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Abstract: The problem of tuning the parameters of a controller operating in the presence of
noise, time-varying parameters, non-linearities, and uncertainties in practice requires the
process of continuous adjustment of the parameters influencing the performance. When the
diversity of the challenges in the domain of real-time applications is taken into consideration,
it becomes apparent that the adopted controller structure must be sufficiently flexible, and its
operating principles must be well explained, particularly in accounting for the stability issues.
In this paper, a method is proposed for tuning the parameters of controllers whose outputs
are linear in the adjustable parameters, utilizing variable structure systems theory. The method
discussed constructs the best error measure at the controller output, and uses this quantity
with a suitably designed tuning law, which drives the system under control to a predefined
sliding regime and maintains the sliding mode. It is shown analytically that the parametric
evolution takes place in a finite volume space, indicating that the controller parameters evolve
bounded. In the simulation studies, the approach presented has been tested on the control of
a double pendulum system and the superior performance of the strategy has been shown
under the existence of noisy observations and large non-zero initial errors.

Keywords: sliding mode control, tuning laws, non-linear systems, robust control

1 INTRODUCTION of-the-art applications rarely allow the designer to
have such information, due to the entirely changing

Due to the time-varying and complex nature of behaviour of the operating environment and the task
real-life systems, synthesizing a control sequence definitions, which sometimes drives the exploitation
approximating the behaviour of a system under of a human expert. A mobile robot navigating in an
control to that of a reference dynamics is a challenge. unknown terrain to fulfil a specific task can be a good
The reason that lies behind this is the fact that the example of this challenge. Building a suitable com-
available tools of non-linear control theory are not mand and control hierarchy for tasks requiring pre-
diverse enough to suggest a cost-effective solution to cision without the use of a human expert steers the
handle these difficulties. Many issues have been designer to focus on well-explained tuning strategies,
addressed through the last few decades of control overcoming the inabilities of the traditional methods.
theory. Particularly the problems related to stability It is a well-known fact that controllers having
and robustness today constitute the core of any structural simplicity are easy to implement and are
realistic controller design and control sequence computationally efficient, but the focus of the design
synthesis. The mathematical background of the is typically confined to the macro dynamics of the
framework is well developed for this task, especially system under investigation. On the other hand, con-
if the model of the system under control is available, trollers taking care of the micro models of the process
or if the extent of the uncertainties is known a priori, achieve the goal of precision and autonomy at the
or if the statistical models of disturbances are cost of performing a multivariable optimization

at each step; i.e. the need for costly hardware is ofknown. However, the practical aspects of the state-
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interest. Examples of such a case include the use of elaborate on the concept of chattering-free SMC
design, Bartolini et al. [14] formulate the chattering-static or dynamic maps, like neural networks and

fuzzy systems, the complexity of which limit the free SMC for multi-input–multi-output (MIMO)
systems, and Erbatur et al. [15] investigate themathematical tractability when accounting for the

issues of stability and robustness. robustness properties of the SMC technique on a
two-degree-of-freedom (2-DOF) direct-drive SCARAThis paper proposes a solution to the problem of

synthesizing controllers that are structurally simple (selective compliant articulated robot in assembly).
Studies demonstrating the high performance ofand adaptive, and that lead to a robust and high-

performance control system by adopting the variable the SMC scheme in handling the uncertainties
and imprecision have motivated the use of thestructure systems (VSS) theory. VSS theory is well

known, with its robustness to uncertainties and SMC scheme in tuning the parameters of flexible
systems [16, 17]. The methods discussed in thesedisturbances. Conceptually, the controller design in

VSS is based on the nominal representation of the references deal with the dynamic adaptation of the
parameters of a flexible model such that the error onsystem about which the bounds of the uncertainties

are assumed to be available. The decision mechanism the output of the model tends to zero in finite time.
The first results, discussed by Sira-Ramirez andoperates on the basis of switching on the different

sides of a decision boundary, which is called the Colina-Morles [16] are on the inverse dynamics
identification of a Kapitsa pendulum by using con-sliding hypersurface [1–3], and the aim of the design

is to enforce the error vector towards this hyper- stant bounds for the uncertainties. Yu et al. [17]
extend the results of reference [16] by introducingsurface during the reaching phase. Once the error

vector is confined to the sliding hypersurface, it adaptive uncertainty bound dynamics, and their
work focuses on the same example. If the flexibleobeys the behaviour imposed by the set of equations

describing the hypersurface, i.e. the sliding mode structure is to be used as a controller, the dynamic
adaptation mechanism in references [16] and [17]starts and the error vector converges to the origin.

