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Multivariable nonlinear model
reference control of cement mills
Mehmet Önder Efe
Atilim University, Department of Mechatronics Engineering, Incek, TR-06836
Ankara, Turkey

This paper presents a method for model reference control of a cement milling circuit that has
previously been studied several times. The approach presented is based on an experimentally
justi�ed model of a cement milling circuit. We derive the form of the control vector with the
goal of driving the response of the system to that of a desired model in a noisy operating
environment. The paper demonstrates the selection of the reference dynamics and the deri-
vation of the control laws. The approach is based on the Lyapunov theory, and the results
observed justify the tracking and stability claims of the paper.

Key words: industrial control; Lyapunov stability; model reference control; nonlinear control

1. Introduction

Ensuring the compliance of the ground product with the increasingly demanding
cement quality standards has been a core issue in the cement industry. Several
parameters, like the strength after a certain period of time, percentage sulphate
(SO3 ) content, percentage tricalcium aluminate (C3A) content or �neness of the
cement material determine to what extent the �nal product satis�es the desired
speci�cations. Obtaining a consistent quality on the other hand depends heavily
on the control and optimization approach utilized on-site. Without loss of
generality, the design and implementation of control schemes in cement milling
processes are typically involved with the selection of several feed rates as the
control variables and aims to maintain a desired load on the mill. Some studies
have therefore focused on the clari�cation of operational properties of the milling
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process in general and mill drives in particular. Therefore, the dynamic represen-
tation of cement milling processes relate variables like mill load, product �ow
rate, tailing �ow rate and some other system parameters in a nonlinear fashion;
consequently the synthesis of an appropriate command and control scheme entails
the expertise of nonlinear control systems.

Control of cement milling processes has been the focus of a number of research
studies. The approaches postulated in the area of nonlinear control have exten-
sively been applied, some of which have been exempli�ed in detail in the cited
references. In particular, the model used in this paper has constituted a prime
example due to the strong interdependencies between the variables involved. The
model has three state variables and two control inputs, and despite its represen-
tational simplicity, the dynamics are quite complex and a good control perform-
ance can only be achieved if a suitable co-ordination between the two control
inputs can be established and maintained.

The �rst results on this system have been presented by Van Breusegem et al.
(1994, 1996), which are based on on-site experimentation of the system, and which
constitute a basis for the dynamic model presented in Magni et al. (1999). It has
been shown in Van Breusegem et al. (1994, 1996) that a linear quadratic control
scheme based on the minimization of several system-speci�c performance criteria
could lead to admissible results. In Magni et al. (1999), the multivariable predictive
control of the system is studied. The problems associated with the plugging
phenomenon and a robust control scheme is studied by Grognard et al. (2001).
One prime conclusion reported in Grognard et al. (2001) is the necessity to include
mill load in the state feedback information. This issue has further been discussed
in Boulvin et al. (1999), which highlights the fact that choosing the mill load is
not optional, instead it is a necessity. Dagci et al. (2001) have used the same model
to test the control performance of a sliding mode-based controller design
approach. It has been observed that an acceptable response could be obtained
using the set-point values given in Magni et al. (1999). A recent work reporting
the output feedback and tracking with model predictive control exempli�es the
application of stabilizing receding horizon control concept on the mentioned
cement milling circuit (Magni et al., 2001).

This paper is organized as follows: the second section describes brie�y the
dynamics of the cement milling circuit. The adopted reference model is introduced
in the third section and the synthesis of the control signals is presented in the
fourth section. In the �fth section, we formulate the error dynamics for all three
states when the observations are noisy. The sixth section is devoted to the justi�-
cation of the proposed scheme and the concluding remarks are given at the end
of the paper.

