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This paper discusses the stabilizability of artificial neural networks trained by utilizing the
gradient information. The method proposed constructs a dynamic model of the conven-
tional update mechanism and derives the stabilizing values of the learning rate. The
stability in this context corresponds to the convergence in adjustable parameters of the
neural network structure. It is shown that the selection of the learning rate as imposed by
the proposed algorithm results in stable training in the sense of Lyapunov. Furthermore,
the algorithm devised filters out the high frequency dynamics of the gradient descent
method. The excitation of this dynamics typically occurs in the presence of noise and
abruptly changing the parameters of the mapping being learned. This adversely influ-
ences the learning performance that can be attained during a training cycle. A natural
consequence following this excitation is divergence in parameter space. The method
analyzed in this paper integrates the gradient descent technique with variable structure
systems methodology, which is well known for its robustness to environmental distur-
bances. In the simulations, control of a three degrees of freedom anthropoid robot is
chosen for the evaluation of the performance. For this purpose, a feedforward neural
network structure is utilized as the controller. Highly nonlinear dynamics of the plant,
existence of a considerable amount of observation noise, and the adverse effects of
gravitational forces constitute the difficulties to be alleviated by the neurocontroller
trained with the proposed method. In order to come up with a fair comparison, the
results obtained with the pure gradient descent technique with the same initial conditions
are also presented and discussed. © 2000 John Wiley & Sons, Inc.

1. INTRODUCTION

One of the major problems in the training of artificial neural networks
(ANN) is the lack of stabilizing forces, the existence of which prevents the
unbounded growth in the adjustable parameters. This fact is intimately related
to the analytic explanation of the internal dynamics of the training strategy,
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which typically concern several tens of variables even for the simplest structures.
Another major problem of the training phase is the robustness, i.c., how well the
ANN structure, which is trained on-line or off-line, will perform under the
existence of strong external disturbances. The methods overcoming the men-
tioned problems aim to maintain a desired behavior in the face of factors
adversely influencing the performance and applicability. Therefore, the concept
of stability and robustness constitutes a prime requirement of the design
methodologies, particularly in systems and control engineering practice. Strictly
speaking, a method violating the stability requirements is a potential danger
from a safety point of view. However, the innovations in data mining, data
fusion, sensor technology, recognition technology, and fast microprocessors are
ever increasingly encouraging the use of ANN structures, whose operating
philosophy is suitable to interaction of an Expert and Machine.

Artificial neural networks are well known for their property of representing
complex nonlinear mappings. Earlier works on the mapping properties of these
architectures have shown that neural networks are universal approximators.'?
The mathematical power of intelligence is commonly attributed to the neural
systems because of their massively interconnected and fault tolerant architec-
ture. Various architectures of neural systems are studied in the literature.
Feedforward and recurrent neural networks, Gaussian radial basis function
neural networks, dynamical neural networks,” and Runge—Kutta neural net-
works*’ constitute typical structurally different models. The approaches men-
tioned have been widely used in applications extending from speech recognition
and optoelectronics to identification and control of nonlinear systems.> !> Most
of the studies reported in the literature adopt the error backpropagation (EBP)
method for tuning the parameters of the network structure.’”'® Since the
discovery of the algorithm in 1986 by Rumelhart et al.,'” the EBP method has
become the standard method for training of artificial neural networks. A part of
the later studies concentrated on the enhancement of the optimization perfor-
mance of the EBP technique.'® 2! In this respect, stabilization and robustifica-
tion of the EBP strategy is a remarkable progression for such a widely used
optimization technique.

As stated earlier, issues of stability and robustness are of crucial impor-
tance from safety and performance points of view. Because of this, an imple-
mentation-oriented control engineering expert is always in pursuit of a design
which provides accurate tracking as well as insensitivity to environmental
disturbances and structural uncertainties. At this point, it must be emphasized
that these ambiguities can never be modeled accurately. When the designer tries
to minimize the ambiguities by the use of a detailed model, the design becomes
so tedious that its cost increases dramatically. A suitable way of tackling
uncertainties without the use of complicated models is to introduce variable
structure systems (VSS) theory based components into the design procedure.

Variable structure control (VSC) has successfully been applied to a wide
variety of systems having uncertainties in the representative system models. The
philosophy of the control strategy is simple, being based on two goals. First, the
system is forced toward a desired dynamics, which is a predefined subspace of
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the state-space; second, the system is maintained on that differential geometry.
In the literature, the former dynamics is named the reaching mode, while the
latter is called the sliding mode. This mode has useful invariance properties in
the face of uncertainties in the system model and is therefore a good candidate
for tracking control of nonlinear systems. The control strategy borrows its name
from the latter dynamic behavior, and is called sliding mode control (SMC).

