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Abstract The problem of obtaining the error at the
output of a neuro sliding mode controller is analyzed in
this paper. The controller operates in discrete time and
the method presented describes an error measure that
can be used if the task to be achieved is to drive the
system under control to a predefined sliding regime.
Once the task-specific output error is calculated, the
neurocontroller parameters can be tuned so that the task
is achieved. The paper postulates the stratcgy for dis-
crete time representation of uncertain nonlinear systems
belonging to a particular class. The performance of the
proposed technique has been clarified on a third order
nonlinear system, and the parameters of the controller
are adjusted by using the error backpropagation algo-
rithm. It is observed that the prescribed behavior can be
achieved with a simple network configuration.

Keywords Backpropagation training - Control error
extraction * Discrete time sliding mode control -
Nonlinear control - Neural networks + Neurocontrol

1 Introduction

Neural networks (NNs) have successfully been used for
many purposes extending from image processing and
pattern recognition to identification and control of sys-
tems. The motivation encouraging the use of NNs in
such a wide spectrum of applications has mainly been
the ability to represent complex nonlincar mappings,
and the learning and generalization of data together
with powerful training strategies and anticipatory
behavior. Furthermore, the architectural diversity of
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NNs has constituted an advantage exploited to find the
best structure for the problem in hand. The practice of
systems and control engineering has therefore exten-
sively benefited from the design alternatives provided
through the use of NNs. '

Among many strategies existing for parameter tun-
ing, the error backpropagation (EBP) method has been a
standard approach in most applications {1, 2, 3, 4, 5].
When the target values of the desired map are given,
EBP is a good start for NN training, yet the cases in
controller design are not so trivial. The common prob-
lem in the neurocontroller training is the unavailability
of the error on the applied control signal [6]. In other
words, to be able to modify the weights of a neurocon-
troller, there has to be a measure of error at the output
of the controller. In the literature, one approach is to
identify the plant and to propagate the output error
back through the identifier until the controller outputs
are reached [3, 4]. When the output error is obtained, the
controller parameters can be tuned by the EBP tech-
nique so that a specified task is fulfilled. Some practical
drawbacks are the increase in the computational burden
due to the identification process and the problems
associated with persistent excitation. In this paper, we
derive the error measure for the discrete time sliding
mode control (DTSMC) task for a class of uncertain
nonlinear systems. The contribution of this paper to the
literature is the introduction of a new error measure
that:

- can be used for the training of the feedback neuro-
controller online,

— can be used for all sorts of supervised training schemes

— does not necessitate the exact knowledge of the plant
dynamics,

- drives the plant dynamics into the desired sliding re-
gime and

— quantifies the control signal according to the enforced
task, which is the DTSMC regime.

The design of sliding mode controllers is a well-
developed framework especially for systems represented
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in continuous time. The approach has been utilized
particularly in the applications .wher_e.therc? are strong
interdependencies between nonlinearities, time varying
parameters, time delays and noise [7, 8]. In the litera-
ture, various techniques towards the integration of
sliding mode control with NNs have been presented [9,
10, 11]. The design issues for conventional DTSMC
have later been addressed in [12], which scrutinizes the
design of DTSMC with particular emphasis on reach-
ing the law approach, and exemplify the results on a
second order linear system having uncertain parame-
ters. One of the notable works discussing the stability
issues in DTSMC is presented in [13], in which the
sufficient conditions for convergence are discussed.
Pieper et al. [14] analyze the optimality in DTSMC
from the point of designing optimal sliding surfaces
with a linear quadratic criterion, and confirm the re-
sults on a gantry crane apparatus. Sira-Ramirez [15]
discusses the convergence during quasi-sliding mode for
nonlinear single input single output (SISO) systems,
and Chen et al. elaborate the sampling time selection
problem in computer controlled systems with a sliding
mode [16]. In [17], Misawa analyzes the construction of
DTSMC under the presence of unmatched uncertain-
ties. One of the recent studies in DTSMC formulates a
recursive control signal for linear systems and proves
that the state of the system is uniformly ultimately
bounded in the presence of time-varying disturbance
and uncertainties [18]. In [19], the DTSMC task is
studied for discrete time input-output modcls, and in
(20}, the design based on the Euler discretization is
analyzed. Aside from the approaches analyzing the
state space representations, a number of studies have
demonstrated that NNs can successfully be used in
DTSMC systems [21, 22, 23].