2. Dynamics of the cement milling circuit

The dynamical model of the system is described by three coupled and nonlinear
differential equations as given in (1)–(3). The states of the system are charac-
terized by the mill load denoted by z (in tons), the product �ow rate denoted by
yf (in tons/h) and the tailings �ow rate denoted by yr (in tons/h). On the other
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hand, w is the output �ow rate of the mill and d denotes the relative hardness of
the material inside the mill with respect to the nominal one, which is unity. The
system has two control inputs, denoted by u (tons/h), the feed �ow rate and, v
(rpm), the classi�er speed.

z*= -w(z,d) + u + yr (1)

Tf y*f = -yf + (1 - a(z,v,d))w(z,d) (2)

Try*r = -yr + a(z,v,d)w(z,d) (3)

where the functions w(z,d) = max(0, - dKw1z2 + Kw2z) (tons/h) and

a(z,v,d) =
w(z,d)mvn

Ka + w(z,d)mvn (4)

In the above, Ka = 570m170n(570/450 - 1) (tons/h)m rpmn, m = 0.8, n = 4, Kw1 =
0.1116 (tons´h)-1, Kw2 = 16.50 h-1, Tf = 0.3 h, Tr = 0.01 h and the nominal value of
d is unity. The variables Tf and Tr stand for the time constants for product �ow
rate and tailings �ow rate dynamics, respectively. A schematic representation of
the process is depicted in Figure 1, and a detailed description of the system
dynamics and the results regarding the experimental justi�cation of above terms
can be found in Van Breusegem et al. (1996) and Magni et al. (1999).

Since the dynamics of the system is highly nonlinear and since the dynamical
representation of the system is not af�ne in one of the control inputs, the design
of a controller meeting the stability, tracking and robustness objectives is a
challenge. This fact motivates control specialists to use the model as a test bed
for novel control strategies.

The control problem is to enforce the system states to follow the states of a
reference model by appropriately altering the two control inputs. At the �rst
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Figure 1 Schematic diagram of the cement milling circuit
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glance, it can be seen that the designer could choose two of the three state variables
independently, as the behaviour of the third state variable would be determined
upon the selection of other two. However, it is emphasized in Van Breusegem
et al. (1996) and Boulvin et al. (1999) that the choice of yf and yr may lead to
unachievable values for w, and it is suggested in Boulvin et al. (1999) that keeping
yf and z under control is a necessity. In this paper, we adopt the same reasoning
and proceed parallel to this idea.

3. Reference model

In choosing the reference dynamics for z and yf, we consider the following
design requirements:

1) the reference model for each state, whose variables are represented with a
subscript m, must be stable and must follow the command signal. Since the
differential equations in (1)–(3) are of �rst order, we choose the corresponding
reference dynamics as a �rst-order system;

2) the response imposed by the reference system must not be faster than what
could be achieved by the actual system, i.e., the time constants must be
compatible.

Denote the command signals for reference mill load (zm) and the reference product
�ow rate (ymf) states by r and f, respectively. If for some tc . 0, zm(tc) = r(tc) is
satis�ed, it is obvious that (5) is satis�ed "t $ tc. Furthermore, the prescribed
dynamics in (5) satis�es the two preliminary requirements stated above.

z*m = -zm + r (5)

Similar reasoning applies to the dynamics governing the product �ow rate ymf.
The reference dynamics in (6) constitutes a good candidate satisfying the two
requirements above.

Tf y*mf = -ymf + f (6)

As indicated in Van Breusegem et al. (1996) also, once two out of three state vari-
ables are kept under control, the behaviour of the third state is determined by
the �rst two. Therefore, the same reasoning applies in designing the reference
model. In what follows, we formulate the control signals and extract the imposed
behaviour on the tailings �ow rate (ymr) component of the model, which is to be
followed by the yr dynamics of the actual plant.

4. Synthesis of the control signal

Assume the third state variable (ymr) of the model has the following dynamics,
with Q being a real-valued smooth function of the state variables, command
signals and system parameters.

Try*mr = Q (7)



Efe 377

Consider the following Lyapunov function candidate:

V =
1
2 e2

z +
Tf

2 e2
yf +

Tr

2 e2
yr (8)

where

ez = z - zm (9)

eyf = yf - ymf (10)

eyr = yr - ymr (11)

Evaluating the time derivative of the Lyapunov function in (8) yields the
following:

V* = ez(z* - z*m) + Tfeyf(y*f - y*mf) + Treyr(y*r - y*mr) (12)

Dropping the arguments of a and w, and inserting (1)–(3) and (5)–(7) into (12)
gives the quantity below:

V* = ez(-w + u + yr + zm - r) + eyf(-yf + (1-a)w + ymf - f) + eyr(-yr + aw - Q)
(13)

One suitable formulation for u and v inputs can be performed by enforcing the
following pair of equalities, which are chosen according to (13):