The earliest notion of SMC strategy was constructed on a second order
system in the late 1960s by Emelyanov.??> The work stipulated that a special line
could be defined on the phase plane, such that any initial state vector can be
driven toward the plane and then be maintained on it, while forcing the error
dynamics toward the origin. Since then, the theory has been greatly improved
and the sliding line has taken the form of a multidimensional surface, called the
sliding surface; the function defining it is called the switching function.

Numerous contribution to VSS theory have been made during the last
decade; some of them are as follows. Hung et al.®® has reviewed the control
strategy for linear and nonlinear systems. In Ref. 23, the switching schemes,
putting the differential equations into canonical forms and generating simple
SMC strategies, are considered in detail. In Refs. 24 and 25, applications of the
SMC scheme to robotic manipulators are studied and the quality of the scheme
is discussed from the point of robustness. One of the crucial points in SMC is
the selection of the parameters of the sliding surface. Some studies devoted to
the adaptive design of sliding surfaces have shown that the performance of the
control system can be refined by interfacing it with an adaptation mechanism,
which regularly redesigns the sliding surface.”*"2® This eventually results in a
robust control system. The performance of the SMC scheme is proven to be
satisfactory in the face of external disturbances and uncertainties in the system
model representation. Another systematic examination of the SMC approach is
presented in Ref. 29. In this reference, the practical aspects of SMC design are
assessed for both continuous-time and discrete-time cases, and a special consid-
eration is given to the finite switching frequency, limited bandwidth actuators,
and parasitic dynamics. In Ref. 30, the design of discrete-time SMC is presented
with particular emphasis on the system model uncertainties. Some studies
consider the robustness property of the VSS technique by equipping the system
with computationally intelligent methods. In Refs. 31 and 32, fuzzy inference
systems are proposed for the SMC scheme. A standard fuzzy system is studied
and the relevant robustness analyses are carried out. Particularly, the work
presented in Ref. 32 emphasizes that the robustness and stability properties of
fuzzy control strategies can be analyzed through the use of SMC theory. It is
shown in this reference that the approach is robust, i.e., it can compensate the
deficiencies caused by poor modeling of plant dynamics and exogenous distur-
bances.

The objective of this paper is to develop a stabilizing training procedure for
artificial neural networks. The procedure enforces the adjustable parameters to
settle down to a steady state solution while meeting the design specifications.
This is achieved through an appropriate combination of the error backpropaga-
tion (EBP) algorithm!” with VSS philosophy. The early applications of VSS
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theory in training of ANN have considered the adjustment of the parameters of
simple models such as adaptive linear elements (ADALINE).* The method
presented in Ref. 33 also presents the forward and inverse dynamics identifica-
tion of a Kapitsa pendulum. The fundamental difference of the algorithm
presented in this paper is the fact that the derivation is based on the mixture of
two different update values. Furthermore, the eventual form of the parameter
update formula alleviates the handicaps of the gradient based training algo-
rithms.

This paper is organized as follows. The second section briefly reviews the
standard EBP technique, which is responsible for achieving the desired perfor-
mance specifications. The parameter stabilizing part of the training methodology
is derived in the third section. The section starts with a continuous-time
representation of the EBP algorithm and continues with an explanation of how
the VSS based training criterion and EBP based training strategy are combined.
In the fourth section, analysis of the imposed dynamics is presented. In this
section, it is shown that the desired dynamics and imposed dynamics are stable
but structurally different. The fifth section gives the global stability proof of the
mixed training strategy and discusses the constraints on the design parameters.
In the sixth section, the feedforward neural network structure with standard
learning scheme is introduced and the application of the devised training
strategy is presented. The seventh section introduces a plant, which is to be
controlled by using the feedforward neural network architecture and the pro-
posed learning algorithm. Simulation results are discussed in the eighth section
and the conclusions are presented at the end of the paper.

