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Abstract

In aerospace applications Proper Orthogonal Decomposition (POD) is used to obtain a
dynamical model of aerodynamic flow control systems from simulation or experimental data.
For different external test inputs (with disjoint frequency contents) the models obtained via
POD are different, i.e. these models are valid locally in a certain narrow frequency band. As
the external input gets rich in the frequency content the model is unable to generate a good
estimate of the states. Therefore, interpolation of these local models is necessary to capture
a model that works in the whole frequency range of interest. We study a fuzzy system to
perform a smooth transition from one model to another, and realize the transition scheme in
the frequency domain. We illustrate the results on the one dimensional Burgers equation.

1 Introduction

Proper Orthogonal Decomposition (POD) is a modeling technique used for infinite dimensional
systems, based on numerical simulation or experimental data, [1-5]. Application areas include
flow control problems, where the underlying system dynamics are represented by Navier-
Stokes equations. For this type of systems, POD generates a reduced order model. Though
the method is powerful in expanding a given solution to a set of orthogonal eigenbasis, the
resulting set of Ordinary Differential Equations (ODEs) is autonomous, i.e. the external
excitation is implicitly contained. In [6], it is demonstrated that a suitable partitioning of the
spatial domain illustrates the control input explicitly in the new system of equations. This
approach has been used with Singular Value Decomposition (SVD) in [6], and with POD in
[7]. The latter also identifies a substantial problem of modeling procedure: that is the model
can give a good estimate of the states only when the external input’s frequency content is
similar to the boundary excitation used when the original data was collected. This fact can
be viewed as an analogy between the situation at hand and learning of exposed data. In other
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words, the system is unable to respond correctly to the situations that are not encountered
in the basis generation phase. This paper discusses the problem from the point of merging
several models utilizing expert systems such as fuzzy inference systems.

Assume that a set of solutions obtained under several excitation conditions is available.
For high frequency excitations, the spatial distribution turns out to be such that the activity
takes place only around the boundary, however, for low frequencies, the boundary excitation is
well distributed over the spatial domain. This fundamental fact is relevant to the stiffness (or
viscosity) of the Partial Differential Equation(s) (PDE) characterizing the process under inves-
tigation, and it appears as a gradual change as the frequency spectrum is swept. An exemplar
case of this for Burgers Equation is depicted in Figure 1. Therefore, it is reasonable to observe
that the coefficients of the models will display tiny differences thereby leading to behaviorally
different systems of ODEs. Nevertheless, one can use fuzzy logic to obtain a semiglobal model,
which works in a wider band of frequency range than those of its constituents. The method is
based on the fuzzification in the frequency domain, and quantification of excitation levels of
each local model (individual boundary conditions) from an inner product defined in frequency
domain multiplied by the given boundary condition. The defuzzification stage outputs a crisp
value, which is the reconstructed output of the PDE. The parameters of the defuzzification
stage are adjustable thereby enabling the time-variable weighted mixtures of the individual
model outputs to form the total output.

Burgers equation is a good example to study these issues as it is nonlinear, yet simple
enough to devise strategies for modeling and control design. In [8], the issues of uncertainty
on the viscosity parameter are discussed in the context of adaptive control system design. A
backstepping boundary control procedure for Burgers equation is described in [9]. Park et al,
[10], focus on the controller synthesis for Burgers equation. Having obtained the POD based
reduced order model, a cost function is described and conjugate gradient technique is used to
minimize it. Burns et al study the problem with design in Hilbert spaces and demonstrate the
efficacy of the design by finite element based simulations, [11]. For a more detailed discussion
the reader is referred also to the references given in [8-11]
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Figure 1: A closer look at the basis functions generated for three different boundary
excitation conditions, namely a unit magnitude sinusoidal signal with frequency 0.01
Hz (LOW), 5 Hz (MIDDLE) and 10 Hz (HIGH).