-w + u + yr + zm - r = -ez (14)

-yf + (1 - a)w + ymf - f = -eyf

If ez and/or eyf are nonzero, the two equalities in (14) ensure the negativity of the
�rst two terms of the summation in (13). Substituting the two equalities in (14)
into (13) leads to

V* = -e2
z - e2

yf + eyr(-yr + aw - Q) (15)

and lets us formulate the control signals uniquely as

u = w - yr - z + r (16)

v = K1/n
a Sw

f
- 1 D 1/n

w-m/n (17)

Note that with this pair of control signals, several internal relations are auto-
matically created. Inserting (17) into (4) yields a(z,v,d) = 1 - f/w(z,d) in the con-
trolled system. Consequently, the relation a(z,v,d)w(z,d) = w(z,d) - f is automati-
cally established in the closed loop. This has two practical consequences; the
immediate one is vPR "t if w(z,d) . 0. Secondly, if (3) is rewritten with this
relation, one obtains the dynamics in (18) in the closed loop:

Try*r = -yr + w(z,d) - f (18)

In reality, the model corresponding to this behaviour must be

Try*mr = -ymr + wm(zm,d) - f (19)
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where wm(zm,d) = max(0, -dKw1z2
m + Kw2zm). The right-hand side of (18) clari�es

that Q = -ymr + wm(zm,d) - f as seen in (7). Knowing a(z,v,d)w(z,d) = w(z,d) - f and
inserting this into (15) lets us proceed as follows:

V* = -e2
z - e2

yf + eyr(-yr + aw - (-ymr + wm - f))

= -e2
z - e2

yf - e2
yr + eyr(aw - wm + f) (20)

= - e2
z - e2

yf - e2
yr + eyr(w - f - wm + f)

= - e2
z - e2

yf - e2
yr + eyr(w - wm)

Since Tf , 1 and Tr , 1, we can rewrite and rearrange (20) as follows:

V* , - e2
z - Tf e2

yf - Tre2
yr + eyr(w - wm) (21)

= -2 V + J

where J = eyr(w - wm). Having the Lyapunov system V* , -2V + J in mind, one
can write the below inequality that characterizes the time solution to this Lyapu-
nov system:

0 , V(t) , exp(- 2t)V(0) + E t

0

exp(- 2(t - s))J(s)ds (22)

The selection of u given in (16) forces z ! zm, hence w ! wm. Using (18) and (19)
with a(z,v,d)w(z,d) = w(z,d) - f, one can write Tre*yr = -eyr + (w - wm). Clearly,
w ! wm ensures eyr ! 0, and hence J(t) ! 0. Furthermore, with the selected
control inputs, the states yf and z are decoupled and are enforced to follow the
corresponding model states. When the solution in (22) is considered with these
conclusions, it becomes apparent that V(t) will follow J(t) in the steady state,
and J(t) is enforced to converge to zero due to the design presented. Therefore,
the inequality in (22) states that the time solution of the Lyapunov system V* ,
-2V + J is globally uniformly ultimately bounded.

Remark 1. It must be noted that the designer can specify only two of the three
state variables independently, and by appropriately designing the two control
signals, the chosen two states can be maintained at desired levels. The time evol-
ution in the third state is determined by the other two, which are explicitly under
control. The same reasoning applies to the study of reference model determi-
nation. We have chosen two states of the reference model independently, and
described their behaviour through two dynamical equations [refer to (5) and (6)].
This has let us choose the control signals. The choice of u and v has automatically
determined the dynamics of the third state. Finally, the issue of stability has been
studied to demonstrate that the system – with its imposed third state – is stable,
and the time solution of the Lyapunov function is globally uniformly ultimately
bounded.

Remark 2. The time solution of the Lyapunov function is enforced to follow an
intermediate variable (J) that converges to zero. This lets us conclude with the
fact that the closed-loop system will follow the response of the reference model
to the extent determined by the value of J during the course of a control trial.

Remark 3. The proposed controller drives the behaviour of the plant to that of a
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reference model. The technique is well known as model reference control (MRC).
An extension of MRC exploits the strength of parameter adaptation. The interested
reader is referred to Aström and Wittenmark (1993).