2. STANDARD ERROR BACKPROPAGATION TECHNIQUE

In most applications of artificial neural networks, the EBP method consti-
tutes the central part of the learning.’ '®!'®~2 In this section, the technique is
briefly reviewed for systems in which the outputs are differentiable with respect
to the parameter of interest. The method was first formulated by Rumelhart et
al.'” in 1986. The approach has successfully been applied to a wide variety of
optimization problems. Using the nomenclature given in the appendix, the
algorithm can be stated as follows:

ej=dj_fj(¢au) (1)
_ loutputs 2
==Y ¢ (2)
2 o
J,
P et 3

The observation error in (1) is used to minimize the realization cost in (2) by
utilizing the rule described by (3), which is known as gradient descent or EBP in
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the related literature:

outputs (9f( d’ , Lt)
Ad = AR
¢ L jgl e P

(4)
The minimization proceeds recursively as given in (4), for which the sensitivity
derivative with respect to the generic parameter ¢ is needed. Since the update
rule in (4) entails the observation error e, the algorithm is quite sensitive to the
noise observations, which directly influence the value of the adjustable parame-
ter and degrade the learning performance. The next section presents the
derivation of a method capable of reducing the adverse effects of noise, thereby
increasing the robustness in this sense.

3. STABILIZATION OF TRAINING DYNAMICS BY VARIABLE
STRUCTURE SYSTEMS APPROACH

A continuous-time dynamic model of the parameter update rule prescribed
by the EBP technique can be written as in (5):

Np— —— g+ oy (5)
T, T

The above model is composed of the sampling time denoted by 7;, the gradient
based nonscaled parameter change denoted by N, = Y91, ((9f(¢>, uw)/aod),
and a scaling factor denoted by 7, for the selection of Wthh a detalled analysis
is presented in the subsequent discussion. Using Euler’s first order approxima-
tion for the derivative term, one obtains the following relation, which obviously
validates the constructed model in (5) and which leads to the representation
in (7):

Ap(k+1) — Ap(k A k
HELD ZAH0) 800 L ©

Ad(k +1) =y Ny(k) (7)

By comparing (4) and (7), the equivalency between the continuous and discrete
forms of the update dynamics is thus clarified. The synthesis of the parameter
stabilizing component is based on the integration of the system in (5) with
variable structure systems methodology. In the design of variable structure
controllers, one method that can be followed is the reaching law approach.” For
the use of this theory in the stabilization of the training dynamics, let us define
the switching function as in (8) and its dynamics as in (9):

ss=Ad (8)

S:b = — % tanh(%) — 5, 9)
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where O, and K, are the gains, and & is the width of the boundary layer. In the
derivations presented below, a key point is the fact that the system described by
(5) is driven both by the learning rate m, and the the backpropagated error
value N,. Now we demonstrate that some special selection of this quantity leads
to a rule that minimizes the magnitude of parametric displacement. With the
quantity defined in (10), equating (9) and (5) and solving for A¢ yields the
relation in (11):

A
A¢=Q¢tanh(7 +KyA¢ (10)
Ap=m,N, +4, (11)

The values of the 7, imposed by (11) might be seen as the desired values at the
first glance. However, this selection cancels out the backpropagated error value
N,, from (5); consequently, the update dynamics exactly behaves as that defined
by the adopted switching function (9), which does not necessarily minimize the
cost in (2). Therefore, the further analysis explores the restrictions on 7, as well
as the construction of the mixed training criterion.

Now we have a model described by (5), and an equality to be enforced and
formulated by (11). If one chooses a positive definite Lyapunov function as given
in (12), the time derivative of this function must be negative definite for stability
of parameters change (A ¢) dynamics. Clearly, the stability in parameter change
space implies the convergence in system parameters.

Vo= 155 = 3(A¢)° (12)
v, = (80)(20) (13)

If (5) and (11) are substituted into (13), the constraint stated in (14) is obtained
for stability in the Lyapunov sense:

1 1
2
My T (A, —Ad)n, — Ay Ap <0 (14)
N, N¢2

Equation (14) can be rewritten in a more tractable form as follows:

1

1
+—dy|[m— —Aas]| <0 15
K Nd’ ¢)(n¢ N¢ ¢ ( )

Since A4, and A ¢ have the same signs, the roots of the expression in (15) clearly
have opposite signs. The expression on the left-hand side assumes negative
values between the roots. Therefore, in order to satisfy the inequality in (15), the
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learning rate must satisfy the constraint given in (16):

: Ad,‘ ‘ L
—_ | = —A4,
Nd> Nfﬁ

In order to preserve the compatibility between the traditional gradient based
approaches and the proposed approach, the interval of learning rate is restricted

to positive values as described above. An appropriate selection 7, could be as
follows:

(16)

0< n¢<min{

, 0<p<«1 (17)

1 1
Ny = B min —AqﬁH——A¢
{ N, Ny
By substituting the learning rate formulated in (17) into the equality given in
(11), the stabilizing component A¢ygs of the parameter change formula is
obtained as