This paper is organized as follows. We describe the POD scheme briefly in the Section 2
and discuss model reduction and control separation in Section 3. A detailed discussion on
these topics can be found in [6] and [7]. In the Section 4, the frequency domain partitioning

MECHATRONICS2004

2/10



is explained and the wide-band interpolation is explained. Simulation results are presented in
Section 5. Finally, concluding remarks are given in Section 6.

2 Proper Orthogonal Decomposition

Consider the ensemble Uk(x) for k = 1, 2, . . . , N , where x ∈ Ω := [0, 1], and the index k
corresponds to the observed “snapshots” (i.e. numerical simulation result, or experimental
data collected, at kth time instant) from a process, say for example, the Burgers equation
ut(x, t) = εuxx(x, t)− u(x, t)ux(x, t), where ε is a known constant.

The goal is to find an orthogonal basis set letting us to write the solution as

u(x, t) ≈
N∑

i=1

αi(t)φi(x), (1)

where αi(t) is the temporal part, and φi(x) is the spatial part. It will later be clear that if
the basis set {φi(x)}N

i=1 is an orthogonal set, then the modeling task can exploit Galerkin
projection technique.

Let us summarize the POD procedure.
Step 1. Start calculating the N × N correlation matrix L, the (ij)th entry of which is
Lij := 〈Ui, Uj〉Ω, where 〈., .〉Ω is the inner product operator defined over the spatial domain
(Ω) of the process.
Step 2. Find the eigenvectors (denoted by vi) and the associated eigenvalues (λi). Sort them
in a descending order in terms of the magnitudes of λi. Note that every vi is an N × 1 vector
satisfying vT

i vi = 1
λi

, here, for simplicity of the exposition we assume that the eigenvalues are
distinct.
Step 3. Construct the basis set by using

φi(x) =

N∑
j=1

vijUj(x), (2)

where vij is the jth entry of the eigenvector vi, and i = 1, 2, ..., rank(L). It can be shown that
〈φi(x), φj(x)〉Ω = δij with δij being the Kronecker delta function.

Notice that the basis functions are admixtures of the snapshots.
Step 4. Calculate the temporal coefficients. Taking the inner product of both sides of (1)
with φi(x), the orthogonality lets us have

αi(t0) = 〈φi(x), u(x, t0)〉Ω
= 〈φi(x), Ut0〉Ω, (3)

Without loss of generality, an element of the ensemble {Ui(x)}N
i=1 may be U(x, t0). Therefore,

to generate the temporal gain (αi(t)) of the spatial basis φi(x), one would take the inner
product with the elements of the ensemble with the basis functions.

A standing assumption of this procedure is that the solution is dominated by coherent
structures letting us write the solution as a sum given in (1), so the both sides of (1) is assumed
to be equal, [1-7].

In the next section, we demonstrate how the boundary condition is transformed to an
explicit control input in the ODEs.

3 Reduced Order Modeling and Separation of the
Boundary Control

In this section, we apply the POD technique to the viscous Burgers equation described by
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ut(x, t) = εuxx(x, t)− u(x, t)ux(x, t), (4)

where ε = 1 is a known process parameter, x ∈ Ω and Ω = [0, 1]. The problem is specified
with the initial condition u(x, 0) = 0 ∀x, the homogeneous boundary condition at x = 0
as u(0, t) = 0 and Dirichlét boundary condition at x = 1 as u(1, t) = γ(t), where γ(t) is the
external input of the system. Since the POD scheme yields the decomposition in (1), choosing
the most dominant M modes (M ≤ min(rank(L), N)), and inserting this into (4) results in

M∑
i=1

α̇i(t)Φi(x) =

M∑
i=1

αi(t)ε
∂2Φi(x)

∂x2

−
M∑

i=1

M∑
j=1

αi(t)αj(t)Φi(x)
∂Φj(x)

∂x
. (5)

Taking the inner product of both sides of (5) with Φk(x), which corresponds to the Galerkin
projection, results in the equality in (6).

