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Control of systems governed by Partial Differential Equations (PDEs) is an interesting subject
area, as the classical tools of control theory are not directly applicable and PDEs can display
enormously rich behaviour spatiotemporally. This paper considers the boundary control of a
2D heat flow problem. A solution to the control problem is obtained after a suitable model
reduction. The considered PDE system is subject to Dirichlet boundary conditions of generic
type f (x )g(t ). The separation of these boundary excitations after Proper Orthogonal Decom-
position yields an autonomous Ordinary Differential Equation (ODE) set in which the
boundary excitations are implicit. The main contribution of this paper is to describe a
mathematical treatment based on the numerical observations such that the implicit excitation
terms explicitly appear in the ODE set. With such an ODE model, standard tools of feedback
control theory can be applied. A measurement point has been chosen, and the desired
behaviour is forced to emerge at the chosen point. A root locus technique is used to obtain the
controller. It is seen that the results obtained are in good compliance with the theoretical claims.
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1. Introduction

Modelling and control of Partial Differential Equation governed processes is an
interesting research area, the outcomes of which address many physical phenomena
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displaying spatial continuity, eg, heat and fluid flows. It is a well known fact that for
linear Partial Differential Equations (PDEs), there are well established alternatives
other than Proper Orthogonal Decomposition (POD) (Gügercin and Antoulas, 2000),
but POD is a widely used method in modelling of more complicated systems. The goal
of this paper is to present a bottom-up design with a discussion on the effect of
parameters entering into the POD algorithm.

POD was proposed in the pioneering work of Lumley (1967) with the goal of
unfolding the modal nature of turbulent flows. Sirovich (1987) introduced the method
of snapshots for reducing the computational intensity of the original POD algorithm.
The POD method is widely accepted as a powerful tool for decomposing the content of
a time-varying spatially continuous process into the spatial and temporal components.
The spatial part is a set of basis functions, whereas the temporal part is a set of
differential equations. The decomposition is accomplished in the order of dominance,
which is a significant property enabling the designer to truncate the expression at a
particular mode number. Modelling of flow problems governed by PDEs have
therefore enjoyed the POD method in obtaining the finite-dimensional models at the
cost of giving concessions from the model performance, eg, Caraballo et al . (2004), Ly
and Tran (2001), Rowley (2005), Rowley et al . (2004) and the references therein.

Procedurally, the PDE set is solved for the given initial and boundary conditions.
Several samples from the solution set are selected and the POD method with Galerkin
projection is applied. As a result of this, a set of autonomous Ordinary Differential
Equations (ODEs) is obtained. The solution of the obtained ODEs with the given initial
conditions synthesize the temporal part of the solution and the spatial basis functions
obtained through the POD method yield the approximate solution of the PDE.
Unfortunately, the set of ODEs are specific to the initial and boundary conditions used
in the model derivation stage. In other words, one needs to change the ODE model for
every different instance of boundary excitation regimes and this is a significant
problem for the boundary control goal. This paper demonstrates how the aforemen-
tioned autonomous set of ODEs is made non-autonomous and external excitations are
seen explicitly in the model. Aside from making the boundary excitations explicit in
the model, the validity of the developed model is extended to a set of boundary
conditions, which constitute the final stage of the modelling effort. The prominent
feature of the approach presented here is that the algorithm yields a model using some
boundary excitations, but the model maintains its validity for different but similar
signals. The modelling procedure was followed with pointwise boundary excitations
for 1D Burgers equation in Efe and Özbay (2004) and 2D heat equation in Efe and
Özbay (2003). This paper extends the boundary excitations to non-point subdomains
of the boundaries, which results in much richer heat distributions in the snapshots
than those obtained in Efe and Özbay (2003).

Another variation of the low-dimensional (LD) modelling of a 2D heat flow problem
has been taken into consideration by Atwell and King (2001), who consider a modified
2D heat transport problem with control input explicitly available in the PDE. The
thermal diffusivity parameter has been taken as a known constant and several control
strategies have been assessed with the modelling results of the POD approach. Clearly,
the availability of the control input in the PDE means that the excitation is not only
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through the boundaries, and the obtained low-order model would have the excitations
explicitly.