Adyss = Bmin{|Adl,|A4,l}sgn(N,) + 4, (18)

where A¢ on the right-hand side is the final update value yet to be obtained.
The law introduced in (18) minimizes the cost of stability, which is the Lyapunov
function defined by (12). The question now reduces to the following: Can this
law minimize the cost defined by (2)? The answer is obviously not, because the
stabilizing component in (18) is derived from the displacement of the parameter
vector denoted by A¢, whereas the minimization of (2) is achieved when ¢
tends to ¢ regardless of what the displacement is. In order to minimize (2), the
parameter change anticipated by the EBP technique, which is reviewed in the
second section, should somehow be integrated into the final form of parameter
update mechanism. As introduced in the second section, the EBP algorithm
evaluates a parameter change as given in (19):

Adgpp = §¢N¢ (19)

where ¢, is the learning rate. It is reasonable to expect that under certain
constraints, a combination of the laws formulated in (18) and (19) in a weighted
average will meet the objectives of both the parametric stabilization and the cost
minimization, which means the fulfillment of the design specifications. The
parameter update rule will then be as in (20):

a, A + a, A
Ad— 1 Adyss 2 Adppp (20)

o + a,

The parameter update formula given by (20) carries mixed displacement value
containing both the parametric convergence, which is introduced by the VSS
part, and the cost minimization, which is due to the EBP technique. The
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balancing in this mixture is left to the designer by an appropriate selection of «;
and a,.

4. ANALYSIS OF THE IMPOSED DYNAMICS

In the previous section, the mixed training algorithm is derived. This section
analyzes the implications of the learning rate in (17) on the domain of paramet-
ric change space. If the learning rate in (17) is substituted into the dynamic
model of (5), one ends up with the dynamics formulated in (21), which character-
izes the behavior of the system driven solely by the learning rate in (17):

. 1
A¢ - _ ? Ad) + g mln{|A¢|, |A¢|}sgn(N¢) (21)

s

In (21), two different cases can be of interest, namely, |[A ¢| < | A ¢| or |A ¢| <|Adl
In the analysis presented below, the following two facts must be kept in mind.

Fact 1: |x| = x sgn(x), where x € N.
Fact 2: sgn(x,)sgn(x,) < 1, where x, x, € N.

For the first case, (21) becomes

. -1 N, A -1
g - +Bsgn(T¢)sgn( ) pg < T+BA¢ )

Since B < 1, the imposed dynamics is globally stable. For the second case, (21)
turns out to be as follows with the aid of Fact 3.

Fact 3: A, = Q,tanh(Ad/e) + K, Ad <(Q, + K;) Ap, where 0<e<1,
which is the admissible interval for the boundary layer width. The lower bound
on ¢ is due to the physical meaning, whereas the upper bound is due to the
inequality given above:

T,

S

. 1 B
Ap=——Ad+ FAd’ sgn( N, )sgn(A4,)
° (23)

- 1+ B(0Qs+Ky) Ad

T,
If the term B(Q, + K,) is constrained to be less than unity, the imposed
dynamics becomes globally stable. The analysis presented in this section reveals
that the imposed dynamics is somewhat different from the adopted switching
function because of the constraints on the learning rate (n,) selection; neverthe-
less, the imposed dynamics is globally stable. In the next section, the overall
stability proof of the training algorithm is discussed.
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5. EXTRACTING THE CONDITIONS FOR THE GLOBAL
STABILITY OF THE MIXED TRAINING DYNAMICS

In this section, the global stability of the mixed training strategy is analyzed.
For this purpose, a Lyapunov function given in (24) is defined. In (24), vy, is a
positive constant and its properties are discussed at the end of the section:

1 2 Yo 2
Vo=5(8¢)" + 5(N,) (24)
The time derivative of the Lyapunov function is as given in (25):

V,=ApAd+ y,N,N, (25)

Since the analysis in this section concerns the stability of the mixed training
strategy, the combined form of the learning algorithm, as given below, should be
used in the formulation:

o Apyss + oy Adegp
(a; + )T,

. 1 .
Ve=1|- T Agp+ Ad + vy, NyN, (26)

s

If the Agygg of (18) and the Adpyp of (19) are substituted into (26), one
obtains the following relation, which can assume two different forms due to the
minimum operator:

V= agt s — P in(adl 14, )sen(N,) Ad
¢ Ts (a1+a2)Tr ’ ¢ & ¢
(27)
a, :
My, /N, Ad+ yN,N
(o + o), Ad + (a1+oz2)ng¢ b Db+ YNy N,