In what follows, we describe the task and the pro-
posed technique for control error extraction, which is
the primary difficulty in most intelligent control systems.

The third section describes the plant on which the per-
" formance of the scheme is visualized, and presents the
simulation results. The concluding remarks are given at
the end of the paper.

Fig. 1 The structure of the
feedback control system

2 Task definition and the control error extraction

Consider the control system structure depicted in Fig, 1,
in which the plant inside the dashed rectangle is a SISO
one, whose states are assumed to be observable. The
inputs to the plant and the observed states are sampled
by zero order holders (ZOHs) as shown in the figure,
and the technique yet to be discussed enjoys the discrete
nature of the data. Note that the subscript & stands for
the discrete time index, and the dynamics inside the
dashed rectangle is governed by a set of difference
equations of the form given below.

(1

where x; = [x1;  xy Xnk ]T is the state vector f{x;),
is a nonlinear vector function of the system state and is
unavailable, whereas g(k) is a vector function of time
and the sign of it is known. The abovementioned system
can compactly be written as

Xyt = f(x0) + g(k) ue

Xrt1 :[k+gk U

According to Fig. 1, the error vector at time k is
defined as e, = x;-r4, where ry is the vector of reference
state trajectories at time k. Define the switching function
as
Sk = ETQ( (2)
in which the vectora is selected such that the dynamics
determined by s, = 0 is stable, and it is assumed that gT
& >0. Now adopt a closed loop switching dynamics
described generically as s; ., = Q(sy), and evaluate s, ,
as given below.

(3)

Using s;+1 =Q(sz), and solving for u; gives the
control sequence formulated as follows.

Sk =af (L( +g.u— Ek+1)

e = —(gfgk)‘l(f(]_”k—rm) - ¢'(s)) (4)
SCk Z v Uk
+
C(I)\Inetl:cl;zllller x(0)




If the values of the vector functions f; and g, were
known explicitly, the application of this sequence to the
system of Eq. 1 would result in st = Q(sx), where Q
must satisfy the condition below to ensure reaching [12,
13, 15, 16].

(5)

If the abovementioned condition is satisfied for V=0,
the system is driven towards the dynamics characterized
by s, = 0. However, in practice,s, = 0 is rarely observed
as the problem is described in discrete time. A realistic
observation is |si] < ¢, where ¢ is some positive number.
In the literature, this phenomenon is called the quasi-
sliding mode, or equivalently the pseudo-sliding mode
[12, 16, 23]. This mode has useful invariance properties
in the face of uncertainties and time variations in the
plant and/or environment parameters. Once the quasi-
sliding regime starts, the error signal behaves as pre-
scribed by sl <e.

se(Skrr — sk) = sk(Q(se) — 51) <0

2.1 The calculation of the task specific controller
output error

Define the task as the DTSMC of a plant of the form
given in Eq. 1, whose ultimate behavior is to be enforced
towards what is prescribed by sp+;= Q(si). Consider
Fig. 1, which demonstrates that the quantity s would
be the error on the applied control signal if we had a
supervisor providing the desired value of the control
denoted by uy. However, the nature of the problem
does not allow the existence of such a supervisory
information; instead, the designer is forced to extract the
value of s from the available quantities. In what fol-
lows, we present a method to extract the error on the
control signal.

Assumption 2.1: The vector functions f; and g, of
Eq. 1 are such that a desired quasi-sliding mode can be
created with a suitable selection of the design parame-
ters; more explicitly, we assume that the DTSMC task is
achievable.