The control strategy is therefore called sliding mode needs the error on the output of the controller. This
fact constitutes a major difficulty because error on thecontrol (SMC) in the related literature [1–3]. During

the sliding mode, the control system becomes totally applied control signal is unavailable. Efe et al. [18]
consider the problem of constructing the equivalentinsensitive to the disturbances and uncertainties

unless the decision mechanism violates the physical measure of the error on the controller output in
a qualitative manner. More explicitly, a relationlimits for maintaining the sliding motion.

The SMC strategy has been applied successfully in between the sliding surface equation and the control
error is proposed and the conditions that the relationa wide variety of design problems, ranging from the

control of chemical processes [4–7] to the control of must satisfy are discussed; the results are assessed
on the dynamic model of a 3-DOF anthropoidchaotic systems [8]. Hung et al. [1] review the control

strategy for linear and non-linear systems and discuss robotic manipulator. In reference [19], a dynamic
learning scheme based on SMC is discussed for thethe design for systems represented in canonical

forms. Another systematic examination of the SMC training of feedforward neural networks. The method
has been used for the identification of a periodicapproach is presented in reference [9], in which

the practical aspects of SMC design are assessed time signal. The potential difficulty in implementing
the algorithm is the fact that the hidden neuronfor both continuous-time and discrete-time cases

and a special consideration is given to the finite outputs are differentiated with respect to time for
evaluating the value of the switching function.switching frequency, limited bandwidth actuators,

and parasitic dynamics. Studies considering the Although this difficulty can somehow be alleviated
through filtering techniques, the problem of the con-reparameterization of the sliding surface constitute

an important branch of introducing adaptation into trol error unavailability restricts the applicability in
terms of the needs of control engineering expertise.the control system [10]. Depending on the observed

response, the sliding surface evolves in time such The focus of this paper is to use the tuning
algorithm proposed by Sira-Ramirez and Colina-that the error vector becomes trapped in the sliding

manifold in a short time and converges to the origin Morles [16] for tuning the parameters of a simple
controller driving the plant under control to the pre-afterwards. Misawa discusses the SMC task for

discrete-time systems in reference [11] for the linear defined sliding regime and maintaining the sliding
mode. The primary difference from what is presentedcase and in reference [12] for the non-linear case

with unmatched uncertainties, Sabanovic et al. [13] in this paper and what is considered in reference [18]
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is the form of the equivalent control error, which is in which D denotes the input gain matrix. Without
loss of generality, the vector of sliding surfaces ispostulated through the concept of a reference SMC

model. In the second section, the conventional chosen as a linear function of the components of the
tracking error vector described asSMC approach is briefly introduced. The details of

what is novel are presented in the third section. The
e= [e1 ė1 , e(r

1
−1)
1

, e
n

ė
n
, e(r

n
−1)
n

]Tsection gives the formulation, requirements, and
relevant stability analyses and discusses several = [h1−h1d ḣ1− ḣ1d , (h1−h1d)(r1−1) ,issues related to the practice. Furthermore, it is

h
n
−h
nd ḣn− ḣnd , (h

n
−h
nd)(rn−1) ]T (5)proved in the third section that the parameters of the

controller evolve bounded as time progresses. In the
which is the discrepancy between the values offourth section, a case study considering the control
the measured state vector h and the desired stateof the double pendulum system is presented. The
vector h

d
. The sliding surface s

p
(e) is an n×1 vectorconclusions constitute the last part of the paper.

and is defined as

sp(e)=Ge=G(h−hd) (6)

2 CONVENTIONAL SLIDING MODE CONTROL The widespread selection of the matrix G is such that
DESIGN REVISITED the ith sliding surface function has the form

Design of a controller for a system, whose salient
sp
i

(e
i
)=A ddt

+l
iBri−1ei (7)features are represented in the model upon which

the design is based, requires the alleviation of
plant/model mismatches. These mismatches can be in which l

i
is a strictly positive constant. Let V

p
be a

classified into two categories, namely structured and candidate Lyapunov function given as
unstructured. In the former, uncertainties are on the
values of the parameters, while the latter concerns Vp(sp)=