Case 1: Al <[Ayl
Since |A¢| = A sgn(A¢), (27) can be rewritten as follows:

1 o, B
- ? Ad)z + m Ad)z sgn(Aqf))sgn(N(b)

s

Ve

a a

A A+ ———¢ N, Ad+ y, N, N, 28
s ¢ (a1+a2)TS§¢¢ ¢ Yo Vg Vg ()

|
!
|
>
&
[\S)

TS m Ad)z sgn(Aqb)sgn(Nd,)

63
LK, AH?

Q4> tanh(Adb) A + m ®

(0‘1 + az)T

m{¢N Ad)+ ’)/d)N N (29)
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Due to Fact 3 of Section 4, the equality in (29) satisfies the following inequality:

. 1 o B a0
AP+ — A2 _ 1®e
v, < T Ap* + (o + a)T, Ap? sgn(A¢)sgn(N,) + (o ay) /T,

“Ky y g2 * N, A N, N, 30
AP+ —— +
(al + az)Tv ¢ (al z)T §¢, ¢ % ( )

(B+Q¢+K¢)a1_i NG+ a,
(a; + a))T; T (a; + ay)T;

Ap?

{pNy A + v, Ny Ny
(31)

If the right-hand side of (30) is rearranged with Fact 2 of Section 4, (31) is
obtained. The inequality in (31) constitutes a time varying quantity, which is
always larger than the quantity in (28). The further analysis for this case will
proceed together with the result of the second case.

Case 2: |A¢| <|Ad¢l

. 1 5 a, B
Vy=——A¢>+ T | Aylsgn(N,) A +

_ A, A
T, (o + )T, s 89

ay
(e + )T,
+——¢ N, Ap+ y,N,N, 32
(a1+a2)Ts§¢ oAb+ %N, N, (32)

o B

T + msgn(Ad,)sgn(Nd,)A A(b

31 @,

b A A+ N, A + N, N, 33
(o + )T, ¢ (o + an)T, ¥ Wholy (39

@
(e + )T,

a; B
+ R —
T, (o + ay)T,

II
|
|
g
<
|5}

sgn(A,)sgn(N,) + A, A

o, *
+—— N, AP+ y,N,N, 34
(a1+a2)Tf¢ o b+ YN, N, (34)

1 o
- Ap? + (011+—1(12)T5( B sgn(Ag)sgn(N,) + I)Ad, A

s

—(a1 )T, {oNy A+ x,,N Ny (35)

Fact 1: A,A¢ <(Q,+K,)A¢*>and A, A > 0.
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Fact 2: min( 8 sgn(A4,)sgn(N,) + 1) =1 — 8 and max( B8 sgn(A4,)sgn(N,) + 1)
=1+Band 0<B< 1.

Due to the facts given above, the following rearrangements can be made:

. 1
Vy< ——A¢>+ (Bsg(A¢ﬁgKA@)+1XQ¢+K%)A¢2

T, (o + ay)T,
012 :
+m§¢N¢A¢+ Yo N Ny (36)
< - 1 Ap? + L(l +B)(Q4 + K,)AP°
T, (ay + ay)T,
az :
+m§¢N¢A¢+ Y N Ny (37)
< —lAqf)Z + L(Q¢+K¢)A¢z
T, (o + ay)T,
” .
+m§¢N¢A¢+ Y N Ny (38)
= (%{;;{{) - % Ap? + ﬁé}% Ad+ %Ny N, (39)
G b L e AR

(40)

If the negativity of the quantity on the right-hand side of the inequality (40) is
ensured, the negativity of the quantity in (31) becomes trivial. Therefore, the
two inequalities can be reduced to one inequality, which is given below. The
global stability of the mixed training dynamics will clearly require the negativity
of the quantity on the right-hand side of (41):

C «
¢ 2 2
I/d)<—TA¢) +

(o, + a,)T LoNp A+ %Ny N, (41)

where

B 2a/(B+ 0, +K,)
o + a,

C,=1 (42)
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Set
2
g,
¢
Yo = . (43)
sup ‘N¢N¢‘
t
where ¢ is the least nonzero value of A¢? observed during a training course.