Once the finite-dimensional model for an infinite-dimensional process is obtained,
one might base the design on the LD model and implement a boundary controller for
the original process. Optimal control is one of the frequently used approaches in
boundary control applications of PDE systems. One work focusing on a 1D heat
conduction problem reported the design of time-optimal boundary control (Mizel and
Seidman, 1997), with the emphasis that the time-optimal control has the bang-bang
property, and the solution has been postulated by the techniques of Hilbert spaces.
Rösch (1994) viewed the characterization of boundary condition as an identification
problem, and presented an iterative approach to meet the conditions of optimality.
Ravindran (2000) and Singh et al . (2001) followed the optimal control techniques on
more complicated flow systems, namely a flow past a step (Ravindran, 2000) and flow
past a cylinder (Singh et al ., 2001). Both of these works dealt with Navier� Stokes
equations.

This paper is organized as follows. The second section summarizes the POD
algorithm specific to the modelling of a 2D heat flow problem. In the third section,
development of the reduced-order model for the 2D heat flow is analysed. The fourth
section presents the modelling results with an emphasis on the spectral dependence of
the model on the operating conditions. In the fifth section, the design and analysis of
the observer is presented and the feedback control design is explained in the sixth
section. The seventh section summarizes the contribution of the paper to the subject
area and positions the paper within the cited references with emphasis on the
introduced originality. The concluding remarks are given at the end of the paper.

2. Proper orthogonal decomposition

Consider the ensemble Ui(x ,y), i�/1,2, . . . Ns , where Ns is the number of elements.
Every element of this set corresponds to a snapshot observed from a process, eg, 2D
heat flow with initial and boundary conditions,

ut(x; y; t)�c2(uxx(x; y; t)�uyy(x; y; t))

u(x; 0; t)� f1(x)g1(t)

u(1; y; t)� f2(y)g2(t)

u(x; 1; t)� f3(x)g3(t)

u(0; y; t)� f4(y)g4(t)

u(x; y; 0)�0 � (x; y) (1)

where c is the known constant thermal diffusivity parameter, and the subscripts x , y
and t refer to the partial differentiation with respect to x , y and time, respectively. The
continuous time process takes place over the physical domain V:�/{(x ,y) j (x ,y) �/

[0,1]�/[0,1]} and the solution is obtained on a spatial grid denoted by Vd , which
describes the co-ordinates of the pixels of every snapshot in the ensemble. The entities
described over Vd are matrices in RNy�Nx: Note that in (1), fi( �/) for each i is a function
that describes how gi(t) influences the behaviour along the corresponding edge of V.
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fi( �/)s can be selected arbitrarily, yet for every i , fi(0)�/fi(1)�/0, so that the problem
description is consistent at the corners of V, and gi(t) becomes independent from gj(t)
for i "/j and the external excitations can be selected arbitrarily.

With this problem description, the goal of applying POD is to find an orthonormal
basis set letting us write the solution as

u(x; y; t)�
XRL

i�1

ai(t)Fi(x; y) (2)

where ai(t) is the ith temporal mode, Fi(x ,y) is the i th spatial function (basis function
or the eigenfunction), RL is the number of independent basis functions that can be
synthesized from the given ensemble, or equivalently that spans the space described
by the ensemble. It will later be clear that if the basis set fFi(x; y)gRL

i�1 is an orthonormal
set, Galerkin projection yields the autonomous set of ODEs directly. Let us summarize
the POD procedure.

Step 1. Calculate the Ns �/Ns dimensional correlation matrix L , the ijth entry of which
is Lij �/�Ui ,Uj�Vd

, where ��/, �/�Vd
is the inner product operator defined over RNy�Nx.

Step 2. Find the eigenvectors (denoted by vi) and the associated eigenvalues (li) of
the matrix L . Sort them in a descending order in terms of the magnitudes of li . Note
that every vi is an Ns �/1 dimensional vector satisfying vi

Tvi �/1/li , here, for simplicity
of the exposition, it is assumed that the eigenvalues are distinct.