1
2
sTp sp (8)

the unmodelled dynamics existing in the plant [3].
If the prescribed control signal satisfiesFor the structured uncertainties, the framework of

adaptive control offers well-formulated solutions
V̇p(sp)=−sTpj sgn(sp) (9)based on the estimation of slowly varying unknown

parameters. The design of the controller can then
the negative definiteness of the time derivative of the

be realized using the estimates. However, an over-
Lyapunov function in equation (8) is ensured. In

simplified or an imperfect model of the plant
equation (9), j is a positive definite diagonal matrix

necessitates a very robust controller to maintain
of dimension n×n. If the time derivative of the

the tracking performance. Use of VSS theory is one
Lyapunov function in equation (8) is evaluated, the

particular approach for achieving this task [20].
quantity obtained must be equal to the expression

Consider a non-linear and non-autonomous system
in equation (9). This can be stated as

represented as

sTp ṡp=−sTpj sgn(sp) (10)
h(r
i
)
i
= fp
i

(h)+ ∑
n

j=1
d
ij
t
j
, i=1, … , n (1)

From equations (4) and (6), the time derivative for s
p

can be written as
The system under control is a multi-input–multi-
output one driven by the n×1-dimensional input ṡp=−Gḣd+G( fp(h)+Dt) (11)
vector t. The state vector and the input vector of the

Substituting equation (11) into equation (10), thesystem in equation (1) are defined as
control signal can be constructed as

h= [h1 ḣ1 , h(r1−1)1
, h

n
ḣ
n
, h(r

n
−1)
n

]T (2)
t=teq+tc (12)

t= [t1 t2 , tn ]T (3)
in which the first term is the equivalent control term
and the second term is the corrective control term.respectively. The system in equation (1) can be
Both terms are explicitly given as in equations (13)rewritten as
and (14) respectively. For the existence of the
mentioned components, the matrix GD must not beḣ= fp(h)+Dt (4)
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rank deficient problem can be solved by introducing a thin bound-
ary layer, in which the control signal is smoothed

teq=−(GD)−1 [G fp(h)−Gḣd ] (13) out [3].

tc=−(GD)−1j sgn(sp) (14)

In the literature, equivalent control is considered as
3 DEFINITIONS AND THE FORMULATION OFthe low-frequency (average) component of the con-

THE PARAMETER TUNING STRATEGYtrol signal. Because of the discontinuity on the sliding
surface, the corrective term introduces the switching

3.1 Constructing a measure of the equivalentcomponent [2, 21].
control errorIf e(0)=0, the tracking problem can be considered

as keeping e on the sliding surface, but, for non-zero Remark 1
initial conditions, the strategy must enforce the state

The SMC task is achievable if the dynamics oftrajectories towards the sliding surface, which is
the system in equation (1) is totally known orensured by the negative definiteness of the time
if the nominal system is known with the boundsderivative of the Lyapunov function as in equation (9).
of the uncertainties. It must be noted that to satisfyFor the case of non-zero initial conditions, the phase
the matching conditions, the disturbances anduntil the error vector hits the sliding surface is called
uncertainties are always assumed to enter the systemthe reaching mode, the dynamic characteristics of
through the control channels [1]. When the con-the system during which the control strategy to be
ventional SMC strategy is applied to the systemadopted is determined. Application of the control
of equation (1), the resulting behaviour is calledinput formulated in equation (12) imposes the
the target SMC and the input vector leading to it thedynamics described as
target control sequence (t), which is described in

ṡp=−j sgn(sp) (15) equations (12) to (14). If the functional form of the
vector function f

p
is not known, it should be obvious

which clearly enforce the error vector towards the
that the target control sequence cannot be con-

sliding surface. Once the sliding surface is reached,
structed by following the traditional SMC design

the value of equation (7) becomes zero, and this
approaches.

enforces the error vector to move towards the origin.
Lastly in this section, it is beneficial to mention

Definition 1the problems associated with the SMC strategy in
devising variable structure controllers. The first