It should be noted here that one may not know the numerical value of this
number, but there exists such a number in the course of each training trial. With
this value of v,, (41) becomes

oo - Sagre — e — % NN (44)
P () A
sup | NyN,
t
B S VA WP S (45)
T (a + )T, e ¢ ¢
The inequality in (45) follows from the inequality given below:
N,N,
— < (46)
sup ‘N¢N¢‘
t ot
Since o, < A¢?* for all ¢ > 0,
B <—&A¢2+L§NA¢+A¢2 (47)
YT (o + )T,
N Y I A NATTOY (48)
T (a; + )T,

In order to ensure the negativeness of the right-hand side of (48), the following
inequality must be satisfied:

a,+a, (C,—T,)IA
[y < —— (G, T,)IAd (49)

This selection of the learning rate for the EBP part ensures the negative
definiteness of the time derivative of the Lyapunov function in (24). It is clear
that the parameter v, exists, is nonzero, nonnegative, and finite. These facts
justify the particular chosen form of the Lyapunov function, and the analysis
proves that the suggested form of the parameter update rule given in (20) leads
to the stable training of artificial neural networks.
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It is clear that the derivation and the analysis presented impose some
conditions on the design parameters. In the rest of this section, these conditions
are discussed.

1. Due to the requirement on the negative definiteness of the time derivative of the
Lyapunov function, the inequality given in (50) must be satisfied:

2 K
Cp=1- (B Q) (50)

a; + a,

The selection for the learning rate ¢, imposes the following condition:

- 2a( B+ Q,+Ky)

oy + a,

>T, (51)

The inequality in (51) ensures the learning rate 7, assumes positive values. Since
the condition in (51) includes the condition in (503) the constraint in (51) is one of
the restrictions on the design parameters.

2. In order to ensure the stability of the imposed dynamics, which has already been
analyzed in the fourth section, the following condition must hold true:

B(Qs+Ky) <1 (52)

6. TRAINING OF ARTIFICIAL NEURAL NETWORKS

In this section, application of the devised scheme to feedforward neural
networks is presented. In Refs. 5, 8-9, and 28, it is demonstrated that the
structure can effectively be used for identification and control purposes. In
the conventional EBP technique, propagating the output error back through the
neural network, whose structure is illustrated in Fig. 1, minimizes the cost
function given in (2). Based on the derivation presented in detail in Ref. 17, the
delta values for the neurons belonging to the output layer and the hidden layers
are evaluated as given by (53) and (54) respectively:

6k+1 (d f) (S]k+1) (53)
neuronsy, ,
6jk+1 — Z 6k+2 jk+1 r(SI[chl) (54)
h=1

Having evaluated the delta valus during the backward pass, the gradient based
weight update rule described by (55) is applied for each training pair:
Awi]j. EBP = $uk 6jk+10'k (55)

L

The VSS part of the proposed approach estimates the following update value for
parametric stability:

Awfyss = ,Bmln(IAw 1, 1A, I)sgn(N )+ A (56)
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Un(k)

Figure 1. Structure of the feedforward neural network.

The two update laws are then combined as a weighted average as before:

k k
a; Awjjyss + oy AW ppp
Awk = 4 2 (57)

a; + a,

7. PLANT MODEL

In the simulations, the dynamic model of a three degrees of freedom
anthropoid robotic manipulator, whose physical structure is illustrated in Figure
2, is used as the test bed. Since the dynamics of such a mechatronic system is
modeled by nonlinear and coupled differential equations, precise output track-
ing becomes a difficult objective due to the strong interdependency between
the variables involved and the existence of gravitational forces. Therefore,
the methodology adopted must have the capability of coping with the stated
difficulties.

The general form of the dynamics of a robotic manipulator is described by
(58) where M(q), C(q, ¢), g(g), and u stand for the state varying inertia matrix,
vector of Coriolis and centrifugal terms, gravitational forces, and applied torque
inputs, respectively. The nominal values of the plant parameters are given in
Table I in standard units:

M(q)G+C(q,4)4 +8(q) =u (58)

If the angular position and angular velocities are described as the state variables
of the system, six coupled and first order differential equations can define the
model. In (59) through (62), the nonzero entries of the state varying inertia
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Figure 2. Physical structure of the 3-DOF robot used in the simulations.

Table I. Manipulator parameters

Link 1 length 0.50 L
Link 2 length 0.40 L,
Link 3 length 0.40 I
Link 1 mass 4.00 my
Link 2 mass 3.00 my
Link 3 mass 3.00 ms
Distance link 1 CG-joint 1 0.20 I
Distance link 2 CG-joint 2 0.20 .,
Cylindrical link radius 0.05 R
ith cylindrical link inertial parameter E,=mR*/2, E; =m;?/12 E;
ith cylindrical link inertial parameter A,=m;R?/2 A;
ith cylindrical link inertial parameter I =m;l}/12 for i = 2,3 I,
Link 1 torque limits +50.00 Teat1
Link 2 torque limits +40.00 Toar 2
Link 3 torque limits +20.00 Teat3

matrix are described. The nonzero Cristoffel symbols are given in (63) through
(66). The details of the plant model are presented in Refs. 34 and 35.