Step 3. Construct the basis set by using

Fi(x; y)�
XNs

j�1

vijUj(x; y) (3)

where vij is the jth entry of the eigenvector vi� (vi1 vi2 . . . viNs
)T; and i�/1,2, . . .,

RL , with RL �/rank(L). It can be shown that �Fi(x; y);Fj(x; y)�V�dij with dij being the
Kronecker delta function. Notice that the basis functions are admixtures of the
snapshots (Efe and Özbay, 2003; Ly and Tran, 2001).

Step 4. Calculate the temporal coefficients. Taking the inner product of both sides of
(2) with Fi(x ,y), the orthonormality property leads to

ai(t0)��Fi(x; y); u(x; y; t0)�V

��fi;Ut0
�Vd

:�
1

Ns

XNx

l�1

XNy

j�1

fi(xl; yj)Ut0
(xl; yj)

:�fi(x; y)+Ut0
(x; y) (4)

where fi �/RNy�Nx is a sampled form of the basis function Fi defined over V. The
operator denoted by * computes a real number that is the sum of all elements of a
matrix obtained through the elementwise multiplication of the two matrices that * lies
in between. Without loss of generality, an element of the ensemble fUi(x; y)gNS

i�1 may
be U(x ,y,t0). Therefore, in order to generate the temporal gain, ak(t), of the spatial
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eigenfunction fk , one would take the inner product of fk with the elements of the
ensemble as given below,

�U1;fk�Vd
:ak(t1)

�U2;fk�Vd
:ak(t2)

n
�UNs

;fk�Vd
:ak(tNs

)

(5)

The above computation is important for making a comparison between the quantities
obtained from the decomposition [see (5)] and the quantities obtained from the model.
Note that the temporal coefficients satisfy orthogonality properties over the discrete
set t �/{t1, t2, . . ., tNs} [see (6)].

XNs

i�1

�Ui(x; y);Fk(x; y)�2
Vd
:

XNs

i�1

a2
k(ti)�lk (6)

For a more detailed discussion on the POD method, the reader is referred to Caraballo
et al . (2004), Efe and Özbay (2003� 2004), Lumley (1967), Ly and Tran (2001), Rowley
(2005), Rowley et al . (2004), and the references therein.

Fundamental assumption: The majority of works dealing with POD and model
reduction applications presume that the flow is dominated by coherent modes, which
means that the flow can be decomposed into distinguishable components in the order
of dominance. Because of the dominance of coherent modes, the typical spread of the
eigenvalues of the correlation matrix turns out to be logarithmic and the terms decay
very rapidly in magnitude. This fact enables us to assume that a reduced-order
representation, say with M modes (M B/RL), can also be written as an equality

u(x; y; t)�
XM

i�1

ai(t)Fi(x; y) (7)

and the reduced-order model is derived under the assumption that (7) satisfies the
governing PDE in (1) (Caraballo et al ., 2004; Efe and Özbay, 2003, 2004; Ly and Tran,
2001; Ravindran, 2000). Unsurprisingly, such an assumption results in a model having
uncertainties; however, one should keep in mind that the goal is to find a model,
which matches the infinite-dimensional system in some sense of approximation with
typically M�/RL B/Ns . To represent how good such an expansion is, a percentage
energy measure is defined as follows

E�100

PM
i�1 liPRL

i�1 li

(8)

where the tendency of E 0/100% means that the model captures the dynamical
information contained in the snapshots well. Conversely, an insufficient model will be
obtained if E is far below 100%. Clearly, POD lets us reduce the dimensionality of the
problem from infinity to RL , and the fundamental assumption further enables us to
reduce the LD model order to M . In the next section, how the boundary conditions are

Efe 57

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at TOBB Ekonomi ve Teknoloji Üniversitesi on May 9, 2007 http://tim.sagepub.comDownloaded from 

http://tim.sagepub.com


transformed into explicit control terms in the corresponding set of ODEs is
demonstrated.

