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Abstract. Compact representation of knowledge having strong internal 
interactions has become possible with the developments in neurocomputing and 
neural information processing. The field of neural networks has offered various 
solutions for complex problems, however, the problems associated with the 
learning performance has constituted a major drawback in terms of the 
realization performance and computational requirements. This paper discusses 
the use of variable structure systems theory in learning process. The objective is 
to incorporate the robustness of the approach into the training dynamics, and to 
ensure the stability in the adjustable parameter space. The results discussed 
demonstrate the fulfillment of the design specifications and display how the 
strength of a robust control scheme could be an integral part of a learning 
system. This paper discusses how Gaussian radial basis function neural 
networks could be utilized to drive a mechatronic system’s behavior into a 
predefined sliding regime, and it is seen that the results are promising. 
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1   Introduction 

The innovations observed in the field of digital technology particularly in the last few 
decades have accelerated the analysis and interpretations of data collected from 
physical phenomena, and have made it possible to design and implement the systems 
based on the former work. Tools used for this purpose have been refined, and 
artificial neural networks, as one of the powerful tools for modeling and 
representation of complex mappings, have taken a central role. What make them so 
attractive have been their capability of representing inextricably intertwined 
dependencies in a large data set with a simple model, the learning and generalization 
ability, furthermore, to do all these with a certain degrees of fault tolerance. 

When the applications of neural networks are visualized together with the process 
of refining the future performance, i.e. the process of learning, several important 
issues need to be addressed very carefully. These contain, but are not limited to the 
issues related to the parametric stability, generalization versus memorization, setting 
up the architectural degrees of freedom and so on. 
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The first important milestone in the area of training process is the discovery of 
Error Backpropagation (EBP) technique [1], which is also known as MIT rule or 
gradient descent in the literature. Since the EBP method concerns the first order 
partial derivatives of a cost function, the studies appeared later on have focused on the 
extraction of a better path to the minimum cost solution by exploiting the information 
contained in second order derivatives of the cost measure. Newton’s method [2], 
Conjugate Gradient Algorithm [3] and Levenberg-Marquardt (LM) optimization 
technique [4] are the most prominent ones used frequently in the neural network 
applications. An inherent problem associated with all these schemes has been  
the sensitivity of the learning model to the high frequency components additively 
corrupting the training pairs. One method that has been discussed in the literature 
 is due to Efe et al [5-6], which suggest a dynamic model for the training process  
and develop a stabilizing scheme by utilizing Variable Structure Systems  
(VSS) theory. VSS theory is a well-formulated framework for designing control 
systems particularly for plants having uncertainties in the representative models. The 
approach has extensively been used for tracking control of nonlinear systems and a 
good deal of VSS and intelligence integration have been discussed in [7-8] also with 
the name Variable Structure Control (VSC), which is a VSS theory based control 
scheme. 

In what follows, we scrutinize the concept of VSS theory use in neurocomputing 
from systems and control engineering point of view. For this purpose, we shall use 
Gaussian Radial Basis Function Neural Networks (GRBFNNs) introduced in the 
second section. The third section is devoted to the extraction of an error critic, which 
is to be used in parameter tuning stage. In the fourth section, a simulation example is 
considered and the concluding remarks are presented at the end of the paper. 

2 Gaussian Radial Basis Function Neural Networks (GRBFNN) 

In the literature, GRBFNNs are generally considered as a smooth transition between 
Fuzzy Logic (FL) and NNs. Structurally, a GRBFNN is composed of receptive units 
(neurons) which act as the operators providing the information about the class to 
which the input signal belongs. If the aggregation method, number of receptive units 
in the hidden layer and the constant terms are equal to those of a Fuzzy Inference 
System (FIS), then there exists a functional equivalence between GRBFNN and FIS 
[9]. As illustrated in Fig. 1, the hidden neurons of a GRBFNN possess basis functions 
to characterize the partitions of the input space. Each neuron in the hidden layer 
provides a degree of membership value for the input pattern with respect to the basis 
vector of the receptive unit itself. The output layer is comprised of linear neurons. NN 
interpretation makes GRBFNN useful in incorporating the mathematical tractability, 
especially in the sense of propagating the error back through the network, while the 
FIS interpretation enables the incorporation of the expert knowledge into the training 
procedure. The latter is of particular importance in assigning the initial value of the 
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Fig. 1. Structure of a GRBFNN having m-input and single output 

 
network’s adjustable parameter vector to a vector that is to be sought iteratively. 
Expectedly, this results in faster convergence in parameter space. 