Remark 2.2: A control sequence leading to the de-
sired DTSMC can be formulated if the dynamics of the
system described by Eq. 1 is totally known or if the
nominal representation is known with the bounds of
the uncertainties. It must be noted that the distur-
bances and uncertainties are assumed to enter the
system through the control channel [7]. When the
control sequence in Eq. 4 is applied to the system of
Eq. 1, we call the resulting behavior as the target
DTSMC and the input signal leading to it as the target
control sequence (uy). If at least the explicit forms of the
nominal representations of the vector functions f; and
g are not known, it should be obvious that the target
control sequence cannot be constructed under such an
uncertainty by following the traditional DTSMC design
approaches.
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Definition 2.3: Given an uncertain plant, which has
the structure described as in Eq. 1, and a command
trajectory ry for k20, the input sequence denoted by uy
satisfying the following difference equation is defined to
be the idealized control sequence, and the difference
equation itself is defined to be the reference DTSMC

model. In this representation, r, = [rix ru -+ rw]’
stands for the vector of command trajectories.
Fipr = fri) + g(k) uar (6)

Mathematically, the existence of such a model and
the sequence means that the system of Eq. 1 perfectly
follows the command trajectory (ry) if both the idealized
control sequence (uz) 1s known and the imitial condi-
tions are set as xo=ro; more explicitly e, = 0 for Vk=0.
Undoubtedly, the reference DTSMC model is an
abstraction as the functions appearing in it are not
available. However, the concept of an idealized control
sequence should be viewed as the synthesis of the com-
mand signal ry from the time solution of the difference
equation in Eq. 6.

Fact 2.4: If the target control sequence formulated in
Eq. 4 were applied to the system of Eq. 1, the idealized
control sequence would be the steady state solution of
the control signal, i.e. 11m u; = ug. However, under the

assumption of the achlev:ﬁ)lhty of the DTSMC task, the
difficulty here again is the unavailability of the func-
tional forms of f; and g.. Therefore, the aim in this
subsection is to discover an equivalent form of the dis-
crepancy between the control applied to the system and
its target value by utilizing the idealized control view-
point. This discrepancy measure is denoted by scx = ur—
ug- 1f the target control sequence of Eq. 4 is rewritten
by using Eq. 6, one gets

~-(a) ( (£
- () (16

:—(zTgk) ( "Af, — Qs ))+udk (7

where Af, = f(x (x) — f(ry). The target control sequence
becomes § identical to the idealized control sequence,
le.u, = uy as long as o _[k O(si)= 0 holds true for
Vk=0. However, this condition is of no practical
importance as the analytic form of the function f is not
available. Therefore, one should consider this equality as
an equality to be enforced instead of an equality that
holds true all the time, because its implication is s¢y = 0,
which is the ultimate goal of the design. It is obvious
that to enforce this equality to hold true will let us
synthesize the target control sequence, which will even-
tually converge to the idealized control sequence by the
adaptation algorithm yet to be discussed. Consider 54+
given below.

xp) — f(re) — udk) - Q(Sk))

) = 0(0)) + va
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Sk = @T(&ﬁul - l’k+1)
=g Sxp) + gk — f(ry) _Qkud’f)
of A+ ngCk)
O(sy) + ngkSCk (8)

M

Il

Solving the above equation for sq yields the fol-
lowing

so = (2'g,) " (se — Os0) )

The interpretation of the abovementioned control
crror measure is as follows: since we are in pursuit of
enforcing ;. =Q(s;) in the closed loop, during the
time until which this equality does not hold true, the
applied control sequence carries some error. However, if
the tuning activity in the neurocontroller enforces Eq. 9
to approach zero, this enforces a’A Q@)= 0 to
approach zero, j.e. Skv1 = Q(sp), consequently
U — Uge as k increases.

Remark 2.5: Notice that the application of Uy for
Vk20 to the system of Eq. 1 with zero initial errors will
lead to € = 0 for Vk=0. On the other hand, the
application of u, for Vk20 to the system of Eq. 1 will
lead to 5, = 0 for Vkzk,, where kg is the hitting time
index, at which the quasi-sliding regime starts. There-
fore, the adoption of Eq. 9 as the equivalent measure of
the control error loosens ¢ = 0 for Vk20 requirement
and enforces 5, , | — O(sp). Consequently, the tendency
of the control scheme will be to generate the target
DTSMC sequence w, of Eq. 4.

