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SUMMARY

A novel approach is presented for the analysis and the design of a controller for a bioreactor. It is based on
the model reference control theory, assisted by a neural network identi"er. The control objectives speci"ed in
the paper require the controller to be a nonlinear one, however, it is shown that it is stable in the sense of
bounded input bounded output and locally stabilizing in the sense of Lyapunov. The feasibility and the
e$cacy of the proposed approach are tested on the benchmark problem. Copyright ( 1999 John Wiley
& Sons, Ltd.
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INTRODUCTION

Chemical systems are often highly nonlinear and di$cult to control. Nonlinearities may be
intrinsic to the physics or a chemistry of a process or may arise through the close coupling of
a number of simpler processes. In either case, complicated di!erential or di!erence equations of
the system dynamics pose a challenging problem in the sense of mathematical tractability. This
problem can somewhat be alleviated by using a simpli"ed model, but a control approach
designed on the basis of such a simpli"ed model is unlikely to result in a satisfactory performance.
A prime example is a bioreactor. The commonly used model for this process has few state
variables but the controller design is highly involved due to the nonlinear characteristics of the
process and the existence of limit cycles in the uncontrolled dynamics. Anderson and Miller1 list



this plant as a challenging control problem and Agrawal and Lim2 give an analysis of various
control schemes.

In recent years tremendous advances have been made in technology and this has a!ected the
practice of control engineering. With the advances in high speed computing, it is now possible and
economically feasible to use complex, model-based control paradigms in practical applications,
using advanced strategies derived from adaptive, nonlinear, and robust control theories. The
problem of bioreactor control has also bene"ted from these developments and various novel
(mainly adaptive) strategies, which have been reported in the literature,3 with the objective of
maintaining the process output close to the desired value in the presence of various uncertainties,
including external disturbances, time-varying parameters, and unmodeled dynamics. A recent
survey and comparison of various control con"gurations can be found in the paper of Zhao and
Skogestad.4

A more recent tendency in process control is the blending of algorithmic techniques with other
elements, such as logic, reasoning and heuristics. Such systems have come to be known as
intelligent control systems.5,6 A host of new control approaches are being used in this respect,
based on fuzzy logic, neural networks, evolutionary computing and other techniques adapted
from arti"cial intelligence. In demonstrating the feasibility and e$cacy of such approaches in the
control of nonlinear processes, bioreactor control has been taken as a case study by many
authors,7}9 some have addressed the topic directly. For example Feldkamp and Puskorius10 take
the bioreactor benchmark problem set by Ungar11 and apply dynamic gradient methods, using
neural networks for identi"cation and control. In the work of Gorinevsky,12 the same benchmark
problem is treated using a$ne radial basis function network architecture. It is shown that
a completely adaptive control of this strongly nonlinear system can be achieved with minimal
a priori knowledge of its dynamics.

The approach used in this paper is di!erent than those reported in the literature in that it is
based on the well-known model reference control (MRC) technique, assisted by a neural
identi"er. The organization of the paper is as follows. Firstly, the bioreactor benchmark problem
is described together with the equations governing the process dynamics. The following section
introduces the MRC philosophy and continues with the selection of a special reference model for
its application to the problem in hand. The philosophy that lies behind this speci"c choice is
explained. An analysis of the whole system is then presented and the controller structure required
for model following performance is established. The stability of the overall control is then
elaborated upon, utilizing Lyapunov stability theorems. The paper continues with an explanation
of how neural networks can be injected into the proposed rule of control. A brief explanation of
neurocomputing is given and the partial identi"cation scheme is scrutinized. Lastly the error
dynamics is analysed and the e!ect of approximation error caused by the neural identi"er is
considered in the sense of output tracking capability. Conclusions constitute the last part of the
paper.

PLANT MODEL

The model used is in this paper for the bioreactor is the one set by Ungar11 as a benchmark
problem. The process is a tank containing water, nutrients, and biological cells as shown in
Figure 1. Nutrients and cells are introduced into the tank where the cells mix with nutrients. The
cell concentration c

1
(t) and the amount of nutrients c

2
(t) per unit volume characterize the state of

this process. The volume in the tank is maintained at a constant level by removing tank contents
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Figure 1. The Bioreactor tank and the process variables

at a rate equal to the incoming rate which is denoted by u(t). This rate is called the #ow rate and is
the variable by which the bioreactor is controlled. The system therefore has only one control
input, which is the externally supplied pure water. The bioreactor control problem is to maintain
the cell concentration at a desired level.