My, = mylZ, cos’(qy) + my(lyc08(qy) + 13 c0s(q, + 43))2 + E,

+ A, sin*(q,) + E, cos*(q,)

+A;sin’(q, + q3) + Escos’(q, + q;) (59)
My, = myle, sin’(q,) + m3(l§ 15+ 2D COS(%)) t 1+ 1 (60)
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My, = Ms, = m3(lc23 + 1505 c08(q3)) + I (61)
My =myl + 14 (62)
he, = (—myl2, + A, — E,)cos(q,)sin(q,)
+(A; — E;)cos(g, + g5)sin(g, + g3)
+ ms(1, cos(q,) +1.5c08(q, +q3))(—1,sin(q,) —I.5sin(g, + g3))

(63)
hc, = sin(q, + q3)(—m3lc312 cos(q,) + (_m3lc23 +A; — E3)COS(‘12 + 613))

(64)
hey = m, 12, cos(q,)sin(q,) (65)
hey = —myl,l 5 5in(q;) (66)

Coriolis and centrifugal terms are formulated as follows:

2he1G1G, + 2heyq,1G5
C(q,q) = | —hegi + th4(c]2q'3 + %2) + heyds (67)
_hczchz - hc4422

Lastly, the gravity terms are obtained as given in (68), where G represents the
gravity constant:

0
(a1, 45, q5) = | (Maley +m315)G cos(q,) +m;l;G cos(q, +q5) | (68)
ml 3G cos(q, + q3)

8. SIMULATION RESULTS

In the simulations, the plant introduced in Section 7 is controlled by the
neural network structure considered in Section 6. The architecture of the
control system is illustrated in Figure 3, in which the neural controller has one
hidden layer being comprised of neurons having hyperbolic tangent type neu-
ronal activation functions. The output layer neurons have linear activation
functions.

The main objective of the design presented is to achieve precise state
tracking together with small parameter update effort. This is achieved through a
suitable combination of the EBP algorithm and VSS methodology. During the
simulations, all weights and biases of the neural network have been adjusted.
The initial values of the parameters of the neural network have been set such
that the initial control surfaces for all three links approximately resemble that of
a proportional plus derivative (PD) controller having the following parameter
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Figure 3. The architecture of the control system.

set:
Kp BASE Kd BASE 40 40
K, snourper  Kasnourper | =180 260 (69)
K, eLBow KieLsow 150 70

The reference angular position and velocity profiles used in all simulations are
depicted in Figure 4. The simulations are started with initial rest conditions.

Apart from the dynamic complexity of the system under control, a consider-
able difficulty to be alleviated by the algorithm discussed is the existence of the
observation noise. It is assumed that the encoders provide noisy measurements
to the controller. The noise sequence is Gaussian distributed and has the same
statistical properties for all six state variables, namely, each sequence has zero
mean and variance equal to 33e-4. The perturbing signal is illustrated in Figure
5. It is expected that the stabilizing forces created on the adjustable design
parameters will lead to the elimination of the adverse effects of the observation
noise, which excites the high frequency dynamics of the learning algorithm.
Thus, the results obtained will enable the designer to make a fair comparison
between the pure EBP technique and the proposed combination, especially in
the sense of rejecting the high frequency components exciting the training
dynamics.

In the training of the controller structures discussed in the paper, the
squared sum of parametric changes is defined to be the cost of stability, which
runs over all adjustable weights and biases of the neurocontroller:

J(1) = Y (A¢(1))’ (70)
o]
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Figure 4. The reference angular position and velocity profiles.

For the use of the proposed algorithm, «, is set to 2 while «, is equal to 1. The
state tracking errors and applied torque inputs are depicted in Figures 6 and 7,
respectively. It is evident from Figure 6 that the proposed combination results in
precise state tracking under the existence of environmental and structural
difficulties stated above. Furthermore, Figure 7 emphasizes that the control
signals evaluated by the neurocontroller lie within the limits of applicable
control ranges. Therefore, the produced torque signals are directly applied to
the manipulator without requiring saturation. With the same initial conditions,
if «, is set to zero, which disables the VSS part of the algorithm, a divergent
behavior is observed in the state tracking errors, which are depicted in Figure 8.
Unsurprisingly, the produced torque signals, which are illustrated in Figure 9,
tend to diverge and control saturation becomes active. It is apparent from
Figure 9 that neither the magnitudes nor the frequencies of the produced
torque signals are suitable for actuating such a mechatronic device.