5. Effect of noise-corrupted observations

In this section, we analyse the consequences of the noisy observations. For this
purpose, assume that the states of the system are corrupted by noise sequences
additively, and denote these disturbance signals by zz, zyf and zyr. The control
signals in (16) and (17) will have the following forms:

u = w(z + zz, d + zd) - (yr + zyr) - (z + zz) + r (23)

v = K1/n
a Sw(z + zz, d + zd)

f
- 1D 1/n

w(z + zz)-m/n (24)

where zd is the noise on measured relative material hardness parameter d.
Application of the above controls to the system of (1)–(3), and denoting
wz = max(0, -(d + zd)Kw1(z + zz)2 + Kw2(z + zz)), the dynamics of the model follow-
ing errors given in (9)–(11) are obtained as follows:

e*z = -ez + E1 (25)

Tf e*yf = -eyf + E2 (26)

Tre*yr = -eyr + E3 (27)

where

E1 = -(zyr + zz) + (ww - w) (28)

E2 =
w

1 + S z

wz
Dm Swz

f
- 1D - f (29)

E3 =
w S w

wz
Dm Swz

f
- 1D

1 + S w

wz
Dm Swz

f
- 1D - wm + f (30)

Clearly the expressions in (25)–(27) suggest that the error dynamics are stable in
each component. Having this in front of us, the way in which the proposed scheme
responds to corrupted observations can be examined through analysing the behav-
iours of the quantities E1, E2 and E3, which are explicitly given in (28)–(30). Clearly,
if i[zz zyf zyr]i ! 0, then wz ! w and this leads to E1 ! 0, E2 ! 0 and E3 ! w - wm.
Since w ! wm is enforced by the presented design, all error components tend to
be in the vicinity of zero as time progresses. In the cases where the norm
i[zz zyf zyr]i is not negligibly small, the tracking errors will exhibit behaviours
characterized by (25)–(27).
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Knowing the behaviour of above norm value may have substantial importance
for on-site and real-time experimentation, which absolutely necessitates the
knowledge of to what extent the task is accomplished. From this point of view,
(28)–(30) provides a useful guidance about what sensor precision is needed
and/or what estimation/�ltering tools are needed to implement the controller
discussed in this paper.

6. Justi�cation of the proposed scheme – simulations

During the simulations, the plant is kept under an ordinary feedback loop, and
the control signals are generated using the noisy observations of the system
response. The disturbance corrupting the z state of the system has variance equal
to 0.0029 and that corrupting the state yr has variance equal to 0.0028. The
maximum amplitude of the noise sequences is equal to 0.2 and both sequences
have zero means and are Gaussian distributed. The relative material hardness
parameter has been chosen as d(t) = 1 + 0.34 sin(2pt/20) and the associated
measurement noise has been set as zd(t) = 0.005 sin(20pt/90). Clearly, the given
disturbance scenario stipulates that the state variables and the hardness parameter
required to construct the control signals are severely corrupted. We set the simul-
ation step size to 0.005 h, which is reasonably smaller than the time constants in
(1)–(3), and simulated the control system for 90 h with a fourth-order Runge–
Kutta solver.

Initially yf(0) = 140, yr(0) = 0 and z(0) = 50; on the other hand, the reference
model states have initially been set as ymf(0) = 120, ymr(0) = 20 and zm(0) = 40.
These values have been selected according to the typical values that appear in the
cited references. In the upper subplot of Figure 2, the command signal (r), the

Figure 2 The command signal (r), the response of the reference
model and the observed mill load behaviour
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response of the reference model (zm) and the response of the system are illustrated
together. After approximately 5 h, the value of the plant output comes admissibly
close to that of the model output. In order to clarify the tracking claim of the
paper, the lower subplot depicts the model following error in state z. The variation
in the plant output is due to the uncertainty on the relative material hardness
parameter. Our work has shown that for some time interval, if the suptuzdu
increases, the magnitude of the deviations increases.

Similarly for the product �ow rate (yf), in the top row of Figure 3, the command
signal (f ), the response of the reference model (ymf) and the response of the system
are illustrated. The model-following error is shown in the bottom row of the �g-
ure. It is apparent that the error quickly converges near to zero and remains there-
after. Similarly, the �uctuations on the system response are primarily due to the
uncertainty on d.