Mathematically, oi=Πm
j=1Ψij(uj) and the hidden layer activation function is the 

Gaussian curve described as Ψij(u)=exp{−(uj−cij)
2/σij

2}, where cij and σij stand for the 
center and the variance of the ith neuron’s activation function qualifying the jth input 
variable. The output of the network is evaluated through the inner product of the 
adjustable weight vector denoted by φ and the vector of hidden layer outputs, i.e. τ = 
φ To. Clearly the adjustable parameter set of the structure is composed of {c, σ, φ} 
triplet. 

3 VSS Theory from a Learning-Strategic Point of View 

The pioneering works due to Sanner and Slotine [10] and Sira-Ramirez and Colina-
Morles [11] have demonstrated the first successful results in learning design with 
VSS theory. The latter introduced the concept of zero learning error level, which 
makes the design of switching manifold comprehensible for first order systems. Since 
the design of VSC involves a decision based on a two sided mechanism, the boundary 
of which is characterized by the switching manifold, the geometric location of the 
manifold for first order systems becomes a point in one dimensional space and is 
defined to be the zero level of learning [11]. Although a zero level is postulated 
conceptually, the achievement of which is a challenge unless there is a supervision 
providing the desired values of the neural network outputs. In [12], an appropriate 
measure relating the dynamics of the switching manifold and controller error is 
postulated. 

In what follows, we briefly explain how an appropriate error measure for control 
error could be constructed, and demonstrate how this measure could be used for 
control applications. For this purpose, it is assumed that the system is in an ordinary 
feedback loop as illustrated in Fig. 2. 
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Fig. 2. Structure of the feedback control loop 

3.1   Obtaining an Equivalent Control Error 

Consider the system ( ) ( )τ , xbxxfx += , where ( )T, xx  is the state vector, τ is the 

input vector and f and b are unknown continuous functions. If xd is defined to be the 
vector of desired trajectories, one can describe the tracking error vector as e=x−xd and 
construct the control signal that derives the system towards the prescribed sliding 
regime. The design is based on a two-sided switching mechanism, the argument of 
which is defined as sp=de/dt+Λe with Λ being a positive definite diagonal matrix of 
appropriate dimensions. The aim is to ensure the negative definiteness of the 
Lyapunov function Vp=sp

Tsp/2. The control sequence can now be formulated as 

( ) ( ) ( )( )dp xsexxfxb −Ξ+Λ+−= − sgn,1τ , where, Ξ is a positive definite diagonal 

matrix. The application of the well-known sliding control law above the system 
enforces ( )pp ss sgnΞ−= , which ensures the reaching to the hyperplane sp=0. 

Proposition: Let τd be the vector of control signals that meets the performance 
specifications. If sC is defined to be the vector of discrepancies between the target and 
evaluated values of the control vector, and if the controller parameters are adjusted 
such that the cost function J=sC

TsC/2 is minimized, the tracking error vector is driven 
towards the switching manifold. Here, sC is defined to be the error on the control 
signal and is computed as given in (1). 

( )ppC sss sgn: Ξ+=  = τ  − τd (1) 

In reality, one does not know the numerical value of τd, however, within the 
context of discussed problem, the set of all control signals forcing the system towards 
the sliding manifold can be considered as the target control sequence, which 
minimizes sC. Practically, this means 0<pp ss , i.e. all trajectories in the phase space 

tend to the sliding manifold and the ideal behavior thereafter takes place in the sliding 
subspace. An indirect implication of this is the fact that since ( )ppC sss sgnΞ+= =0 

