Þ

where wij is the jth entry of the eigenvector wi, and
i ¼ 1, 2, . . . ,RL, where RL ¼ rankðLÞ. It can be shown
that h�iðxÞ,�jðxÞi�d

¼ �ij with �ij being the Kronecker
delta function. Notice that the basis functions are
admixtures of the snapshots (Ly and Tran 2001, Efe
and Özbay 2003b, 2004).

Step 4: Calculate the temporal coefficients. Taking
the inner product of both sides of (10) with �iðxÞ, the
orthonormality property leads to

�iðt0Þ ¼ h�iðxÞ, ûuðx, t0Þi�d
� h�iðxÞ,Ut0i�d

: ð12Þ

Without loss of generality, an element of the ensemble
fUiðxÞg

Ns

i¼1 may be Uðx, t0Þ. Therefore, in order to
generate the temporal gain, �kðtÞ, of the spatial basis
�kðxÞ, one would take the inner product with the
elements of the ensemble with the basis functions as
given below.

hU1ðxÞ,�kðxÞi�d
� �kðt1Þ

hU2ðxÞ,�kðxÞi�d
� �kðt2Þ

..

.

hUNs
ðxÞ,�kðxÞi�d

� �kðtNs
Þ: ð13Þ

Note that the temporal coefficients satisfy orthogonality
properties over the discrete set t 2 ft1, t2, . . . , tNs

g:

XNs

i¼1

hUiðxÞ,�kðxÞi
2
�d

�
XNs

i¼1

�2
i ðtiÞ ¼ �k: ð14Þ

For a more detailed discussion on the POD method, the
reader is referred to Ravindran (2000), Ly and Tran
(2001), Singh et al. (2001), Efe and Özbay (2003b,
2004) and the references therein.

Standing Assumption: The majority of works dealing
with POD and model reduction applications presume
that the flow is dominated by coherent modes and the
quantities on the both sides of u(x, t) and ûuðx, tÞ

are indistinguishable, Ravindran (2000), Ly and Tran

(2001), Singh et al. (2001), Efe and Özbay (2003a, b,

2004). Because of the dominance of coherent modes,
the typical spread of the eigenvalues of the correlation

matrix turns out to be logarithmic and the terms decay

very rapidly in magnitude. This fact further enables us
to assume that a reduced order representation, say

with M modes (M � min ðRL,NsÞ) can also be written

as an equality

ûuðx, tÞ ¼
XM
i¼1

�iðtÞ�iðxÞ, ð15Þ

and the reduced order model is derived under the

assumption that (15) satisfies the governing PDE.

Unsurprisingly, such an assumption results in a model

having uncertainties. However, one should keep in
mind that the goal is to find a model, which matches

the infinite dimensional system in some sense of approx-

imation with typically M � RL � Ns. To assess how
good such an expansion is, a percent energy measure

is defined as follows

E ¼ 100

PM
i¼1 �iPRL

i¼1 �i
, ð16Þ

where the tendency of E ! 100% means that the model

captures the dynamical information contained in the

snapshots well. Conversely, an insufficient model will
be obtained if E is far below 100%. In the next

section, we demonstrate how the boundary condition

is transformed to an explicit control input in the ODEs.

4. Model reduction with explicit control input

In this section, we apply the POD technique to the
Burgers equation described by (9) with �¼ 4 as a

known process parameter. The problem is specified

with zero initial conditions, the homogeneous boundary
condition at x¼ 0 as uð0, tÞ ¼ 0 and Dirichlét type

boundary condition at x¼ 1 as uð1, tÞ ¼ �ðtÞ. Since the

POD scheme yields the decomposition in (9), according

to the standing assumption, inserting ûu in the place of u
results in

XM
i¼1

_��iðtÞ�iðxÞ ¼
XM
i¼1

�iðtÞ�
@2�iðxÞ

@x2

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞ�iðxÞ
@�jðxÞ

@x

 !
:

ð17Þ
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Taking the inner product of both sides of (17) with
�kðxÞ, which corresponds to the Galerkin projection,
results in the equality in (18).

_��kðtÞ ¼
XM
i¼1

�iðtÞ�h�kðxÞ, �iðxÞi�d

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞh�kðxÞ,�iðxÞ�jðxÞi�d

 !
,

ð18Þ

where �iðxÞ :¼ @2�iðxÞ=@x
2 and �iðxÞ :¼ @�iðxÞ=@x.

