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A novel error critic for variable
structure control with an ADALINE
Mehmet Önder Efe
Electrical and Computer Engineering Department, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA

This paper discusses a novel method for variable structure control. The method aims to create
and maintain a prede�ned sliding motion in the phase space by adjusting the parameters of
an ADALINE-type controller. The objective of the paper is to demonstrate that the task can
be achieved under the assumption that the plant under control could be driven towards the
sliding manifold. The approach presented assumes the structure of the dynamic representation
of the plant is known but the analytical details embodying it are unavailable. The results
obtained con�rm the prescribed form of tracking claim together with low computational cost
due to the adjustment of the controller parameters.

Key words: ADALINE; control error extraction; parameter tuning; sliding mode control.

1. Introduction

It is a well known fact that a variable structure controller with a switching output
drives the error vector towards the origin in two phases. These are namely the
reaching phase, which lasts until the error vector hits the sliding manifold, and
the sliding phase, during which the error vector converges to the origin as charac-
terized by the locus along the sliding hypersurface. Provided that the uncertainties
satisfy the matching conditions, the control system becomes totally insensitive to
the disturbances during the sliding mode, and the extent of this robust behaviour
is determined by the physical constraints, such as the actuation speed of the plant
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under control or the bounds on the applicable control signals. The strategy is
therefore known as sliding mode control (SMC) in the related literature.

The studies, which report the use of the SMC technique for parameter tuning
in �exible structures, by Sanner and Slotine (1992), and Sira-Ramirez and Colina-
Morles (1995) have been the stimulants proving that the robustness feature of SMC
could be exploited in parameter tuning. These studies pioneered a vast majority of
researchers working on SMC-based parameter tuning. Sanner et al. (1992) have
considered the training of Gaussian radial basis function neural networks
(GRBFNN), which have certain degrees of analytical tractability in explaining the
stability issues, and Sira-Ramirez et al. (1995) have shown the use of adaptive
linear elements (ADALINE) with an SMC-based learning strategy. As an illustra-
tive example, the inverse dynamics identi�cation of a Kapitsa pendulum has been
demonstrated, together with a thorough analysis towards the handling of disturb-
ances. Hsu and Real (1997, 1999) demonstrate the use of SMC with GRBFNN; Yu
et al. (1998) introduce the dynamic uncertainty adaptation of what is proposed by
Sira-Ramirez et al. (1995), and demonstrate the performance of the scheme on the
Kapitsa pendulum. Parma et al. (1998) use the SMC technique in the parameter
tuning process of a multilayer perceptron. The latest studies towards the inte-
gration of SMC and parameter tuning mechanisms have shown that the tuning
can be implemented on dynamic weight �lter neurons (Sira-Ramirez et al., 2000),
and on the parameters of a controller (Efe et al., 2000). An extensive review is
provided in the recent survey of Kaynak et al. (2001). The survey illustrates how
SMC can be used for parameter adjustment in computational intelligence.

A substantial problem in utilizing the SMC-based tuning strategies for control
applications is the lack of the error on the output of the controller. This is primarily
due to the unavailability of the target values of the controller outputs. When this
problem is considered with control of uncertain plants, the tuning of the controller
parameters becomes a challenge due to the information-limited nature of the prob-
lem. The major contribution of this paper is the illumination of this problem for
a class of nonlinear systems with the assumption that SMC task is achievable. In
the second section, the structure of the control system is explained; the section
following this brie�y introduces the conventional SMC technique. The fourth sec-
tion is devoted to the calculation of the control error, and the �fth section describes
the parameter adaptation strategy. In the sixth section, we discuss several issues
related to the practical implementations of the proposed approach. The seventh
section presents an illustrative example and conclusions constitute the last part
of the paper.

2. Control system structure

Consider the nonlinear time-varying system given in (1). The system is composed
of n subsystems, the ith one of which is of order ri. The state vector of the system
is u = [ u 1uQ 1 … u (r1-1)

1 % u nuQn % u (rn-1)
n ]T and the input vector is t = [t1t2 % tn]T.

u (ri)i = fi( u ,t) + On
j=1

dij(t)tj i = 1,2,...,n (1)
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Denoting m = S n
i=1r

.
i, the system of (1) with these vectors can more compactly be

restated as u
.