3. Reduced-order modelling

In the order reduction phase, we need to obtain the autonomous ODE model first.
Towards this goal, if (7) is a solution to the PDE in (1), then it has to satisfy the PDE.
Substituting (2) into (1) with the fundamental assumption yields

XM

i�1

ȧi(t)Fi(x; y)�c2
XM

i�1

ai(t)Ci(x; y) (9)

where Ci(x; y)�Fi xx(x; y)�Fi yy(x; y): Taking the inner product of both sides with
Fk(x ,y) and remembering �Fi(x ,y)Fk(x ,y)�V�/dik , with dik being the Kronecker delta,
results in

ȧk(t)�c2
XM

i�1

ai(t)�Fk(x; y);Ci(x; y)�V (10)

Defining zk as the entity in Vd corresponding to the entity Ck in V, one could rewrite
(10) as

ȧk(t)�c2
XM

i�1

ai(t)�fk; zi�Vd
(11)

Equation (11) can be written explicitly by using * operator as

ȧk(t)�c2
XM

i�1

ai(t)(fk(x; y)�zi(x; y)) (12)

Notice that * operator can be applied individually over V1
d;V

2
d; :::;V

n
d ; which are n non-

overlapping subdomains of Vd such that V1
d@V2

d@ :::@Vn
d �Vd: This lets us separate

the entries corresponding to boundaries without modifying the value of �fk; zi�Vd
; ie,

fk(x; y)�zi(x; y) as seen in (13),

ȧk(t)�c2
XM

i�1

ai(t)(fk(x; 0)�zi(x; 0)�fk(1; y)�zi(1; y)�fk(x; 1)�zi(x; 1)�fk(0; y)�zi(0; y))

�c2
XM

i�1

ai(t)(f
o
k(x; y)�zo

i (x; y)) (13)

In the above, fo
k(x; y) denotes a matrix that is obtained when the boundary elements of

fk(x; y) are removed, ie, the first and the last rows, and columns. Similarly, in the
computation of terms like fk(x; 0)�zi(x; 0); the terms fk(x; 0) and zi(x; 0) correspond to
the first rows of the matrices fk(x; y) and zi(x; y); respectively.
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The kth component of the first summation in (13), which is obtained when i�/k , can
be separated from the expression and (14) is obtained, which lets us embed the
boundary conditions into the expression,

ȧk(t)�c2ak(t)(fk(x; 0)�zk(x; 0)�fk(1; y)�zk(1; y)�fk(x; 1)�zk(x; 1)�fk(0; y)�zk(0; y))

�c2
XM

i�1

ai(t)(1�dik)(fk(x; 0)�zi(x; 0)�fk(1; y)�zi(1; y)�fk(x; 1)�zi(x; 1)

�fk(0; y)�zi(0; y))�c2
XM

i�1

ai(t)(f
o
k(x; y)�zo

i (x; y)) (14)

At this stage of the modelling, we need to paraphrase the boundary conditions in such
a way that the final expression above can be incorporated with these conditions. The
underlying idea is straightforward: if (7) is a solution, then it must be satisfied at the
boundaries as well, ie,

XM

i�1

ai(t)fi(x; 0)� f1(x)g1(t) (15)

which can be paraphrased as

ak(t)fk(x; 0)� f1(x)g1(t)�
XM

i�1

(1�dik)ai(t)fi(x; 0) (16)

Similarly,

XM

i�1

ai(t)fi(1; y)� f2(y)g2(t) (17)

which can be rewritten as

ak(t)fk(1; y)� f2(y)g2(t)�
XM

i�1

(1�dik)ai(t)fi(1; y) (18)

We can perform the same arrangement for the remaining two edges as given below:

XM

i�1

ai(t)fi(x; 1)� f3(x)g3(t) (19)

ak(t)fk(x; 1)� f3(x)g3(t)�
XM

i�1

(1�dik)ai(t)fi(x; 1) (20)
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XM

i�1

ai(t)fi(0; y)� f4(y)g4(t) (21)

and

ak(t)fk(0; y)� f4(y)g4(t)�
XM

i�1

(1�dik)ai(t)fi(0; y) (22)

Concatenating the obtained terms in one expression yields

ȧk(t)�c2(f1(x)�zk(x; 0))g1(t)�c2(f2(y)�zk(1; y))g2(t)�c2(f3(x)�zk(x; 1))g3(t)

�c2(f4(y)�zk(0; y))g4(t)�c2
XM

i�1

ai(t)(fk�zi�fi(x; 0)�zk(x; 0)