As mentioned earlier, the effects of the external stimulus
is implicit in the above equation. For this reason, choose
the grid ��

d :¼ fx j x 2
SS�2

i¼0 ði�xÞg, where S is the
number of grid points considered for the numerical solu-
tion satisfying ðS � 1Þ�x ¼ 1. Clearly, ��

d

S
1 	 �d , or

equivalently the boundary @�d :¼ fx j x ¼ 1g. According
to these definitions, h f ðxÞ, gðxÞi� ¼h f ðxÞ, gðxÞi�d

¼

ð1=NsÞf ðxÞ
TgðxÞ, where the column vector x contains

the elements of �d in ascending order. In a similar fash-
ion, one can define x� as the column vector containing
the elements of ��

d in the same way. Taking the above
partitioning into account, and rewriting (18) yield

Ns _��kðtÞ ¼
XM
i¼1

�iðtÞ��
T
kðxÞ�iðxÞ

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞ�
T
kðxÞð�iðxÞ ? �jðxÞÞ

 !

¼
XM
i¼1

�iðtÞ��
T
kðx

�Þ�iðx
�Þ þ

XM
i¼1

�iðtÞ��kð1Þ�ið1Þ

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞ�
T
kðx

�Þð�iðx
�Þ ? �jðx

�ÞÞ

 !

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞ�kð1Þ�ið1Þ�jð1Þ

 !
,

ð19Þ

where ? denotes the elementwise product operator.
Since the external inputs are not seen explicitly in (19),

in what follows, the terms will be manipulated such that
the two dynamics, namely the one enters directly with
the boundary condition and the one governed by the
PDE along the spatial direction are separated properly.
The driving point is to notice that the solution in (15)
must be satisfied at the boundaries as well. This gives
the following information

uð1, tÞ ¼ �ðtÞ ¼
XM
i¼1

�iðtÞ�ið1Þ: ð20Þ

Or �kðtÞ�kð1Þ ¼ �ðtÞ �
PM

i¼1ð1� �ikÞ�iðtÞ�ið1Þ. Inserting
this into the second summation in (19) yields

XM
i¼1

�iðtÞ��kð1Þ�ið1Þ ¼ �kðtÞ��kð1Þ�kð1Þ

þ
XM
i¼1

ð1� �ikÞ�iðtÞ�kð1Þ�ið1Þ

¼ �ðtÞ��kð1Þ þ
XM
i¼1

�iðtÞ�ð�kð1Þ�ið1Þ

��ið1Þ�kð1ÞÞ: ð21Þ

Similarly, considering (20) for the last term of (19), we
can perform the following rearrangement:

XM
i¼1

XM
j¼1

�iðtÞ�jðtÞ�kð1Þ�ið1Þ�jð1Þ

¼ �kð1Þ
XM
i¼1

�iðtÞ�ið1Þ
XM
j¼1

�jðtÞ�jð1Þ

¼ �kð1Þ�ðtÞ
XM
j¼1

�jðtÞ�jð1Þ: ð22Þ

Summing up the all four terms of (19) results in

Ns _��kðtÞ ¼
XM
i¼1

�iðtÞ��
T
kðx

�Þ�iðx
�Þ

 !
þ �ðtÞ��kð1Þ

þ
XM
i¼1

�iðtÞ� �kð1Þ�ið1Þ ��ið1Þ�kð1Þð Þ

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞ�
T
kðx

�Þð�iðx
�Þ ? �jðx

�ÞÞ

 !

� �kð1Þ�ðtÞ
XM
j¼1

�jðtÞ�jð1Þ

 !

¼
XM
i¼1

�iðtÞ�ð�
T
kðxÞ�iðxÞ ��ið1Þ�kð1ÞÞ

 !

�
XM
i¼1

XM
j¼1

�iðtÞ�jðtÞ�
T
kðx

�Þð�iðx
�Þ ? �jðx

�ÞÞ

 !

þ ��kð1Þ ��kð1Þ
XM
j¼1

�jðtÞ�jð1Þ

 !
�ðtÞ: ð23Þ

Defining the state vector as � ¼ ð�1�2 . . .�MÞ
T, it

becomes obvious that the above model implies the
following dynamical system for temporal components
of the POD

_�� ¼ A�� Cð�Þ þ ðB�D�Þ� ð24Þ
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where A,D 2 <M�M and B,C 2 <M . We have

ðAÞki ¼
1

Ns
� �T

kðxÞ�iðxÞ ��ið1Þ�kð1Þ
� �

, ð25Þ

Cð�Þ ¼ �TC1� �TC2� . . . �TCM�
� �T

, ð26Þ

where ðCkÞij ¼ ð1=NsÞ�
T
kðx

�Þð�iðx
�Þ ? �jðx

�ÞÞ.