Given an uncertain plant, which has the structure
problem stems from the discontinuity of the control

described as in equation (1), and a command
signal about the sliding surface. After the reaching

trajectory vector h
d

(t) for t�0, the input sequence
phase, the constructed form of the control signal

satisfying the following vector differential equation
enforces the system states to lie on the sliding

is defined to be the idealized control sequence,
surface, along which a discontinuous control action

denoted by t
d

, and the vector differential equation
is of interest. This fact introduces high-frequency

itself is defined to be the reference SMC model
components into the prescribed form of the control
signal, the application of which may excite the ḣd= fp(hd)=Dtd (16)
undesired high-frequency dynamics of the plant under
control and can lead to unpredictable instabilities. Mathematically, the existence of such a model and

the sequence means that the system of equation (1)The problem of having such high-frequency com-
ponents in the control signal is referred to as follows the command trajectory vector perfectly if

both the idealized control sequence is known andchattering in the literature [1, 9, 20]. For the alleviation
of the chattering phenomenon, various techniques the initial conditions are set as h(t=0)=h

d
(t=0),

more explicitly e(t)¬0 for Yt�0. Undoubtedly, suchhave been reported in the literature, which postulate
the form of the control signal for the plants, whose an idealized control sequence will not be a norm-

bounded signal when there are step-like changes ingoverning equations are linear in the control term
[13, 15]. the vector of command trajectories or when the

initial errors are non-zero. Therefore the referenceIf the observed state variables are noisy, the control
signal is adversely affected by this parasitic dynamics. SMC model is an abstraction due to the limitations

imposed by the physical reality, but the concept ofSince the form of control signal entails the sign of a
measured quantity, which is very close to zero, the an idealized control sequence should be viewed as
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the synthesis of the command signal h
d

from the Consider the time derivative of the vector of sliding
surfacestime solution of the differential equation set in

equation (16).
ṡp(e)=Gė

Fact 1 =G(ḣ− ḣd)

Based on the Lyapunov stability results of the previous =G( fp(h)+Dt− fp(hd)−Dtd)section, if the target control sequence formulated in
=G(D fp+D(t−td))equation (12) is applied to the system of equation (1),

the idealized control sequence would be the steady =G(D fp+Dsc) (19)
state solution of the control signal, i.e. lim

t�2
t=t

d
.

Utilizing the relation (18) in equation (19) and solvingHowever, under the assumption of the achievability
for s

c
yields the following relationof the SMC task, the difficulty here is again the

unavailability of the functional form of the vector sc=(GD)−1 [ṡp+j sgn(sp)]=t−td (20)
function f

p
. Therefore, the aim in this subsection is

to discover an equivalent form of the discrepancy
Remark 2between the control applied to the system and its

target value by utilizing the idealized control view- The reader must here notice that the application of t
d

point. This discrepancy measure is denoted by to the system of equation (1) with zero initial errors
s

c
=t−t

d
and is of dimension n×1. If the target will lead to e(t)¬0 for Yt�0; on the other hand,

control sequence of equation (12) is rewritten using the application of t to the system of equation (1)
equation (16), then will lead to s

p
=0 for Yt�t

h
, where t

h
is the hitting

time, and the origin will be reached according to
t=−(GD)−1 [G fp(h)−G( fp(hd)+Dtd)+j sgn(sp)]

the dynamics of the sliding manifold. Therefore,
=−(GD)−1 [G fp(h)−Gfp(hd)+j sgn(sp)]+td the adoption of equation (20) as the equivalent

measure of the control error loosens the e(t)¬0 for=−(GD)−1 [GD fp(h)+j sgn(sp)]+td (17)
Yt�0 requirement and induces all trajectories in the

The target control sequence becomes identical to error space to tend to the sliding hypersurface, i.e.
the idealized control sequence, i.e. t¬t

d
, as long as equation (15) is enforced. Consequently, the tendency

the condition in equation (18) holds true. However, of the control scheme will be to generate the target
this condition is of no practical importance as the SMC sequence of equation (12).
analytic form of the vector function f

p
is not known.

Now consider the ordinary feedback controlTherefore, this equality should be considered as an
loop illustrated in Fig. 1 and define the followingequality to be enforced instead of an equality that
Lyapunov function, which is a measure of how wellholds true all the time, because its implication is
the controller performss

c
=0 and is the aim of the design

Vc(sc)=
1
2
sTc sc (21)GD fp(h)+j sgn(sp)=0 (18)

It is obvious that to enforce the equality in
Remark 3

equation (18) the target control sequence should
be synthesized, which will ultimately converge to An adaptation algorithm ensuring V̇

c
(s

c
)<0 when

s
c
≠0 enforces GD f

p
(h)+j sgn(s

p
)=0 and createsthe idealized control sequence by the adaptation

algorithm yet to be discussed. the predefined sliding regime after a reaching mode

Fig. 1 Block diagram of the control system
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lasting until the hitting time denoted by t
h

, beyond where k
i

is a sufficiently large positive constant
satisfyingwhich s

c
=0 as the system is in the sliding regime.