�fi(1; y)�zk(1; y)�fi(x; 1)�zk(x; 1)�fi(0; y)�zk(0; y)) (23)

which can be written compactly as

ȧ(t)�Aa(t)�BG(t) (24)

where a(t)�/(a1(t) a2(t) . . . aM(t))T is the state vector, G(t)�/(g1(t) g2(t) g3(t) g4(t))T

is the input vector and

Aki�fk(x; y)�zi(x; y)�fi(x; 0)�zk(x; 0)�fi(1; y)�zk(1; y)

�fi(x; 1)�zk(x; 1)�fi(0; y)�zk(0; y) (25)

and the kth row of the input matrix is

Bk�c2(f1(x)�zk(x; 0) f2(y)�zk(1; y) f3(x)�zk(x; 1) f4(y)�zk(0; y)) (26)

This result practically lets us have a representative linear dynamical model for the
infinite-dimensional process in (1), which is aimed to be controlled through the
boundaries. The next section presents to what extent the modelling strategy discussed
here could be successful.

4. Justification of the dynamic model

According to the described procedure, several tests have been done. Due to the
numerical advantages, the PDE has been solved by using the Crank� Nicholson
method (see Farlow, 1993, for details), with a step size of 1 ms. The initial thermal
distribution is taken as zero everywhere and the thermal diffusivity constant is set as
c�/2. In order to form the solution, a linear grid having Nx �/Ny �/25 points in the x-
direction and y-direction, respectively. According to the above parameter values, a set
of 501 snapshots embodies the entire numerical solution, among which linearly
sampled N�/251 snapshots have been used for the POD scheme. Although one may
use the entire set of snapshots, it has been shown by Sirovich (1987) that a reasonably
descriptive subset of them can be used for the same purpose. In the literature, this
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approach is called the method of snapshots , which significantly reduces the computa-
tional intensity of the overall scheme (see also Ravindran, 2000, and Ly and Tran,
2001). Once the modes have been obtained, the solution at M�/9 is truncated, which
represents 99.9704% of the total energy described in the denominator of the expression
in (8).

In order to demonstrate the performance of the dynamic model, we choose the
functions that are effective along the boundaries as f1(x)�/sin(2px), f1(y)�/sin(2py),
f3(x)�/�/sin(2px) and f4(y)�/�/sin(2py) are chosen. As the temporal excitations, the
following input signals are chosen,

g1(t)�5sin(2p70t(T�t)) (27)

g2(t)�5sin

�
2p55t

�
T

2
�t

��
(28)

g3(t)�5sin

�
2p65t

�
T

3
�t

��
(29)

g4(t)�5sin

�
2p50t

�
T

4
�t

��
(30)

where T�/0.5 s. The choice of the above excitation signals is deliberate as they are
spectrally rich enough. As can be seen from Figure 1, values of ak(t) will undergo
regimes that change sometimes slowly and sometimes fast depending on the spectral
composition of the external inputs. Under these conditions, the response of the LD
model is illustrated in Figure 2, in which every subplot contains two curves.
Obviously, the temporal variables obtained from the POD algorithm are very close
to those obtained from the LD model and this observation indicates that the LD model
is a good representative for the chosen test conditions.

Undoubtedly, one would expect a good match between the state variables obtained
from the POD algorithm and the state variables obtained through the numerical
solution of the ODE set in (24). One might question whether the model is specific to
the boundary conditions above. Remedying this is accomplished by choosing another
set of external inputs and obtaining the response of the model without modifying the
model parameters. For this purpose,

g1(t)�sin(2p70t(0:6�t)) (31)

g2(t)�sin

�
2p55t

�
T

4
�t

��
(32)

g3(t)�sin

�
2p60t

�
t�

T

3

��
(33)
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g4(t)�sin

�
2p45t

�
T

5
�t

��
(34)

and the results obtained are illustrated in Figures 3 and 4. It is seen that the state
variables are obtained precisely when the relevant signal changes slowly. During the
regions where the signals change quickly, there is some visible discrepancy due to
the spectral dependence of the model properties to the signals used during the
derivation of the model, which are illustrated in the right subplots of Figure 1. To
justify this claim, take the Laplace transform of the PDE in (1) and write the general
solution as below:

sU(x; y; s)�u(x; y; 0)�c2(Uxx(x; y; s)�Uyy(x; y; s)) (35)
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Figure 1 Temporal and spectral views of the boundary excitations
used in the derivation of the low-order model
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where u(x ,y,0) has been specified to be zero over V. This would produce the following
general solution