The behavior of the total parametric cost described by (70) is depicted in
Figure 10. The left plot of Figure 10 indicates that the cost in (70) reaches very
small values during the early phases of the simulation. This is due to the
parameter stabilizing property of the approach discussed. It must be stressed
that what the EBP method can achieve at best is the marginal stability in the
parameter change space. This characteristic of the standard technique makes it
highly sensitive to the environmental disturbances. In the simulations discussed,
the existence of noise makes this aspect of the EBP technique more visible.
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Figure 7. Produced and applied torque signals with proposed technique.
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Figure 8. State tracking errors observed with pure EBP technique.



STABILIZING LEARNING MECHANISMS OF ANN 385

50
Tia 0 I w
-50

0 5 10 15 20
50 Time (sec)

x10°

Q.5 0

x10 Time (sec)

| | I
| I I

SF---r---i
Top ! Ta 0
0 - -t
l | l
_5 | | 1 _50
Q 5 15 20 0 5 10 15

0 5 10 15 20
Time (sec) Time (sec)

Figure 9. Produced and applied torque signals with pure EBP technique.

Clearly, the presence of observation noise and the requirements of the problem
in hand stimulate the unstable internal dynamics of the EBP method. It is
apparent from the right subplot of Figure 10 that the average magnitude is
increasing in time.

The simulation settings are tabulated in Table II, in which it is apparent
that the constraints stated in (51) and (52) are satisfied.

io° Cost J; with Proposed Method 1010Cost Js with Pure EBP Method
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Figure 10. Time behavior of the parametric cost.
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Table 2. Simulation parameters for
FNN controller

T, 1.0 msec.

B 0.1

aj See section 8
0.1

K 0.1

& 1.0

#Input neurons 6

#Hidden neurons 12

#Output neurons 3

9. CONCLUSIONS

One of the major problems in applications of gradient based training
strategies is the lack of stabilizing forces preventing the unbounded growth in
the magnitudes of the adjustable parameters. This aspect of training without
safety conditions constitutes a barrier between the theoretical developments and
industrial applications, whose prime concern is stability and robustness. The
application examples utilizing the gradient information in training have there-
fore used the architectures of artificial neural networks, which are typically
trained off-line with a priori data. In this paper, we propose a method for
creating stabilizing forces on the training dynamics. The method is based on the
integration of EBP strategy with VSS technique to benefit from the robustness
property of the VSS approach as well as the cost minimizing property of the
EBP method. An analytical study of the conditions of stability in the parameter
change space is presented. Simulation studies are carried out to compare the
performance of the proposed scheme with that obtained with pure EBP tech-
nique. For this purpose, a feedforward neural network is used and the adapta-
tion is performed on the weights and biases of the structure. The task assigned
to the neural network is the control of a three degrees of freedom anthropoid
robotic manipulator. The difficulties to be compensated are the existence of
observation noise and the dynamic complexity of the system under control. The
results stipulate that the proposed approach fulfills the task to be accomplished
much better than ordinary EBP technique. The comparison strongly recom-
mends the use of the algorithm for the applications requiring on-line tuning of
the parameters, stability in the parameter change space, and insensitivity to
environmental disturbances.

This work is supported by Bogazici University Research Fund, Project 99A202.
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APPENDIX

NOMENCLATURE

jth output of ANN structure

A generic parameter of ANN

Optimal value of the generic parameter
Change in parameter ¢

jth entry of observed output error vector
jth entry of desired output vector
Realization cost
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Parametric cost

Learning rate for parameter ¢

Sampling interval of update dynamics
Switching function for parameter ¢

Gain of the switching scheme

Gain of the switching scheme

Boundary layer parameter

Backpropagated error value for parameter ¢
Scaling factor for parameter stabilizing law
Learning rate for cost minimizing law
Lyapunov function for parameter ¢
Weighting factor

jth input of ANN structure

Desired state trajectory for ith link

Actual state trajectory for ith link

Neuronal nonlinear activation function

Net summation of the jth neuron in the (k + 1)th layer
Delta value of the jth neuron in the (k + Dth layer
Output of the ith neuron in the kth layer
Produced torque input for ith link

Applied torque input for ith link
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