If V̇
c
(s

c
)<0 when s

c
≠0, then k

i
>B
w
i

B
u̇
i

+B
ṫ
id

(29)

lim
t�t
h

Vc=0u lim
t�t
h

dscd=0u lim
t�t
h

dṡp+j sgn(sp)d=0 The adaptation mechanism in equation (28) drives
an arbitrary initial value of s

c
i

to zero in finite time,
Note that the meaning of s

c
=0 is now equivalent to denoted by t

h
i

satisfying the inequality in
s

p
=0 by Remark 2. Therefore the limits above are

evaluated as t� t
h

. th
i

∏
|sc
i

(0) |
k
i
−(B

w
i

B
u̇
i

+B
ṫ
id

)
(30)

3.2 Structure of the controller
Proof. Consider the Lyapunov function candidate in

Consider the non-linear non-autonomous system
Vc
i

=1
2
s2c
i

(31)described in equation (1). For the ith subsystem,
define the controller input vector as

In order to reach the zero error level (s
c

i

=0), the time
u
i
= [e
i

ė
i
, e(r

i
−1)
i

1]T (22) derivative of equation (31) must be negative definite,
which is given inand define the adjustable parameter vector as

V̇c
i

= ṡc
i

sc
i

w
i
= [w

i1
w
i2
, w

i,r
i

w
i,r
i
+1

]T (23)
=(ṫ
i
− ṫ
id)sc
i

The input–output relation of the controller is
described as =(ẇT

i
u
i
+wT
i

u̇
i
− ṫ
id)sc
i

t
i
=wT
i

u
i

(24) =−k
i
sgn(sc

i

)sc
i

+(wT
i

u̇
i
− ṫ
id)sc
i

=−k
i
|sc
i

|+(wT
i

u̇
i
− ṫ
id)sc
i

3.3 Adaptation algorithm

<(−k
i
+B
w
i

B
u̇
i

+B
ṫ
id

) |sc
i

| (32)In order not to be in conflict with the physical reality,
the designer must impose the following inequalities, It is apparent that the condition in equation (29)
the truth of which state that the parameters of the ensures the negative definiteness of the time
controller, the time derivative of the signal exciting derivative of the selected Lyapunov function.
the controller, and the time derivative of the idealized If ṡ

c
is evaluated with the aid of equation (28), the

output of the controller remain bounded expression in the following equation is obtained
dw
i
d∏B

w
i

(25) ṡc
i

=−k
i
sgn(sc

i

)+wT
i

u̇
i
− ṫ
id (33)

du̇
i
d∏B

u̇
i

(26)
The solution to the differential equation in (33) can

dṫ
idd∏B

ṫ
id

(27) be given by

Note that in Definition 1, it is stated that there sc
i

(t)−sc
i

(0)=−k
i
t sgn[sc

i

(0)]
may not be a finite B

ṫ
id

µR, even in some realistic
situations like non-zero initial errors. However, the +P t

0
[wT
i

(s)u̇
i
(s)− ṫ

id(s)] ds (34)
practical meaning of imposing (27) leads to the
construction of an approximation of the idealized At t=t

hi
, s

c
(t

hi
)=0

control sequence and the requirement of e(t)¬0 for
−sc
i

(0)=−k
i
th
i

sgn[sc
i

(0)]Yt�0 must therefore be loosened.

Theorem 1 +P thi
0

[wT
i

(s)u̇
i
(s)− ṫ

id(s)] ds (35)

For the ith subsystem of the system described in
By multiplying both sides of equation (35) byequation (1), adopting the controller of structure (24),
−sgn[s

c
i

(0)],the adaptation of controller parameters as described
in the following equation enforces the value of the |sc

i

(0) |=k
i
th
iith component of the control discrepancy vector

(s
c

i

) to zero −GP thi
0

[wT
i

(s)u̇
i
(s)− ṫ

id(s)] dsH sgn[sc
i

(0)]

ẇ
i
=−

u
i

uT
i

u
i
k
i
sgn(sc

i

) (28)
�k
i
th
i

−(B
w
i

B
u̇
i

+B
ṫ
id

)th
i

(36)
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which implies hitting in finite time, as described by Since 1∏du
i
d∏B

u
i

, for the first term in equation (42),
the following relations can be inducedthe inequality in equation (30).