Uðx; y; sÞ ¼ C1ðsÞex
ffiffi
s

p
=c þ C2ðsÞe�x

ffiffi
s

p
=c þ C3ðsÞey

ffiffi
s

p
=c þ C4ðsÞe�y

ffiffi
s

p
=c (36)

Referring to the four boundary conditions in (1) with the chosen f1(x), f2(y), f3(x) and
f4(y), one can write four equalities to solve for the unknown Ci(s), which are
U(1=4; 0; s)�G1(s); U(1; 1=4; s)�G2(s); U(3=4; 1; s)�G3(s) and U(0; 3=4; s)�G4(s):
This lets us have the following matrix equality;

C1(s)
C2(s)
C3(s)
C4(s)

0
BB@

1
CCA�

e
ffiffi
s

p
=4c e�

ffiffi
s

p
=4c 1 1

e
ffiffi
s

p
=c e�

ffiffi
s

p
=c e

ffiffi
s

p
=4c e�

ffiffi
s

p
=4c

e3
ffiffi
s

p
=4c e�3

ffiffi
s

p
=4c e

ffiffi
s

p
=c e�

ffiffi
s

p
=c

1 1 e3
ffiffi
s

p
=4c e�3

ffiffi
s

p
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After the inversion,

U(x; y; s)�H1(x; y; s)G1(s)�H2(x; y; s)G2(s)�H3(x; y; s)G3(s)�H4(x; y; s)G4(s) (38)

Once the external excitations are specified, it becomes visible that the spectral content
U(x ,y,jv) is determined by the transfer functions Hi(x ,y,jv) and the external
excitations, Gi(t). This representation clearly supports the conclusion of spectral
dependence of the LD model to the signals used during the model derivation stage.
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Figure 2 The state variables (ak (t )) obtained from POD and those
from the LD model in (24)
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One should keep in mind that the linearity of the PDE under investigation has
facilitated achieving this conclusion. If the boundary signals are spectrally rich
enough, then their effects are reflected to the snapshots [see (38)] as much as the
system dynamics in (1) permits. This can also be seen from u(x; y; t)�a4

i�1f
t

0
hi(x; y;

/t�t)gi(t)dt:�Ut with hi(x ,y,t) being the inverse Laplace transform of Hi(x ,y,s).
Unsurprisingly, the properties specified indirectly by the snapshots will be inherited
by the LD model. As a result, the richer the boundary excitations spectrally, the better
the snapshots containing the spectral properties of the system dynamics. To sum up,
the signals used in the modelling stage have significant effects on the performance
of the LD model and those signals have to excite the system persistently in order to
obtain a reasonably descriptive model. This is one important contribution of this
paper. The next section focuses on how a root locus-based feedback controller can be
designed for the PDE process in (1).
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Figure 3 Temporal and spectral views of the test boundary
excitations
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5. Root locus-based boundary control of 2D heat flow

Root locus is a very powerful technique in linear systems theory. As the representative
model of the process is a finite-dimensional linear plant, the technique for designing a
simple yet effective feedback controller can be utilized. In this paper, the following
scenario is studied. As illustrated in Figure 5, the inputs g2, g3 and g4 are the entries of
external disturbances while g1 is reserved for the control signal. The matrix B is
partitioned as B� (Bc Bd); where Bc is M �/1 vector and Bd is an M �/3 matrix.