Remark 2.6; Referring to Eq. 9, it should be obvious
that if Sci(Sck+1—5cx) < 0 is satisfied Sk(Sk +1-8.) <0 is
enforced. In other words, if the control signal ap-
proaches the target control sequence, the DTSMC task
is achieved and the plant follows the command signal.

Proposition 2.7: Since SCk = Uk —Ugy, the cost at each
instant of time can be defined as

1

which instantly qualifies the similarity between u; and
Uy 1If the parameters of the neurocontroller are tuned
such that the cost in Eq. 10 is enforced toward Zero, the
task implied by s, =0 is achieved. More explicitly, a
System of structure Eq. 1 in the feedback loop illustrated
in Fig. 1 can be driven towards a predefined quasi-slid-
ing mode if the training algorithm for the adopted
neurocontroller enforces the minimization of the cost
measure given in Eq. 10,

In what follows, we describe the structure of the
controller and the chosen tuning scheme together with
the relevance with what have been derived so far.

2.2 The neurocontroller and the tuning scheme

In the analysis presented so far, we have described the task
and the analytic representation of the error to be used in

Uy

Fig. 2 The structure of a feedforward NN

training. Although the presented approach is applicable
to any NN model, in this study, we consider the feedfor-
ward NN structure because of its widespread use.,

The neurocontroller utilized in this paper has the
architecture and input output definitions as depicted ip
Fig. 2. In Eq. 11, the mathematical representation for
such a three-layered NN is given.

ue = WY (We, - B,) - By (11)

In the abovementioned formula, Wzand W; are
weight matrices, B, and Bg are the bias vectors and ¥ is
the nonlinear activation function of the neurons con-
tained in the hidden layer. The activation function of the
output layer neuron is linear. Among many alternatives
existing in the literature, we choose the hyperbolic tan-
gent function for the neurons in the hidden layer.

The parameter tuning can be done by using EBP
technique as well as higher order methods, e.g., the
Levenberg-Marquardt optimization method, the Gauss-
Newton algorithm or conjugate gradients [24]. In order
to demonstrate the viability of the extracted error
measure, we use the EBP lechnique for parameter
adjustment, According to the EBP-based tuning strat-
€gy, in order to minimize the cost of Eq. 10, if ¢ is
defined to be a generic adjustable parameter of the
neurocontroller, the adjustment of ¢ is carried out by
the rule given as

ey
Py e —1 9,
BSCk
== — NSy ———
(rbk ’7 Ck ad)k
Oy — uy)
Oy

_ c‘)uk
=~ nscu 5%, (12)

=y — nscy

where 7 is the learning rate chosen from the interval (0,1)
and Jezand s¢y are defined as in Eq. 10 and Eq. 9,
respectively. It is apparent that Jo. — 0 means Sck
— 0, hence w; — uy. The update rule of Eq. 12 js ap-
plied to all entries of Wr, W, B, and Br at each
sampling instant.

Note that we assumed ngk > 0. With s¢ of Eq. 9, the
rule in Eq. 12 becomes




e
99y

1
in which we can set { =7 (QTQ,() and choose the value
of { as gi is unknown.

N
b1 = P — '1(@ gJ(> (Sk+1 — O(sx))

2.3 Practical Issues

The analysis presented so far has concentrated on the
class of systems having the structure described in Eq. 1.
It should be obvious that the system under control in
real life will be a sampled form of a continuous system,
which can generically be represented as

x = a(x,u) (13)

The abovementioned system can be viewed as the
plant block in Fig. 1. Consequently, the system of Eq. 1
will correspond to the sampled system inside the dashed
rectangle of the figure.