The continuous-time equations of the plant dynamics are given by (1) and (2).

cR
1
(t)"!c

1
(t)u(t)#c

1
(t) (1!c

2
(t)) ec2(t)@c (1)

cR
2
(t)"!c

2
(t)u(t)#c
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(t) (1!c
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(t)) ec2(t)@c

1#b
1#b!c
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(t)

(2)

The state variables c
1
(t) and c

2
(t) can assume values between zero and one, the #ow rate u(t)

can take values between zero and two. In the benchmark problem, the stable state of the
process is de"ned to be c

1
"0)1207, c

2
"0)8801, and u"0)7500. The initial values of the state

variables lie within $10% of the related stable state value and the initial value of each state
variable is assumed to be uniformly distributed random variable over the above mentioned
interval.

In the simulations, these equations are discretized by the use of "rst-order approximation with
*"0)01 s. In (1) and (2), b"0)02 (growth rate parameter), c"0)48 (nutrient inhibition
parameter). Controller inputs are the state variables and the command signal. The control
interval is de"ned to be 50*, which means that the controller acquires the sensory information at
integer multiples of 50*. The output of the controller is the #ow rate u(t). The objective is to
achieve and maintain a desired cell concentration, by altering the #ow rate.

The bioreactor is a challenging control problem for several reasons. Although the task involves
few variables and is easily simulated, its nonlinearity makes it di$cult to control. For example,
small changes in the values of the parameters can cause the bioreactor to become unstable. The
issues of delay, nonlinearity, instability and limit cycles can be studied with the bioreactor control
problem. Additionally, signi"cant delays exist between changes in #ow rate and the response in
cell concentration.11 More detailed description of the problem can be found in the work of
Ungar.11
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Figure 3. Indirect control scheme

Figure 2. Direct control scheme

MODEL REFERENCE CONTROL OF A BIOREACTOR

Model reference control technique is applicable to wide variety of linear and nonlinear systems.
The strategy evaluates some control inputs so that the plant output tracks a stable reference
model output. There are two traditional approaches in the strategy, namely, direct adaptive
control and indirect adaptive control. These approaches are illustrated in Figures 2 and 3.

Direct adaptive control scheme utilizes the instantaneous tracking error, which is denoted by
e
#
, in parameter updating. Several past control inputs and plant outputs are fed back to the

controller by tapped delay lines, which are represented by TDL blocks in Figures 2 and 3. The
parameters of the controller are directly adjusted to reduce some norm of the output error.13

Indirect adaptive control scheme employs an additional plant identi"cation model which can
provide information about the nonlinear components that appear in the actual plant dynamics.
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In this study, a feedforward neural network is used as the identi"er. The identi"cation can be
carried out on-line or o!-line. The strategy adopted by the authors is the indirect control scheme
with o!-line identi"cation of the plant dynamics.

By introducing f (c
1
, c

2
) and g(c

2
) and dropping the time variable, the governing equations of

the bioreactor can be written more compactly as given by (3) and (4),

cR
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f (c
1
, c

2
)"c

1
(1!c

2
) ec2@c (5)

g (c
2
)"

1#b
1#b!c

2

(6)

Note that the system described by (3) and (4) is subject to the following compatibility condition:

f (c
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2
)!cR
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"
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)!cR
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One must notice that the left-hand side equality stipulates an obvious relation between c
1
, c

2
, cR

1
,

cR
2
. For the system given by (3) and (4), a special reference model can be constructed with the

following philosophy. Firstly the model output c
1.

(t) must follow the command signal r(t) (i.e.
assuming that c

1.
(t)"r(t) at the moment t

0
, (8) is satis"ed for all t't

0
).

cR
1.

(t)"!c
1.

(t)#r(t) (8)

Secondly, since the system given by (3) and (4) satis"es the compatibility condition in (7), the
model must satisfy this compatibility condition too. Otherwise, the range of the model output
may assume some values that cannot be reached by the plant.
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Based on this philosophy, solving (9) for cR
2.