Note that the assumptions in equations (25) to (27) dW
i
(t, 0)d=LexpC−P t

0

u
i
(s)u̇
i
(s)T

u
i
(s)Tu

i
(s)

dsDLdescribe the conditions under which the closed-loop
control system behaves in a stable fashion. In other
words, the algorithm with the mentioned conditions =LexpC−P t

0

u
i
(s)

u
i
(s)Tu

i
(s)

du
i
(s)TDLensures local stability.

∏LexpCK−P t
0

u
i
(s)

u
i
(s)Tu

i
(s)

du
i
(s)TKDLTheorem 2

If the system enters the sliding mode s
c
=0 and ∏LexpCP t

0

|u
i
(s) |

u
i
(s)Tu

i
(s)

du
i
(s)TDLremains in it thereafter, then the parameters of the

ith flexible controller, w
i
, evolve in a bounded

manner. <LexpCP t
0
|u
i
(s) |du

i
(s)TDL

Proof. In the sliding mode, s
c

i

=0 and ṡ
c

i

=0. Based <LexpCBui P t0 du
i
(s)TDLon this, the following derivation can be made

=dexp{B
u
i

[u
i
(t)T−u

i
(0)T ]}d∏B

i1
(44)ṡc

i

= ṫ
i
− ṫ
id (37)

where B
i1

is some positive constant. For the bound
ṡc
i

=ẇT
i

u
i
+wT
i

u̇
i
− ṫ
id=0 (38) of the second term in equation (42), the analysis

proceeds as given below
uT
i
ẇ
i
=−u̇T

i
w
i
+ ṫ
id LP t

0
W
i
(t, s)

u
i
(s)

u
i
(s)Tu

i
(s)
ṫ
id(s) dsL=−

uT
i

u
i

uT
i

u
i
u̇T
i
w
i
+

uT
i

u
i

uT
i

u
i
ṫ
id

<B
i1LP t

0

u
i
(s)

u
i
(s)Tu

i
(s)
ṫ
id(s) dsL=uT

i A− u
i

uT
i

u
i
u̇T
i
w
i
+

u
i

uT
i

u
i
ṫ
idB (39)

<B
i1LP t

0
u
i
(s)ṫ
id(s) dsLwhich requires

uT
i Aẇi+ u

i
uT
i

u
i
u̇T
i
w
i
−

u
i

uT
i

u
i
ṫ
idB=0 (40) <B

i1
B
u
iLP t0 ṫid(s) dsL

<B
i1

B
u
i

dt
id(t)−t

id(0)d∏B
i2

(45)Since the entries of the vector u
i

cannot be linearly
dependent for all time [3], the equality in equation where B

i2
is some positive constant. Since the two

(40) imposes the following differential equation form components of the solution in equation (42) evolve
in the sliding mode bounded, the sum of them will trivially be bounded

as given in

ẇ=−
u
i
u̇T
i

uT
i

u
i
w
i
+

u
i

uT
i

u
i
ṫ
id (41) dw

i
(t)d<B

i1
+B
i2

(46)

Note that in equation (25) it is assumed that the
The solution to the above equation is parameters of the flexible controller, w

i
, are bounded.

Parallel to this assumption, Theorem 2 states that
once the system enters the sliding mode s

c
i

=0, thew
i
(t)=W

i
(t, 0)w

i
(0)+P t

0
W
i
(t, s)

u
i
(s)

u
i
(s)Tu

i
(s)
ṫ
id(s) ds

boundedness of w
i

is guaranteed, that is to say,
equation (25) is automatically satisfied.(42)

3.4 Practical issueswhere
The analysis and the design approach presented so
far have tried to illuminate the SMC problem from aW

i
(t, t0)=expC−P t

t
0

u
i
(s)u̇
i
(s)T

u
i
(s)Tu

i
(s)

dsD (43)
theoretical perspective. In this subsection, several
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issues related to the practical applications of the from uncertainties that are likely to occur in practice
and how the performance is affected by the selectiondiscussed methodology are discussed.
of j.