The results regarding the third state (yr) are visualized in Figure 4. The bottom
subplot of the �gure demonstrates that the model-following error comes very close
to zero after a fast transient effective during the initial phase. A tiny adverse effect
of nonzero zd is also apparent from this �gure.

The applied control signals are depicted in Figure 5, which suggests that the
scheme is reasonably safe in terms of the control signal magnitudes. Although
there seem mildly fast changes in the control signal, the reader must notice that
the horizontal axis is in hours, and the state variables are corrupted. Therefore,
observing such a behaviour in the scale shown is parallel to what is imposed by
the operating conditions.

Aside from what are presented in Figures 2-5, we have repeated the simulations
with perfect knowledge of d without changing the state disturbances. Unsurpris-

Figure 3 The command signal (f), the response of the reference
model and the observed product �ow rate
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Figure 4 The response of the reference model (ymr) and that of
the milling circuit

Figure 5 Applied control signals, u at the upper subplot and v
at the lower subplot
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ingly, the results obtained in such an idealized case are highly promising until
we increase the magnitude of �uctuations in d to 0.75. The state variables become
almost indistinguishable from their counterparts observed from the reference
model. This stipulates that the material hardness parameter is one of the key
parameters determining the performance of cement production lines and the un-
certainty, which signi�cantly in�uences the quality of the end product.

According to our observations, the most important reason that this problem is
challenging are the variations in the material hardness parameter, whose
behaviour is illustrated in Figure 6(a). We adopt a periodically changing relative
material hardness, the value of which ranges from unity to 0.655 to 1.345. The
controller uses the corrupted value of it, d + zd, shown in Figure 6(a). Referring
to the discussion in section 3, we have claimed that the constructed control signals
would enforce z ! zm and hence w(z,d) ! wm(zm, d). In Figure 6(b), we illustrate
the behaviour of wm/w, which con�rms the above-quoted convergence statement.
Clearly the tendency of this quantity is to lie around unity.

A rather implicit effect of d and the operating region can be seen on Figure 7.
We plot the behaviour of w(z,d) for d = 0.66 and d = 1.34, which are the two bounds
for d studied in this paper. With this in mind, in order to ensure v P R we need
w(z,d) . 0. It is clearly visible that this restricts the operating region in terms of
zm dynamics. Since z is forced to follow zm, the design must take this into account
such that a positive output �ow rate is maintained by properly selecting the com-
mand signal r. In the presented simulation results, it is seen that the z versus
w(z,d) pair, and zm versus wm(zm,d) pair move in the ABCD region of Figure 7.
Since the chosen reference model is a �rst-order one, there will be no overshoot
and the margins shown on Figure 7 will lead to a safe operation ensuring w(z,d)
. 362 . 0.

A �nal issue in this section should be a brief comparison of the results with
those appearing in the relevant literature. Our �rst comparison is the simplicity
of the design, which clearly emphasizes that a reference model can be devised so

Figure 6 (a) The variation in the hardness of the material in the
mill (d + zd); (b) behaviour of the quantity wm/w, which is
maintained around unity
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Figure 7 Operating region in terms of variations in d and z

that the two basic requirements are met. In terms of this, the method we propose
is the simplest available in the cited literature. The system states then keep follow-
ing the reference model states, thereby satisfying the stability requirements. In
terms of tracking ability, the method is very good; however, the performance is
dependent upon the certainty on the material hardness. This means that the con-
trol system with the presented technique is not as robust against uncertainty on
material hardness as with those presented previously, e.g., Grognard et al. (2001).
When the application is con�ned to the given model, the presented technique
results in better tracking precision and transient response than those studied in
Magni et al. (1999) and Van Breusegem et al. (1994).

7. Conclusions

A nonlinear control strategy for a cement milling process is studied in this paper.
The constructed forms of the control signals are reasonably simple and have
resulted in good performance in terms of the model-following capability.

Considerable amounts of observation noise, large initial errors and response
with time-varying system parameters are studied, and it has been observed that
the suggested strategy results in good performance in terms of all these control-
speci�c measures.

The results have shown that the relative material hardness parameter is a key
design variable, the certainty on the knowledge of which is determining the per-
formance dominantly. Future research on this issue aims to devise control schemes
minimizing the sensitivity to the relative material hardness parameter.
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