= F( u ,t) + D(t)t, where F( u ,t) is m ´ 1 and D(t) is m ´ n dimensional.
It is assumed that the functions fi( u ,t) are unknown and therefore the n out of m
entries of vector function F( u ,t) are unavailable, whereas dijs (or consequently the
corresponding entries of D(t)) are assumed to be available. The design problem
is to enforce the response of the system towards the desired trajectory ( u d), which
is known but the control signal resulting in which is unavailable since F( u ,t) is
not known explicitly. Therefore, the solution to this problem is a search towards
the synthesis of such a signal iteratively by a learning controller. Assuming that
the controller in Figure 1 is composed of n individual subcontrollers, the ith one
of which is to construct the ith component of input vector t. The jth entry of the
excitation vector driving this subcontroller can be given as e(j)

i = u (j)
i - u (j)

di
. Appar-

ently, this component is the jth derivative of the ith tracking error component (ei).

3. Conventional SMC design – an overview

Consider the vector of sliding surfaces for the system in (1): s(e) = Ge, where
e = u - u d is the tracking error vector and G is a n ´ m dimensional design matrix
describing the vector of sliding surfaces. The widespread selection of the
matrix G is such that the ith sliding surface function has the form

si(ei) = S d
dt

+ l iD ri-1

ei (2)

in which l i is a strictly positive constant. Let V be a candidate Lyapunov function
given as

Figure 1 Block diagram of the control system
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V(s) =
1
2
sTs (3)

If the prescribed control signal satis�es VQ (s) = -sTj sgn (s), the negative de�niteness
of the time derivative of the Lyapunov function in (3) is ensured. In the above,
j is a positive de�nite diagonal matrix of dimension n ´ n and is a design
parameter. More explicitly, sTsQ = -sTj sgn (s) must hold true to drive the error
vector towards the sliding hypersurface. Utilizing sQ = -GuQ d + G(F( u ,t) + D(t)t)
leads to the following control signal:

t* = -(GD(t))-1 (GF( u ,t) - G uQ d) - (GD(t))-1 j sgn (s) (4)

in which the �rst term is the equivalent control term and the second term is the
corrective control term. For the existence of the components mentioned, the matrix

Figure 2 Reference trajectories, observed response and the
error trends
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Figure 3 Applied control signal and its transient and steady
state views

GD must not be rank de�cient. In the literature, equivalent control is considered
the low-frequency (average) component of the control signal. Because of the dis-
continuity on the sliding surface, the corrective term brings a high rate component
(Utkin, 1992). If e(0) = 0, the tracking problem can be considered as keeping e on
the sliding surface; however, for nonzero initial conditions, the strategy must
enforce the state trajectories towards the sliding surface, which is ensured by the
negative de�niteness of the time derivative of the Lyapunov function in (3). For
the case of nonzero initial conditions, the phase until the error vector hits the
sliding surface is called the reaching mode, the dynamic characteristics of the
system during which are determined by the control strategy adopted. Application
of the control input formulated in (4) imposes the dynamics described as
sQ = - j sgn (s), which clearly enforces the error vector towards the sliding surface.
Once the sliding surface is reached, the value of (2) becomes zero; and this
enforces the error vector to move towards the origin due to the selection in (2).
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Aside from the practical dif�culties of conventional SMC schemes, the control
signal in (4) is computable if a nominal representation of the system under
control is available. In what follows, a method for obtaining the error on the
control signal is presented for unknown systems of structure (1).

4. Calculation of the control error

Denote the variables observed upon the application of (4) as the control signal
with a superscript *, and denote those for any applicable control signal as primed.
In other words, the control signal t* is the one creating the desired response,
while t 9 is the signal produced by the controller and applied to the system. The
goal is how t 9 ! t* during the course of a control operation with u 9 (0) = u *(0).

Clearly, when t 9 is applied to the system of (1), the desired response must
satisfy s 9 TsQ 9 = -s 9 Tj sgn (s 9 ) in the closed loop. Equivalently, this requires the
following:

sQ 9 = -G uQ d + G(F( u 9 ,t) + D(t) t 9 ) (5)

Since the command trajectory is same in both cases, solving G uQ d from (4) and
substituting the result into (5) yields

sQ 9 = GD(t)(t 9 - t*) + G(F( u 9 ,t) - F(u *,t)) - j sgn (s*) (6)

De�ning sc =n t 9 - t*, D F =n F( u 9 ,t) - F(u *,t) and adding to both sides of (6) results
in (7).

sQ 9 + j sgn (s 9 ) = GD(t)sc + G D F - j (sgn (s*) - sgn(s 9 )) (7)

Several cross implications hidden in (7) can be clari�ed as follows:

sc ! 0 , t9 ! t* , 5 (GD(t))-1(sQ 9 + j sgn (s9 )) ! 0
&

(GD(t))-1(GD F - j ( sgn (s*) - sgn(s9 ))) ! 0
(8)

(GD(t))-1(sQ 9 + j sgn (s9 )) ! 0 , t9 ! t* , 5 sc ! 0
&

(GD(t))-1(GD F - j (sgn (s*) - sgn (s9 ))) ! 0

(9)