3.4.1 Chattering
3.4.3 Obtaining the equivalent error from

Since the control decision during the sliding mode measurements
is very dependent on the sign of a measured quantity

Lastly, in this subsection, there is a focus on the con-being noisy and very close to zero, the decision on
struction of the s

c
of equation (20), which requiresthe observations along the sliding manifold exhibits

the differentiation of s
p

. The method adopted in thissensitivity to noise. Among many alternatives avail-
paper is to filter the measured values of s

p
andable [1, 3, 15], a common approach to eliminate the

differentiate afterwards. Denote S as the Laplacechattering is to smooth the sign function, which
variable and use the linear dynamic system given ascorresponds to introducing a boundary layer [3].

In this paper, the following approximation for the
H(S)=

aS

Q(S)
(48)sgn(.) function is adopted

where Q(0)= a> 0 and Real{arg
S
[Q(S)]= 0}< 0.sgn(x)$

x

|x|+d
(47)

The order of the denominator polynomial and the
locations of the roots are left to the designer, becausewhere d determines the sharpness around the
these issues require several trials to refine theorigin. Since the function in equation (47) is not
selections and are subject to the application togetherdiscontinuous at the origin, the decision mechanism
with its operating environment.softly switches to inside the boundary layer.

Lastly, it should be noted that the cost of the
information loss by using such a filter, whose input

3.4.2 Actuation speed is s
p

and output is an estimate of ṡ
p

, is a matter of
how robust the devised control algorithm is. MoreAnother important issue is the actuation speed of the
explicitly, separation of the noise and the actualsystem under control, i.e. the ability to respond in a
value of s

p
leads to a corruption in s

p
, and whentimely manner to what is imposed. Since it cannot

differentiated afterwards, some valuable informationbe assumed that the details concerning the dynamic
is lost together with the elimination of the noisemodel of the system are available, what causes a
component. Here it is assumed that the mentioneddifficulty from a practical point of view is selection
loss causes an uncertainty, which enters the systemof the matrix j, which characterizes the behaviour
through the control channels, and which is parti-during the reaching mode. The values of this quantity
cularly effective during the sliding mode. Thiscan only be set by trial-and-error due to the lack of
uncertainty can be alleviated if it falls within thesystem-specific details. Besides, if the uncertainty
limits, allowing maintenance of the invarianceis large, i.e. little information about the details
during the sliding mode, as discussed above and inembodying the plant are available, j is selected to be
reference [1].large, but this makes the high-frequency component

of the control signal more effective compared to
small j cases. On the other hand, small j causes
slow reaching. Clearly, the selection is a matter of 4 A CASE STUDY: SMC OF A DOUBLE

PENDULUM SYSTEMexperience gained through the trials and knowledge
about the plant dynamics.

Note that a tuning law minimizing some norm A coupled double pendulum system is used to
illustrate the performance of the method discussed.of equation (20) forces the reaching dynamics in

equation (15). Uncertainties that are not taken The physical structure of the plant is illustrated in
Fig. 2. Since the dynamics of such a mechatronicinto consideration modify this equality as ṡ

p
=

−j sgn(s
p

)+D, where D can be seen to be the system is modelled by non-linear and coupled
differential equations, precise tracking becomes acollective form of uncertainties perturbing the reach-

ing dynamics. In this case, maintaining sT
p

ṡ
p
<0 difficult objective due to the strong interdependency

between the variables involved. Furthermore, thewhen s
p
≠0 would require j

i
>sup |D

i
|, where j

i
corresponds to the ith element in the diagonal of ambiguities introduced by the noise on the measured

quantities make the design of a robust controller somatrix j and D
i
is the ith entry of the vector D. Clearly,

this explains how the behaviour would be influenced complicated that achieving the design is a challenge
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position. The model introduced in this section has
been studied by Spooner and Passino [22], who
discuss the decentralized adaptive control using
radial basis neural networks.

In practical implementations of control structures
for trajectory control of mechatronic devices, a
number of difficulties are encountered, which make
it difficult to achieve an accurate trajectory tracking.
The simulation studies carried out address these
difficulties. The first difficulty to be alleviated is
the existence of the observation noise. To study the
effects of this situation, which is very likely to be
encountered in practice, the information used by
the controller is corrupted by a noise sequence, the
properties of which are given in Table 2. The second

Fig. 2 Physical structure of the double pendulum difficulty is the non-zero initial conditions for the
system pendulum angular positions. In order to demonstrate

the reaching mode performance of the algorithm, the
two pendulums are moved to arbitrarily chosen

in the conventional design framework. Therefore, for initial conditions, as given in Table 2.
such a system, the control methodology adopted The adjustable controller parameters are set
must be capable of handling the difficulties stated. initially to zero, i.e. the parametric evolution starts