ðBÞk ¼
1

Ns
��kð1Þ, ð27Þ

and

ðDÞki ¼
1

Ns
�ið1Þ�kð1Þ: ð28Þ

with �ð0Þ ¼ 0.
In the rest of this section, we discuss the important

issues in modelling phase and demonstrate that the
developed model performs well under the chosen condi-
tions. In the model derivation stage, we set �¼ 4 and
collected the snapshots according to the following
procedure: The end time is 1 sec and time step is 1msec,
i.e. we have 1001 snapshots at each solution trial,
and the nth trial is performed with uðx, 0Þ ¼ 0,
uð0, tÞ ¼ 0, uð1, tÞ ¼ �ðtÞ ¼ sinð2�ð2n� 1=1:024ÞtÞ, where
n ¼ 1, 2, . . . , 101. Such a boundary excitation scheme
covers frequencies approximately up to 200Hz. The
snapshot collection scheme linearly samples 10 snap-
shots from each trial to build up the ensemble of snap-
shots, fUiðxÞg

Ns

i¼1. During this procedure, due to its
numerical stability and simplicity, Crank–Nicholson
method is used as the numerical solver with S¼ 100 spa-
tial grid points i.e. �x ¼ 1=99 (Farlow (1993) for
details). Clearly, finer grids would be computationally
intensive yet a solution obtained from a sparse grid
may not yield a useful dynamic model. We set this reso-
lution after a few trials of checking the left and right
hand sides of the PDE in (9) numerically. Running a
boundary regime described above excites reasonably
large number of dynamical constituents of the Burgers
system. In Efe and Özbay (2003b), the locality of the
POD models has been emphasized and this problem
is alleviated by maintaining the spectral diversity in
the snapshots. In other words, executing the above des-
cribed experiments gives us a model capturing those
frequencies to some extent. Nevertheless, reliability of
the resulting dynamical model should be viewed as a
decreasing quantity as the operating conditions become
dissimilar from the model generation conditions.
The simulations have shown that for M<5, the

energy content is insufficient to rebuild the numerical
data, on the other hand, for M>7, the basis functions
are steeper and numerical differentiation errors become
significant. For this reason, we set M¼ 5, which

captures E ¼ 99:94% of the total energy. One should
notice that the application of the above described proce-
dure gives us the terms seen in (24) as well as the basis
functions of the output equation in (10). Our expecta-
tion is to have a good match between the response to
a test signal obtained from the numerical solver and
from the dynamical system. For this purpose, we
choose a signal given by (29) and illustrate the relevant
subdomain of fast fourier transform (FFT) magnitude
components in figure 1. It should be visible that the
chosen signal contains an admissible degrees of spectral
richness to validate that the model works appropriately
nearly below 200Hz. It has a distinguishable low
frequency component to excite the diffusion term �uxx,
where the larger the � the more diffusive the behaviour
along the x-direction;

�ðtÞ ¼ sin ð2�30ð1� tÞtÞ þ sign ðsin ð2�10tÞÞ

for 0 � t � 1:023 sec: ð29Þ

Figure 2 illustrates the results for each individual mode.
It is visible from the figure that the low frequency
components are well reconstructed, while the sharp
transitions are smoothed due to the underlying philos-
ophy of the POD scheme, which is based on the
truncation of high frequency components.

A combined view is presented in figure 3. Both the
numerical solution and the reconstructed solution are
plotted and it is observed that the reduced order model
is a fairly good representative of the infinite dimensional
system under the conditions illustrated.