The control problem is to force the behaviour at a measurement point towards a
desired profile by altering g1(t) appropriately. The process output, u(x ,y,t), is
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Figure 4 The state variables (ak (t )) obtained from POD and those
from the LD model in (24) for the test boundary excitations
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Figure 5 Block diagram of the feedback control system
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corrupted by a spatially continuous noise signal, no(x ,y,t), whose power is 0.002 and
u(x ,y,0) is randomly set. The other disturbance signals are g2(t)�/0.1 sin(40pt), g3(t)�/

0.1 sign(sin(50pt)) and g4(t)�/0.1 sin(90pt). Such disturbance entries excite the PDE
process both abruptly and smoothly, thereby letting us see the disturbance rejection
capability of the closed-loop control system. As the reference signal,

r(t)�
sin(4pt) 05 t51 s
sign(sin(4pt)) 15 t53 s

�
(39)

is chosen, which lets us see the performance under smooth and sharp command
signals. To achieve the goal, notice first that the open-loop system is Type 0 and
introduce a pole at s�/0 to make the open-loop transfer function Type I. Although this
is sufficient to track very slowly changing command signals for the problem at hand, a
real pole at s�/�/1000 is further added to modify the root locus, so that the closed-
loop poles may be placed more comfortably so that rise time is reduced significantly.
Utilizing the graphical tools of Matlab†, the gain of the controller is adjusted so that
no overshoot in the step response is observed. The global and zoomed root locus plots
taking the poles introduced by the controller into account are illustrated in Figure 6,
from which one can see the locations of the closed-loop poles too.

According to the above discussion and the design efforts, the controller is given as

C(s)�200
1

s(1 � 0:001s)
(40)

The results of the simulations are shown in Figure 7, where the top subplot depicts the
command signal and the measurement from the PDE process, u(xm ,ym ,t) with xm �/

5Dx and ym �/5Dy, where Dx�/1/(Nx �/1) and Dy�/1/(Ny �/1). The process output
closely follows the reference signal and this observation enables us to conclude with
the usefulness of the POD-based LD model. The middle subplot of Figure 7 shows the
difference r(t)�/u(xm ,ym ,t). The trend seen emphasizes that the error is suppressed
successfully by the controller. The bottom subplot of the figure shows the applied
control signal, g1(t). The control signal is reasonably smooth and the controller is
successful in rejecting the disturbances admissibly, which are two prominent features
of the controller.

The results justify the following claim: the design of a feedback boundary controller
can be based upon a reduced-order model that can be obtained through the POD
algorithm. The next section summarizes the contributions of the paper to the subject area.

6. Contributions and conclusions

This paper considers POD-based LD modelling of 2D heat flow and its control through
boundaries. The paper validates the model and emphasizes that the model is useful
over a set of operating conditions. The boundary control is achieved by a simple
controller obtained through the use of the root locus technique. The simulation results
have met the expectations and the following major and minor contributions have been
made.
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The paper demonstrates a bottom-up procedure letting us use a very standard tool
of control theory for the control of processes governed by PDEs. This is the major focus
and the key contribution of the paper. Another major contribution of the paper is the
demonstration of the spectral dependence of the LD model on the operating
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Figure 6 Root locus plots with the contribution of the controller:
(a) global view (top); (b) near origin view (bottom)
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conditions in the model derivation stage. The paper shows that the choice of the
external excitations is substantially important in terms of the LD model performance
and this has a guiding nature in the implementation of POD, as a very high level of
captured energy does not imply a satisfactory performance by itself.

The last major contribution is the assessment of the importance of the fundamental
assumption. The bottom-up design is strongly based on to what extent this
assumption holds true. As the number of modes in the model increases, more energy
is captured and a better approximation is obtained. Consequently, the confidence in
the design on the fundamental assumption is increased and the model uncertainty
becomes negligible, yet the model starts losing its usefulness in the increasing
direction of M , which is a significant parameter in modelling studies exploiting the
POD approach. This discussion demonstrates how critical the hold of the fundamental
assumption is.

Aside from the major results above, one of the minor contributions is the extension
of a previously proposed approach from pointwise excitation to excitations along non-
point subdomains, ie, the excitation along the boundaries. The separation scheme lets
us use the model not only for predetermined boundary control regimes (Efe, 2003,
2004), but also for a set of boundary excitations. The second minor contribution is
better understanding of POD, which is achieved by choosing a linear system.
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Figure 7 Simulation results
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Needless to say, the linearity of the PDE has been exploited in drawing the above
conclusions. These conclusions, and the modelling and control strategy investigated in
this paper, advance the subject area to the clarification of the following fact: POD is a
powerful technique but its usefulness depends upon the PDE in hand, problem
settings and the associated operating conditions.
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