is maintained, the parameters of the controller are not adjusted during the sliding 
regime. At this point, we dwell the numerical computation of this error measure. The 
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obvious difficulty is the computation of the time derivative of sp. Our prior tests have 
proved that an approximate numerical differentiation works even with the noisy 
observations. Introducing a stable linear filter with numerator of order one in Laplace 
domain can suitably provide the information needed. The reason why we do not need 
the exact value of the derivative stems from the fact that the desired behavior is not 
unique. If a trajectory starting from an arbitrary initial point in the space tends to the 
sliding manifold then it is one of the desired trajectories, however, the selection of Ξ 
uniquely determines the way of approaching the sliding manifold. The information 
loss due to the derivative computation can be interpreted as a slight modification of 
the reaching dynamics characterized by )sgn( pp ss Ξ−= . The second question is on 

the selection of the diagonal positive definite matrix Ξ. If the entries increase in 
magnitude, the reaching phase of the control strategy produce large controls in 
magnitude and several hittings occur, however, the values close to zero result in slow 
reaching to the sliding manifold with relatively less number of hittings. The designer 
has to decide on what he/she pursues together with the physical reality regarding the 
plant under control. For example, for a cargo ship steering example, enforcing the 
convergence to a desired behavior in a few seconds would require unrealistically 
large-magnitude control activity, while for a direct drive robotic manipulator the 
response could reasonably be fast to fulfill the imposed task. Lastly, the infinite 
switching frequency of ideal sliding mode should be addressed. Clearly from 

)sgn( pp ss Ξ−= , one should notice that the enforced behavior ultimately converges 

to a practically impossible phenomenon. Since the right hand side of the equation is 
discontinuous in the vicinity of the origin, the near origin activity is an oscillation 
ideally at infinite frequency, called chattering in the terminology of sliding control. 
One approach to eliminate the adverse effects of chattering is to introduce a boundary 
layer by replacing the discontinuous sign function with a smooth approximate such as 

( ) ( )δααα +≅  /sgn , where δ >0 is the parameter determining the accuracy of the 

approximation. 

3.2   Issues of Parameter Tuning 

The quantity described in (1) can be used in several ways. Assume that the system is 
under the feedback loop as illustrated in Fig. 2, and the tuning strategy is the EBP 
rule. Denoting φ as the vector adjustable parameters of a neural network structure, the 
law enforces the following tuning mechanism: 

φ
τ

η
φ

ηφ
∂
∂

−=
∂
∂−= ∑

=

jn

j
Cjs

J

1
 (2) 

where 2/1
2∑ == n

j CjsJ  and η is the learning rate in the conventional sense. The 

similar reasoning can be postulated for other learning algorithms as well. 
If the output of a neural network structure is linear in the adjustable parameter 

vector (φ), e.g. in the case of GRBFNN with only output weights adjustable, 
alternative mechanisms could be proposed. In (3), the tuning law proposed by Sira-
Ramirez et al [11] has been given. 
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( )
iCi

ii

i
i

sk sgn
T ΩΩ

Ω
−=φ  (3) 

In above, ki is the uncertainty bound satisfying 
idii

BBBki τφ +> Ω  and Ωi is the 

vector excitation signals. Setting of ki obviously requires the knowledge on the 

following bounds 
i

B
i φφ ≤ , 

i
Bi Ω≤Ω  

id
Bid ττ ≤ , which are typically unknown, 

therefore a compact ki value is set by trial and error. For a detailed discussion on this 
adaptation law, one should refer to [7,11-12]. 

Alternatively, one might suggest the use of tuning strategy in (4), which is 
designed to ensure the negative semi-definiteness of the Lyapunov function in (5). 
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where μ > 0 and ρ > 0 are the free design parameters determining the relative 
importance of the terms seen in (5), and 
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Clearly the above law and the Lyapunov function suggest that the parametric 
growth is penalized. Further discussion on this approach has been presented in [7]. 
For the strategy in (3), the zero error learning level is characterized by sCi = 0, while 
the latter uses an augmented switching manifold given as in (6). The law of (4) 
enforces a motion taking place in the vicinity of 0=iAs . 
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4   An Illustrative Example 

To demonstrate the efficacy of the presented concept, the control of a 2 degrees of 
freedom direct drive arm is considered. The dynamics of the manipulator is described 
by the following vector differential equation. 