2.3.1 i. The sampling time

Since the design presented is based on the discrete time
representation of a continuous time system, the selection
of the sampling time gains a substantial importance. We
assume that the sampling period is small enough so that
the response of the discrete time system matches suffi-
ciently to that of the continuous time system. Further-
more, the dicretized form of the system belongs to the
class described in Eq. 1.

2.3.2 ii. Causality

In Eq. 9, we have postulated the error on the applied
control at time k. However, the right hand side of Eq. 9
requires the value of s, ;. In the application example,
we set scp — (ch

-1

a'g, ) (se— Q(sg_1)), the right hand
side of which is actually the control error at time k-1.
Assuming this form as a practically equivalent measure
of the control error, we introduce some amount of
uncertainty into the control system, which can be rep-
resented in the system dynamics that has already been
assumed to be unknown.

2.3.3 iii. The actuation speed

Another important issue is the actuation speed of the
system under control, i.e., the ability to respond to
what is imposed in a timely fashion. Since we assume
that the details concerning the dynamic model of the
system are unavailable, what causes a difficulty from a
practical point of view is the selection of sg+ 1= Q(s),
which characterizes the behavior during the reaching
mode. The parameters of this quantity can only be set
by trial-and-error due to the lack of system-specific
details.
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In the application example, we utilize 5,4,
(1-2,T)se—A-Tsgn(sy), where 1,>0, A>>0 and
1—A,T,>0 with T, being the sampling period [12].

2.3.4 iv. An enhancement of the behavior
in the quasi-sliding mode

It is a well known fact that the use of the sgn(.)
function, particularly during the sliding mode for
continuous time variable structure control systems, af-
fects the performance during the sliding mode adversely
as the measured quantity is very close to zero, and this
leads to the chattering phenomenon [25]. However, in
discrete time, once the trajectory in the phase space
crosses the switching hyperplane, it maintains the
crossings repetitively and a zigzag motion along the
switching hyperplane occurs [12]. Although the stability
requirements ensure that the magnitude of the zigzag-
ging motion is bounded, adopting a smooth transition
about the decision boundary can enhance the tracking
performance in terms of reducing the magnitude of the
zigzagging during the sliding mode. For this purpose,
we adopt the following approximation for the sgn(.)
function.

Sck

sgn(sce) 2 ————

lSCkI + é (14)

where, & determines the sharpness around the origin.
Since the function in Eq. 14 is not discontinuous at the
origin, the decision mechanism provides a soft switching
in the vicinity of the boundary characterized by scx=0.

3 The dynamics of the plant under control
and simulation results

In this section, we demonstrate the performance of the
algorithm on a third order system studied previously in
[26, 27]. The continuous time dynamic equation
describing the system is given in Eq. 15-17. Clearly, the
system will be of structure described in Eq. 1 when
discretized by using the Euler method.

X1 =x+di (15)
(16)

%3 = —0.5%, —0.58 ~ 0.5 }xs| + (1+ 0.1 sin (%t))u

+dy +dy + (—0.05 + 0.25sin (5nt))x,
+ (~0.03 + 0.3 cos (5m¢))x3
+ (=0.05 +0.25 sin (7nr) )x3)x3 |

h=xit+d»

(17)

where d,(¢)=0.2sin(4nt) is the disturbance used in [26,
27], and d{r) with i=1,2,3 are the Gaussian noise se-
quences corrupting the state information to be used by
the neurocontroller additively. The mean and variance
of each noise sequence are equal to zero and 0.33*1077,
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respectively., Furthermore, |d{(r)| < 0.007 with a proba-
bility very close to unity. The work presented in [26]
assumes that the nominal system dynamics is known and
the uncertain part is comprised of what we give as the
last three terms in Eq. 17. The primary difference be-
tween what we discuss and what is assumed in [26] is that
the approach we propose assumes only the achievability
of the DTSMC task; hence, the uncertainties are repre-
sented in the system dynamics, whose form is known but
the details are not.