(t), the c
2.

(t) dynamics of the model can be
formulated as follows:
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Now the control input will be selected. The necessary inputs could be designed in such a way that
(11) holds true.

c
1.

(t)"c
1
(t) ∀t (11)

It must be emphasized that (11) is valid not only in the steady state but also in the transient
period. This is under the assumption of identical plant-model initial conditions. This clearly
implies (12) to hold true.

cR
1.

(t)"cR
1
(t) (12)
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Using this fact, the control signal can be formulated as described by (13).

u(c
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2
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c
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(13)

However, with this control input, if we further require (14) to hold true under the identical
plant-model initial conditions, (15) must hold true trivially.

c
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(t) ∀t (14)

cR
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(t)"cR
2
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Hence the constraint in (16) in the state space is obtained.
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In the state space, implications of this constraint must be studied carefully. Equation (16) suggests
the existence of an analytic relation between the state variables of both the bioreactor system and
the reference model. The relation in (16) imposes the following two equalities:

c
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1

1#b
c
2.

(1#b!c
2.

) (17)

c
2.

"

1#b$J(1#b)2!4(1#b)c
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One directly infers from (18) that in order to have a real (c
1.

, c
2.

) pair, the discriminant must be
nonnegative.

(1#b)2!4(1#b) c
1.

*0 (19)

This is equivalent to the following;

c
1.

)

1#b
4

"0)255 (20)

Equation (20) means that the applied command signal r(t) must be less than or equal to 0)255. The
second constraint, which is given next, is not so trivial. If (17) is di!erentiated to construct
c
1.

dynamics in (8) in terms of c
2.

variable, one ends up with (21).

cR
2.

"

c2
2.

!(1#b)c
2.

#(1#b) r

(1#b)!2c
2.

(21)

In order to have a non-zero denominator, c
2.

O(1#b)/2 must always be ensured. This is simply
to modify (20) as follows:

c
1.

(0)255 Q r(0)255 (22)

Figure 4 illustrates the state dependency discussed above. For initial states close to AB curve, the
state variables tend to lie on AB segment otherwise the tendency is towards BC segment of the
trajectory. The shape of the trajectory followed depends on the command signal. An increasing
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Figure 4. State dependency trajectory described by (31)

command signal may represent ¹
1
-type trajectory while a decreasing command signal may result

in ¹
2
.

STABILITY ANALYSIS

In this section, the stability of the overall control system is explored. When the control,
formulated in equation (13) is applied to the system, the stability conditions will be veri"ed in the
sense of Lyapunov.

Since the stability issue of the bioreactor control problem with model following property
requires the analysis of the stability of a motion, the problem is transformed into an equivalent
stability problem in which the tracking errors in cell and nutrient concentrations are considered
as the parameters of the perturbation dynamics. Next, the stability of the origin of the
perturbation dynamics is explained in detail.
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In evaluating the expression in (30), the constraint in the state space (16) is utilized. By
substituting the control u given by (13) into (28) and (30);
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Using (32) and (34) in (26) yields the following;

<Q "!(e2
1
#e2

2
) (35)
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Based on (25) and (36), the following three results hold true:

f < (e
1
, e

2
) is positive de"nite

f d</dt is negative de"nite
f < (e

1
, e

2
)PR as EeEPR

These results imply that the origin of the perturbation dynamics is globally asymptotically stable.

NEURAL NETWORKS AND PARTIAL IDENTIFICATION OF PROCESS DYNAMICS
BY NEURO-IDENTIFIERS

A neural network architecture, in the sense of feedforward data processing, comprises three main
parts. The "rst part is the input layer that distributes the input data to the processors in the next
layer. The second part is comprised of the hidden layers where the nonlinear behaviour comes
from. The third part is the output layer that transmits the response of the network to the real
world. Input and output layers are directly accessible while the hidden layers are not. Each layer
contains several number of processing elements that are generally called neurons. In Figure 5, the
structure of a feedforward neural network is illustrated.