Referring to (7) and the internal relations given in (8) and (9), assume that a
biased estimate of sc = t 9 - t* is computed as ŝc = (GD(t))-1(sQ 9 + j sgn (s 9 )).
Although sc and ŝc are slightly different in value, behavioral implication of both
ŝc ! 0 and sc ! 0 are the same, i.e., to observe sQ 9 ! j sgn(s 9 ). If an adaptation algor-
ithm adjusts the parameters of a controller such that ŝc ! 0, then due to above
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implications, t 9 ! t* and s 9 ! s*. The designer must here notice that at each con-
trol cycle there will be an uncertainty on the estimated control error since G D F
- j (sgn(s*) - sgn(s 9 )) ± 0 during s 9 ± s*, and the effect of this term is strictly
dependent upon the vector function F( u ,t), which is unknown.

5. Tuning of ADALINE controller parameters

The input output relation of the ith ADALINE controller is as t 9i = f T
i V i, where

V i = [e 9i eQ 9i % e 9 (ri-1)
i 1]T is the vector of signals exciting the adjustable parameters

denoted by f i. In order not to be in con�ict with the physical reality, the designer
must impose i f ii # Bf i

, i V Q ii # B V Q i |tQ*i | # BtQ*
i
, the truth of which state that the

adjustable parameters of the controller, the time derivative of the signal exciting
the adjustable parameter set and the time derivative of the target output of the
controller remain bounded.

Theorem. For the ith subsystem of the system described in (1), which is under the
control loop shown in Figure 1, the use of an ADALINE controller having input–
output relation t 9 i = f T

i V i and the adaptation of the controller parameters as
described in (10) enforces the value of the ith component of the control discrep-
ancy vector (sci

) to zero:

f Q i = -
V i

V T
i V i

ki sgn (sci
) (10)

where ki is a suf�ciently large positive constant satisfying ki . B f i
B V Q i

+ BtQ*i. The
adaptation law in (10) drives an arbitrary initial value of sci

to zero in �nite time
denoted by thi satisfying the inequality in (11).

thi
#

|sci
(0)|

ki - (Bf i
B V Q i

+ BtQ*i
)

(11)

Proof: See Sira-Ramirez et al. (1995) and Efe et al. (2000).

An important feature of this approach is the fact that the controller parameters
evolve bounded as assumed initially. The details of the bounded parametric
evolution analysis can be found in Yu et al. (1998) and Efe et al. (2000).

Based on the discussion presented in the previous section, the adaptation
algorithm uses the estimate of the control discrepancy vector, i.e., ŝci

, as also illus-
trated in Figure 1.

6. Practical issues

The analysis and the design approach presented so far have tried to illuminate
the SMC-based adaptation problem from a theoretical perspective. In this sub-
section, two important issues related to the practical applications of the discussed
approach are highlighted.
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6.1 Chattering

Since the control decision is based on the sign of a quantity, which is very close
to zero, the motion that is observed during the sliding regime exhibits high-
frequency components, which is known as chattering. Referring to the control
signal of (4), the second term is the well known corrective control action and is
the primary reason for chattering. Several approximations can be utilized to avoid
chattering at the cost of introducing a boundary layer. This paper uses the exact
sign functions; however, an in-depth discussion on this issue can be found at
Hung et al. (1993) and Slotine and Li (1991).

6.2 Actuation speed

Another important issue is the actuation speed of the system under control, i.e.,
the ability to respond to what is imposed timely. Since the details concerning the
dynamic model of the plant under control are assumed to be unavailable, what
causes a dif�culty from a practical point of view is the selection of the design
matrix j , which characterizes the behaviour during the reaching mode. The values
of this quantity can only be set by trial-and-error, due to the lack of system-
speci�c details.

7. An illustrative example

This section demonstrates the performance of the proposed scheme for a third-
order system studied previously by Roy and Olgac (1997) and Yilmaz and
Hurmuzlu (2000). The dynamic equation describing the system is given in (12).

u (3) = -0.5 u - 0.5 uQ 3 - 0.5 u¨ |u¨ | + (1+0.1sin( p t/3))t + k 1(t) + k 2(t)+

(-0.05 + 0.25sin(5 p t))u + (-0.03 + 0.3cos(5 p t))uQ3 + (-0.05 + 0.25sin(7p t))u¨|u¨| (12)

where k 1(t) = 0.2sin(4 p t) is the disturbance used in Roy and Olgac (1997) and
Yilmaz and Hurmuzlu (2000), and k 2(t) is the zero mean Gaussian noise cor-
rupting the state information to be used by the controller additively. The standard
deviation for all three noise components is equal to 0.00025 and the noise
sequences are within 6 0.001 interval, with probability very close to unity.