The sampling time has been set as T,=2.5msec, the
switching function parameters have been selected as
a=[12 1]" and the parameters of the reaching law are
chosen as 4;,=380 and,=1. The neurocontroller pos-
sesses three inputs, a single hidden layer containing three
neurons and a single output neuron. Initially, the
weights and the biases of the network have been chosen
randomly from the interval [0, 0.1]. Furthermore, the
learning rate of the EBP-based parameter adjustment
strategy has been chosen as {=0.01, and we set 5 =0.05
for the sign function smoothing. As & tends to zero, the
adverse effects of the discontinuity at the origin becomes
distinguishable. However, with large values of this
quantity, Eq. 14 becomes no longer an approximation
to the sgn(.) function. A similar tradeoff exists for the
selection of the learning rate {, whose small values in-
crease the convergence time, whereas the values closer to
unity increase the parametric mobility and undesired
overshoots become effective. Parallel to [26], the refer-

ence state trajectory described in Eq. 18is used in the
simulations.

ri(t) = 0.5cos (0.2mz)
r(t) = —0.1nsin (0.2n1) (18)
r3(t) = —0.02n° cos (0.2n1)

Initially, the states of the system have the following
values: x,(0) = 1, x,(0) = 1 and x3(0) = 1. In Fig. 3, the
reference state trajectories and the response of the
system are illustrated together. Although the tracking
performance is clear from Fig. 3, the tracking errors are
depicted in Fig. 4, which apparently justifies the truth of
the extracted error measure. In order to confirm that the
extracted error measure is specific to the described
DTSMC task, we figure out the phase space behavior in
Fig. 5. The error vector hits the hyperplane several times
and moves towards the origin along with the hyper-
plane. In Fig. 6, the applied control signal is depicted.
After an admissibly fast transient lasting approximately
0.9 seconds, the magnitude of the control signal de-
creases significantly as the reaching phase ends and the
sliding regime starts. The lower subplot of Fig. 6 shows
that the applied control signal has a feasible character-
istic in terms of the duration between consecutive
hittings.

Another design issue that should be figured out is the
behavior in the adjustable parameter space. Clearly the
displacements given to the neurocontroller parameters

Fig. 3 System response 1.5 —
1

Time(sec)
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Fig. 6 The applied control
signal and its transient behavior

—;

Fig. 7 The behavior of the P
measure in linear and
logarithmic time axes

-1 0.5 0 0.5 1
log(Time (sec))

should be convergent to maintain the stability and safety illustrated, whereas the bottom row depicts the same
during the training. Assuming that the hidden layer quantity on a logarithmic horizontal axis, The figure
contains H neurons, and defining Qu=[11 177, which IS suggests that the neurocontroller parameters converge to
of Hx1 dimensional, we cap define the following quan- - some values, the use of which fulfills the specified

tity DTSMC task.
Lastly, we illustrate the phase Space behavior for
P =/l WIw,Q + BIB, + Wiwg + BB (19) different initial conditions in Fig. 8. In ali four cases, we

used the same parameter selections with the same neu-
which instantly qualifies the behavior of the parametric  rocontroller initial parameters. As the reference trajec-
evolution. In the top row of Fig. 7, the quantity P is tory, we used the one described in Eq. 18. The results
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" Origin of fh,e: phéée s-pac.eé -
A ()=
¥ (D)=t

shown justify the claims on creating and maintaining the
prescribed DTSMC task.

4 Conclusions

A remedy to the problem of unavailability of the desired
outputs of a neurocontroller is studied in this paper. It
has been demonstrated that an error measure can be
obtained if the plant under control is to be driven to-
wards a predefined quasi-sliding regime. A feedforward
NN has been used as the controller and the parameters
of it have been adjusted by utilizing the EBP technique.
In order to justify the truth of the extracted error mea-
sure, a third order system has been considered. The
analytic representation of the system is assumed to be
unknown, together with the knowledge of its member-
ship to a particular class. Under such an uncertain
environment, the results have proven that the prescribed
task can be fulfilled together with high tracking preci-
sion, convergent evolution in parameter space, robust-
ness against disturbances and above all, with a simple
controller structure.
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