Neural networks can be used in the identi"cation and control of nonlinear dynamical
systems.14,15

J"
1

2

P
+
p/1

N
+
i/1

(dp
i
!yp

i
)2 (37)

For this purpose, the cost function given by (37) must be minimized. There are several ways of
achieving the minimization of the function described by (37). For this purpose Backpropagation
Training Algorithm,15 which is the training methodology adopted in this paper, can be used. The
choice of (37) is simply based on two facts: the cost function must represent the degree of similarity
with minimal complexity and it must be di!erentiable with respect to the parameters of
optimization. In (37), yp

i
denotes the ith entry of pth pattern in neural network response,

dp
i
denotes the ith entry of pth target vector, P is the total number of training pairs contained in
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Figure 5. Feedforward neural network architecture

the training data set and N is the number of neural network outputs. Equations (38) and (39)
describe the delta values for the output layer and hidden layer neurons, respectively.

dk`1,p
j

"(dp
j
!yk`1,p

j
) (@ (Sk`1,p

j
) (38)

dk`1,p
j

"A
d /%630/4k`2

+
h/1

dk`2,p
h

wk`1
jh B(@ (Sk`1,p

j
) (39)

In (38) and (39), S
j
denotes the net summation of the jth neuron in the (k#1)th layer, ( is the

nonlinear activation function attached to each neuron in the hidden layer. Having evaluated the
delta values during the backward pass, the weight update rule given in (40) is applied for each
training pair.

*wk
ij
"gdk`1,p

j
ok,p
i

(40)

The neural network structure imitating the bioreactor dynamics for the partial identi"cation
scheme is illustrated in Figure 6. The reason why the term partial identi,cation used is the fact
that, only the value of the function f (c

1
, c

2
) that appears in the bioreactor dynamics is needed. In

order to construct the control to be applied, the state variables need to be observed and the
function f (c

1
, c

2
) needs to be estimated.

In Figure 6, y
1

and y
2

realize the "rst and the second terms in (1), respectively, y
3

and
y
4

perform the same for (2). The bias values of the linear output neurons are set to previous state
values so that the "rst order discretization of the governing equations is achieved through the use
of a neural network.

ERROR CONVERGENCE ANALYSIS

In this section, it is proven that the tracking errors between the reference model outputs and the
actual plant outputs tend to zero in the limiting case. If f (c

1
,c

2
) is estimated by a neural network,
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Figure 6. Partial identi"cation of the Bioreactor dynamics

then, (13) becomes,

u"
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1
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If this control is written into (3) and (4); (42) and (43) are found.
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From the approximation theorems given in Hornik16 and Funahashi,17 the function f (c
1
, c

2
) can

be realized by neural networks such that the approximation error in the neural network output
remains within a prespeci"ed level. As long as a neural network realizes the function f (c

1
, c

2
)

precisely, the di!erence between the network output and the actual value of the function is
negligible. This di!erence is called realization error and is denoted by e (t). For the full analysis,
which requires that e (t) is not neglected, the error dynamics forced by this term can be formulated
as given by (44) and (45).

cR
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1
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Or equivalently,
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Figure 7. (a) Actual f function (b) Estimated f function (c) Discrepancy between actual and estimated f functions (d) Sum
squared error versus iteration number

Equations (46) and (47) reveal that the error dynamics is stable, moreover, the error in c
1

is forced
to track e (t) and the error in c

2
is forced to track (g/f )e (t). This clearly stipulates that the tracking

performance of the control system strictly depends on the accuracy of the mapping performed by
the neuroidenti"er. The better approximation leads to the better tracking performance. In the top
row of Figure 7, the actual and estimated values of the function f are illustrated. In the bottom left
plot of Figure 7, the discrepancy between the actual and estimated values, which is denoted by
e throughout the text, is shown. The bottom right plot demonstrates the sum-squared error versus
iteration number. In fact, this is the value of cost de"ned by (37).