( ) ( )( )xxCfxMx
c

,1 −−= − τ  (7) 

where, M(x), C( xx, ), τ and fc stand for the state varying inertia matrix, the vector of 

Coriolis terms, the applied torque inputs and the Coulomb friction terms respectively. 
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The plant parameters are given in Table 1 in standard m-kg-s units. If the angular 
positions and angular velocities are described as the state variables of the system, four 
coupled and first order differential equations can define the model. In (8) and (9), the 
terms seen in (7) are given explicitly. 
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Fig. 3. Reference trajectories for base and elbow links 

In the above equations, p1 = 3.31655+0.18648Mp, p2 = 0.1168+0.0576Mp and p3 = 
0.16295+0.08616Mp. Here Mp denotes the payload mass. The details of the plant 
model can be found in Direct Drive Manipulator R&D Package User Guide [13]. 

Since the dynamics of such a mechatronic system is modeled by nonlinear and 
coupled differential equations, precise output tracking becomes a difficult objective 
due to the strong interdependence between the variables involved. Additionally, the 
ambiguities on the friction related dynamics in the plant model and the varying 
payload conditions make the design much more complicated. Therefore the control 
methodology adopted must be capable of handling the difficulties stated. 

As the controller, two GRBFNN structures having 2 inputs 9 hidden neurons and 
single output are used for each link, and only the weight parameters are adjusted with 
the tuning law of (3). Initially, the adjustable parameters have been set to zero and the 
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Table 1. 2D Manipulator parameters 

Motor 1 Rotor Inertia 0.2670  Payload Mass (Mp) 2.0000 

Arm 1 Inertia 0.3340  Arm 1 Length 0.3590 

Motor 2 Rotor Inertia 0.0075  Arm 2 Length 0.2400 

Motor 2 Stator Inertia 0.0400  Arm 1 CG Distance 0.1360 

Arm 2 Inertia 0.0630  Arm 2 CG Distance 0.1020 

Motor 1 Mass 73.000  Axis 1 Friction 4.9000 

Arm 1 Mass 9.7800  Axis 2 Friction 1.6700 

Motor 2 Mass 14.000  Torque Limit 1 245.00 

Arm 2 Mass 4.4500  Torque Limit 2 39.200 
 

uncertainty bounds have been set as k1=10000 and k2=1000. The simulation has been 
performed for 20 seconds, and the integration step size has been chosen as 2.5 ms. In 
response to the reference trajectories depicted in Fig. 3, the error trends shown in  
Fig. 4 are obtained. Clearly the suggested form of tuning and control strategy is 
capable of alleviating the nonzero initial errors together with a load of 2 kg grasped at 
t=2 sec, released at t=5 sec, and grasped again at t=9 sec and released at t=12 sec. This 
clearly introduces an abrupt change in the dynamics of the system and necessitates a 
robust controller to compensate the behavioral changes. Although not presented here, 
in the phase space, the behavior for each link is maintained on the loci characterized by 
λ=1 with tolerably small and convergent spikes in elbow velocity error. 
    The control inputs are depicted in the top row of Fig. 5, which reveals that the 
produced control signals sufficiently smooth and are of reasonable magnitudes. In the 
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Fig. 4. State tracking errors 
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Fig. 5. Control inputs and parameter norms 

 
bottom row of Fig. 5, the evolution of the Euclidean norm of the adjustable parameter 
vectors are shown. The obtained results clearly suggest that the tuning mechanism 
stops modifying the values of the parameters right after the sliding regime starts. 
Therefore, it can be claimed that the learning dynamics is internally stable for both 
controllers and the control system is robust against disturbances such as payload 
change as considered in this work. 

5   Conclusions 

This paper presents the use of VSS theory in training of GRBFNN type controllers. 
For this purpose, a novel error critic is discussed, and several tuning laws are 
presented. It has been exemplified that a tuning activity minimizing the proposed 
error measure drives the system under control into a prespecified sliding mode and 
results in robust and precise tracking. A robotic manipulator has been chosen as the 
test bed, and the internal stability of the adjustable parameter dynamics has been 
visualized. Briefly, the use of VSS theory for parameter tuning purposes introduces 
the robustness and invariance properties of the VSC technique, which results in some 
desirable features during the control cycle. 
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