The work presented by Roy et al. assumes that the nominal system dynamics
is known and the uncertain part is comprised of what is given as the last three
terms in (12). The primary difference between what has been discussed so far and
what is assumed in Roy and Olgac (1997) should be stressed, as the approach we
discuss only assumes the achievability of the SMC task, hence the uncertainties
are represented in the system dynamics, whose form is known but the details are
not. As the controller, a four-input single-output ADALINE structure is used with
input vector V i = (e9i eQ 9i ë 9i 1)T. The tuning is performed on all four parameters,
which are initially set to zero. Since the system comprises a single subdynamics,
which is of order 3, n = 1 and r1 = 3. The system is under the feedback loop as
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Figure 4 Sliding surface and the motion in the phase space

illustrated in Figure 1, with the discussed adaptation strategy. We set G = [1 2 1]T,
i.e., l 1 = 1, k1 = 10 and j = 1, for the SMC design matrix of ŝc =
(GD(t))-1 (sQ 9 + j sgn (s 9 )).

Parallel to Roy and Olgac (1997), the reference state trajectory described as
u d = 0.5 cos ( p t/5) is used in the simulations with uQd(0) = 0, u¨d(0) = - p 2/50. The
simulation step size is 0.5 ms. Initially, the states of the system have the following
values, u (0) = 1, uQ (0) = 1 and u¨(0) = 1. In the �rst column of Figure 2, the reference
state trajectory for u state, observed system response in u and the discrepancy
between them are illustrated. The second and the third columns of this �gure
illustrate the responses relevant to uQ and u¨ states. From the bottom row of this
�gure, convergent error trends are clear for all three error variables.

In the top row of Figure 3, the applied control signal is illustrated. In order to
see the transient behaviour in detail, the middle row depicts the same signal for
the �rst 15 s and the bottom row shows the behaviour after t = 15 s. Apparently,
the applied control signal settles down to a steady-state solution after a reasonably
fast transient, which takes place during the �rst 15 s. One important note here
should be on the selection of the design parameter l . The value is taken as 5 in
Roy and Olgac (1997); however, we use l = 1, because the behaviour with this
value results in a much better system response. Figure 4 illustrates the trajectory
followed in the phase space. The error vector hits the sliding surface �rst around
t < 4.15 s, and continues moving on it as enforced by the algorithm. Next, the
behaviour in the parameter space should be taken into consideration. As seen in
Figure 5, the �rst three parameters settle down to constant solutions as their multi-
pliers are the convergent error terms, and the fourth one, whose multiplier is a
constant bias unity, continuously provides the necessary control input during the
motion around the origin of the phase space.
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Figure 5 Time evolution of the adjustable controller parameters

If F( u ,t) of (1) were known perfectly, the target response obtained through the
construction of the target control signal by using (4) would be compared as
depicted in Figure 6. Clearly, the Euclidean norm of the difference between the
two error vectors, namely i e 9 - e* i , converges to zero rapidly. The trajectories fol-
lowed in the phase space also demonstrate that the target regime is slightly differ-
ent from that achieved by the discussed method since G D F - j (sgn(s*) - sgn(s 9 ))
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Figure 6 Comparison of the proposed approach (F( u ,t) is
unknown) and the result of the traditional scheme when F(u ,t) is
known perfectly

of (7) cannot be constructed numerically. This comparison justi�es the creation
and maintenance of the SMC task claim of the paper.

Lastly, we analyse the computational burden of the algorithm. The required
number of �oating point operations (�ops) to perform the inner product of
V i and f i is equal to 9 for a third-order system and that to tune the parameters
is equal to 63 �ops. A total of 72 �ops with two comparisons are performed and
this result is highly affordable even for the average-speed microcontrollers.
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8. Conclusions

This paper discusses the design of an ADALINE-based variable structure control
strategy for a class of systems. The approach assumes that the SMC task is achiev-
able and the system has the structure given in (1). A number of issues in SMC
design are discussed from the point of control engineering and a case study has
been presented. It is shown that the tuning strategy meets the desired speci�-
cations. Furthermore, the control system retains a high degree of robustness
against disturbances and uncertainties. A major contribution of the paper is the
creation and maintenance of a prede�ned sliding regime without knowing the
analytical details describing the plant dynamics. The acceptable smoothness of the
produced control signal and the computational simplicity of the approach are the
prominent features recommending the use of the proposed adaptation law. The
potential application �eld of the scheme presented covers all controller structures,
whose outputs are linear in the adjustable parameters. Therefore, if the task is
well speci�ed, the removal of the ambiguity on the control signal error for intelli-
gent control applications has been shown to be achievable without externally
identifying the system under investigation.
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