The differential equations characterizing the from the origin. The noise sequences are Gaussian
behaviour of the system are given by having zero mean, and the adopted filter structure is

as given by
ḧ1=AM1gr

J1
−

ksr2
4J1 B sin(h1)+

ksr
2J1

(l−b)

H(S)=
aS

Q(S)
=

aS

S2+2|√a|S+a
(51)

+
t1
J1
+

ksr2
4J1

sin(ḣ2) (49)
Under these conditions, in response to the reference

trajectory depicted in Fig. 3, the motion observed in
the phase plane is illustrated in the top row of Fig. 4,ḧ2=AM2gr

J2
−

ksr2
4J2 B sin(h2)−

ksr
2J2

(l−b)
in which after a fast reaching mode, a sliding motion
is enforced and is maintained by producing an

+
t2
J2
+

ksr2
4J2

sin(ḣ1) (50) appropriate control signal, which is depicted in the
bottom row of Fig. 4. The smoothness of the control

in which the angular positions and the angular signals is an important result, which is a con-
velocities for each pendulum define the state vector sequence of the smoothed sign function. Lastly, the
and g=9.81 m/s2 is the gravitational acceleration evolutions in the parameters of the two controllers
constant. The control inputs, which are denoted by (w

ij
) are illustrated in Fig. 5, from which the bounded

t
1

and t
2
, are provided for the relevant pendulum by evolution is evident as claimed.

servomotors at the base. The parameters of the plant
are given in Table 1. As given in Table 1, since b<l,
the two pendulums repel each other in the upright Table 2 Simulation data

Controller input vector u
i
=[e

i
ė

i
1]T, i=1, 2

Uncertainty bounds k
1
=1000, k

2
=1000

Table 1 Parameters of the double pendulum Simulation stepsize T
s
=2.5 ms

system Initial errors e
1
(0)=5p/12 rad

e
2
(0)=−p/2 rad

Mass of pendulum 1 M
1

2 kg ė
1
(0)=0 rad/s

ė
2
(0)=0 rad/sMass of pendulum 2 M

2
2.5 kg

Moment of inertia for pendulum 1 J
1

0.5 kg Sliding line parameter l
1
=1, l

2
=1

Noise variance 0.33×10−6Moment of inertia for pendulum 2 J
2

0.625 kg
Spring constant k

s
100 N/m Noise peak value with probability#1 1×10−3

sgn function smoothing parameter d=0.25Natural length of the spring l 0.5 m
Distance between pendulum hinges b 0.4 m SMC design matrix j=I

2x2Filtering parameter a=100Pendulum height r 0.5 m
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Fig. 3 Reference state trajectories

Fig. 4 Motion in the phase plane (top row) and the applied control signals (bottom row)

5 CONCLUSIONS system retains a high degree of robustness against
disturbances and uncertainties. The major con-
tribution of the paper is the creation and main-This paper discusses the design of a variable structure

control strategy for a class of systems. The approach tenance of a sliding regime without knowing the
analytic details describing the plant dynamics. Inassumes that the task of SMC is achievable and the

system has the structure given in equation (1). A order to corroborate the applicability, a double
pendulum system is considered. A good trackingnumber of issues in SMC design are discussed from

the point of control engineering and an exemplar precision is obtained without much computational
effort. In Fig. 6, a bar graph composed of triplets iscase has been studied. It is shown that the tuning

strategy leads to a stable closed loop meeting the illustrated. The horizontal axis of the graph is the
order of the plant under control and the vertical axisdesired specifications. Furthermore, the control

JSCE257 © IMechE 2007Proc. IMechE Vol. 221 Part I: J. Systems and Control Engineering



393Adaptive variable structure control of a class of non-linear systems

Fig. 5 Time evolution of the parameters of the two controllers

is the required number of floating-point operations and complex plant dynamics. From these points of
view, the method proposed is highly promising for(flops) to generate the control input. The leftmost

component of each triplet corresponds to the practical purposes. Future work aims to remove the
possible drifts in the parametric evolution, thusrequired number of flops to obtain the output of

the filter structure in equation (51), which is solved making the uncertainty bounds adaptive.
numerically using the fourth-order Runge–Kutta
method. Since the structure adopted is the same
in all four examples, the value is 79 flops. The
middle component stands for the number of flops ACKNOWLEDGEMENTS
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