5. Connections between the reduced order model and

reduced order observer

In this section, we discuss the implications of model
reduction in terms of target dynamics and the observer.
Since the basis set �ðxÞ ¼ f�1ðxÞ,�2ðxÞ, . . . ,�RL

ðxÞg
describes the way in which the variables must spread
over �, it is natural to assume that a reduced order
model of the observer could admit the same basis set.
This would unsurprisingly result in a dynamical model
of the form

_		ðtÞ ¼ A	ðtÞ � Cð	ðtÞÞ þ ðB�D	ðtÞÞ�ðtÞ

þ K
�ðxmÞ

T

�ðxmÞ
T�ðxmÞ

ð�ðtÞ � 	ðtÞÞ, ð30Þ

v̂vðx, tÞ ¼
XM
i¼1

�iðxÞ	iðtÞ, ð31Þ

where, xm is a measurement location to observe v̂v and
�ðxmÞ :¼ ð�1ðxmÞ�2ðxmÞ . . . �MðxmÞÞ

T.
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Figure 2. Obtained temporal information and the basis set.
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Remark 1: Although the goal is to estimate the set of
representative state information of the PDE system,
the observer in (30) is designed to reconstruct the
states (�) of the reduced order representation of the
target system, i.e. 	ðtÞ ! �ðtÞ as t ! 1. For this
reason, the modified form of (30), which is given
below, becomes the equivalent and physically implemen-
table form of the observer,

_		ðtÞ ¼ A	ðtÞ � Cð	ðtÞÞ þ ðB�D	ðtÞÞ�ðtÞ

þ K 0ðuðxm, tÞ � v̂vðxm, tÞÞ, ð32Þ

where K 0 ¼ K= �ðxmÞ
T�ðxmÞ

� �
. Whether or not this is

reasonable is absolutely dependent upon the standing
assumption given at the end of x 3. The observer in (32)
reads the feedback from x¼ xm, and it therefore forces
v̂vðxm, tÞ ! uðxm, tÞ by rebuilding the state
information progressively.

Remark 2: Let eiðtÞ :¼ �iðtÞ � 	iðtÞ and eðtÞ :¼
ðe1ðtÞe2ðtÞ . . . eMðtÞÞT. Use of an observer of the form
(31)–(32) forces the following equivalence in between
the Lyapunov function in (2) and the one derived below

V̂Vo ¼
1

2

ð1
0

ûuðx, tÞ � v̂vðx, tÞð Þ
2 dx

¼
1

2

ð1
0

XM
i¼1

�iðtÞ�iðxÞ �
XM
i¼1

	iðtÞ�iðxÞ

 !2

dx

¼
1

2

ð1
0

XM
i¼1

�iðtÞ � 	iðtÞð Þ�iðxÞ

 !2

dx

¼
1

2

ð1
0

XM
i¼1

eiðtÞ�iðxÞ

 !2

dx

¼
1

2

ð1
0

XM
i¼1

eiðtÞ
2�iðxÞ

2

 !
dx

þ

ð1
0

XM
i¼1

XM
j¼1, j 6¼i

eiðtÞejðtÞ�iðxÞ�jðxÞ

 !
dx

¼
1

2

XM
i¼1

eiðtÞ
2

ð1
0

�iðxÞ
2 dx

� �

þ
XM
i¼1

XM
j¼1, j 6¼i

eiðtÞejðtÞ

ð1
0

�iðxÞ�jðxÞ dx

� �

¼
1

2

XM
i¼1

eiðtÞ
2�ii

� �
þ
XM
i¼1

XM
j¼1, j 6¼i

eiðtÞejðtÞ�ij
� �

¼
1

2

XM
i¼1

eiðtÞ
2
¼

1

2
eðtÞTeðtÞ: ð33Þ

The above result is in good compliance with the

Lyapunov theory and the tools of standard design

techniques. Ensuring the negative definiteness of V̂Vo is

equivalent to asymptotically stable reconstruction of

the state information in <M . The connection between

Figure 3. Numerical and approximate solutions.
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V̂oVo and the infinite dimensional version in (2) in value is

tightly dependent upon the energy context and the

extent to which the standing assumption is fulfilled

(refer to x 2). In summary, the better the reduced order

model describes the original dynamics, the better

the reduced order observer estimates the dynamically

significant states of the infinite dimensional system.

6. A simulation study

In this section, we discuss a set of simulation results

based on the modified form of the observer in

(31)–(32). That is to say, the feedback is read from the

infinite dimensional system and the observer is low

dimensional and K 0 ¼ 10. Clearly, this one is the realis-

tic implementation of the observation mechanism, yet

the evidence of reconstruction performance is indirect.