SIMULATION RESULTS

The feasibility and the e$cacy of the novel approach described in the previous sections have been
demonstrated by a series of simulations. It is seen that the algorithm results in a stable control of
the bioreactor. The plant outputs follow that of the reference model quite closely. Two sets of
simulation study results are given below. The "rst set considers the case of a sinusoidal reference
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Figure 8. Cell and nutrient concentration graphs for the reference model and for the actual plant. Command signal is
r(t)"0)12#0)11sin (2nt/100)

Figure 9. Command signal graph

signal. When choosing the upper bound of this command signal, the constraint given by (22) must
be kept in mind. Otherwise, the system outputs will not track the reference model outputs. In
Figure 8, the time variation of the cell and the nutrient concentrations are given both for the
reference model and the actual plant. The plant follows the model quite closely for the command
signal shown in Figure 9. The state tracking errors are depicted in Figure 10. The control signal
that is applied to the plant is illustrated in Figure 11.

Figures 12}15 illustrate similar simulation results for a pulse train type of command signal. The
reason for this choice is to demonstrate the model following capability of the control system in
the case of abrupt changes in the command signal. As can be inferred from Figure 14, the
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Figure 10. Error graph for the cell and nutrient concentration

Figure 11. Applied control signal

performance of the controller is satisfactory in the sense that when the command signal comprises
sharp changes, the model following property is preserved.

In Figures 10 and 14, tracking errors are illustrated. The reason why there are such errors is
directly relevant to the performance of neural estimator. Since the function to be realized is
a continuous function, and, since a "nite number of training samples can be of interest, there will
always be such tracking errors stemming from the neural approximation errors. The perfect
tracking is observed when the original f (c

1
, c

2
) function used with the condition that the initial

values of the state variables for both the reference model and the actual plant are equal to each
other.
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Figure 12. Cell and nutrient concentration graphs for the reference model and for the actual plant. Command signal is
r(t)"0)12#0)11sgn(sin (2nt/100))

Figure 13. Command signal graph

In the simulation results presented, the neuroidenti"er has three inputs reserved for system
states and the applied control. The outputs of the identi"er are the estimates of the next states.
Two hidden layers are used, the "rst one has eight neurons each possessing tan-sigmoidal neuron
nonlinearities, and the second hidden layer comprises four linear neurons. Since the input
variables of neuroidenti"er assume admissible values for such a neural network application, no
preprocessing or normalization is needed. If the variables involved assume too large or too small
magnitudes, heuristically, these are mapped onto an interval, which is typically bounded by plus
and minus unity, so that the learning performance is increased. The training is continued until the
sum-squared error decreases to 18e-6 for the randomly generated training data set, which
contains 500 samples from 0(c

1
(1, 0(c

2
(1 and 0(u(2. Training procedure takes 45 s
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Figure 14. Error graph for the cell and nutrient concentration

Figure 15. Applied control signal

on a Pentium II 266 PC with trainer coded in Borland C environment. The square of the
least value seen in the bottom right plot of Figure 7 and the minimal value in the bottom left plot
might cause confusion. This occurs due to the use of di!erent data sets in training phase (with
randomly generated data) and visualization phase (with grid data). This is a well-known
phenomenon in the neural network terminology. If the set used in training had been shown as
surface points, the square of the least value seen in the upper plots would be the same as what is
visualized in the lower plots. This fact is attributed to the generalization property of neural
networks.
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CONCLUSIONS

In this paper, a special nonlinear controller for the bioreactor benchmark problem is formulated.
The approach is based on Model Reference Control theory. A stable reference model has been
chosen and the philosophy that lies behind this choice is explained. The analysis and the design
methodology stipulate that the controller is a static function of system variables and the
command signal. It is shown that the controller itself is stable in the sense of bounded
inputs/bounded outputs criterion as well as it is locally stabilizing the overall control system in
the sense of Lyapunov. Simulation results illustrate that the proposed approach is a good
candidate for the control of bioreactors. Two di!erent types of command signals are used to
demonstrate the capability of the model following property. In the "rst trial, a sinusoidal, in the
second trial, a pulse train is applied as the command signal. Since the applicable control signal is
bounded by 2)0, in the cases where the changes in reference model output are large in magnitude,
larger controls are evaluated by the controller, but these are saturated at the upper bound. The
simulation results have revealed that if the command signal approaches to 0)255, the control
signal is likely to saturate.

The approach described in this paper requires a priori knowledge about the governing
equations of the bioreactor dynamics. Future study aims to realize nonlinear controllers utilizing
on-line learning methodologies that need less a priori information about plant dynamics and
environment.
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