Technically speaking, an infinite dimensional observer

is shown to be useful for infinite dimensional plant in

the Lyapunov sense. Similarly, the implications of this

in <M is shown to be compatible with the Lyapunov

stability conclusions. A natural expectation of such

a pattern is the usefulness of a low dimensional

model for estimating the dominant states of the infinite

dimensional system in the sense of POD based order

reduction.
Having these in mind, we choose a boundary regime

as shown in the top row of figure 4. The signal is a

noise corrupted one and it has a sinusoidal component

during the first 0.5 sec time, and a train of pulses

during the rest of the simulation. The noiseless signal

runs in between 
1. This signal is used to excite both

the PDE and the low dimensional observer. In order

to make the observer design more reasonable, further

two noise sequences, which are band limited white

noises and are of power 1e-5, are injected onto the

input signal (boundary condition) of the PDE and the

measured response from the PDE. Such an excitation

strategy lets us have the excitation of many modes of

the PDE and the low dimensional model, and causes

some amount of uncertainty making it a challenge to

extract a descriptive state information.
In order to illustrate the performance of the observer,

one needs to test it for a reasonably rich set of physical

locations from �d. For this reason, a time varying

measurement location is set, i.e. we have xm(t) as shown

in the bottom row of figure 4. The above described

boundary and measurement conditions constitute a

good selection to test the reconstruction performance

of the proposed observer.
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Figure 4. Applied boundary excitation (�ð1, tÞ) and the behaviour in moving feedback location (xm).
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In the top row of figure 5, two curves are plotted
together. The one obtained from the PDE is depicted
as a dashed line while the output of the observer is
shown as a solid line. It is clearly distinguishable that
the observer output is very close to the system output
specified at the physical location xm(t). The difference
between these two curves is plotted in figure 5. Two
facts should be noticed from this figure: Firstly, the
error trend is very close to zero during the first 0.5 sec
time. This means that if the signal to be followed is
smooth then the mechanism accurately rebuilds the
target. Secondly, the remaining 0.5 sec time of the simu-
lation indicates that the sharp changes in the signal
being tracked causes expectedly large fluctuations, but
these are convergent. These two facts make the indirect
evidence of quick and accurate reconstruction very
clear.
A last remark in this section is on the state infor-

mation. A designer pursuing the design of a control
system would find significantly important information
within the presented mechanism. From this point of
view, the possibility of reaching the dominant states
of an infinite dimensional system would let us
design feedback control mechanisms for PDE sys-
tems, which do not directly enjoy the strength of
the well-established finite dimensional control systems
theory.

7. Relationship to flow modelling

The current paper presents the results obtained through
the course of a larger research project on areodynamic
flow control. The considered problem and its extensions
are accurately described in Debiasi and Samimy (2003),
Samimy et al. (2003) and Yan et al. (2004). Briefly,
the system is a rectangular cavity equipped with a set
of sensor/actuator and host computing periphery. The
regimes characterized by Mach 0.25 through 0.5 are
considered as there are single mode and multi mode
resonances making it a challenge to capture the pressure
fluctuations observed from the process. The model
development has greatly benefited from the POD techni-
que (Caraballo et al. 2004) yet the models obtained
for the Navier–Stokes equations need some further
improvement to match the desired profiles better. The
results presented in the cited references and those in
the current paper are in good compliance in the sense
that POD is a very powerful alternative in extracting
the dynamical composition of spatially continuous
systems. The future work of the authors is therefore to
focus on developing an observer for the relevant form
of the Navier–Stokes equations and utilize it within a
closed loop control system. Regarding the technical
details, such as the sensors, actuators, digital signal
processing units and the computing devices, one should
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Figure 5. Desired and the reconstructed outputs, and the discrepancy between them.
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refer to Debiasi and Samimy (2003), Samimy et al.
(2003) and Yan et al. (2004).

8. Conclusions

This paper discusses the design and implementation
issues for reduced order and infinite dimensional forms
of observers of Burgers equation. The infinite dimen-
sionality and nonlinearity of the equation, which are
similar to those in Navier–Stokes equations, are the
motivating factors. POD is used to decompose the solu-
tion into characterizing modes and a dynamical model
containing the control input is built by manipulating
the expansion appropriately.
The paper demonstrates that an infinite dimensional

observer can lead to the negative definiteness of a suita-
bly defined Lyapunov function, and the same relation
could be observed in the finite dimensional space for
reduced order models. In the simulations, the finite
dimensional observer is used with the infinite dimen-
sional system to illustrate the efficacy of the proposed
observer dynamics. The relevance of the presented
work and the real-time counterpart are discussed from
the point of POD use as a modelling tool. The results
are in good compliance with the theoretical foundations,
and this advances the subject area to the possibility
of existence of such an observer for more complicated
systems, such as flows governed by Navier–Stokes
equations.
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