α̇k(t) =

M∑
i=1

αi(t)ε〈Φk(x), ζi(x)〉

−
M∑

i=1

M∑
j=1

αi(t)αj(t)〈Φk(x), Φi(x)βj(x)〉, (6)

where ζi(x) := ∂2Φi(x)

∂x2 and βi(x) := ∂Φi(x)
∂x

. As mentioned earlier, the effects of the external

stimulus is implicit in the above equation. For this reason, define the grid as x = (
⋃S−1

i=0
i∆x),

where ∆x is the spatial step size and S is the number of grid points considered for the
numerical solution satisfying (S − 1)∆x = 1. Partitioning the grid as x =

(⋃S−2

i=0
i∆x

)⋃
1 =(

x◦T 1
)T

, one can calculate the values of the functions Φk(x) and ζi(x) at every grid point,
and rewrite them in the vector form as Φk(x) and ζi(x) respectively. Since the external inputs
are not seen explicitly in (6), one has to manipulate the expression above. The driving point
is to notice that the solution in (1) must be satisfied at the boundaries as well. This gives the
following information;

u(1, t) = γ(t) =

M∑
i=1

αi(t)Φi(1). (7)

Or αk(t)Φk(1) = γ(t) − ∑M

i=1
(1 − δik)αi(t)Φi(1), which is included by both terms of (6).

Manipulating the equations would introduce the control term and would let us have the

following set of ODEs with α =
(

α1 α2 . . . αM

)T
being the state vector,

α̇ = Aα−B(α) + (C −Dα)γ, (8)

where

(A)ki =
1

N
ε
(
ΦT

k(x)ζi(x)− Φi(1)ζk(1)
)

, (9)

B(α) =
(

αTB1α αTB2α . . . αTBMα
)T

, (10)

where (Bk)ij = 1
N

ΦT
k(x◦)(Φi(x

◦) ? βj(x
◦)).

(C)k =
1

N
εζk(1), (11)
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and

(D)ki =
1

N
βi(1)Φk(1). (12)

One should remember that the model above is valid only for a limited range of frequencies
contained in the boundary conditions letting us to produce the ensemble U .

4 Fuzzy Decision Mechanism for Interpolating Mul-
tiple Models

Fuzzy systems have extensively been used for the applications in which the prescribed task can
better be fulfilled by a suitably integrated local decisions than global mechanisms which are
typically hard to achieve. Furthermore, since fuzzy inference systems are universal approxi-
mators, a given mapping can be realized with an arbitrary degree of accuracy given enough
number of rules over the universe of discourse. A more detailed treatment on fuzzy logic and
its applications can be found in [12].

In this paper, we use a SISO fuzzy decision mechanism, which utilizes triangular member-
ship functions, singleton fuzzifier and weighted average dynamical defuzzifier. We use a simple
fuzzy system which is intended to interpolate three models generated at different frequencies.
We use only three rules in the rule base, which quantifies its argument as LOW, MIDDLE
and HIGH.

We calculate the 1024-point Fast Fourier Transform (FFT) of the boundary excitation
(γ), and consider the frequency content of the signal. On the other hand, we have already
generated the dynamic models (Refer to equations (1) and (8)) for 0.01 Hz, 5 Hz and 10 Hz
sinusoidal excitations. Every model is driven by a portion of the boundary excitation. The
level of excitation is determined by the firing strengths of each rule, i.e. wi. Since we have
only one input, wi = µi, where µi is the i-th membership function. In Figure 2, the choice of
the membership functions are depicted.
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Figure 2: Membership functions in frequency domain, which has been partitioned into
three fuzzy subspaces and considered only at the frequencies set by FFT algorithm.

With wi = µi in mind, the selection of the membership functions in Figure 2 becomes more
comprehensible. A low frequency signal should significantly excite the first model (LOW), and
a high frequency signal should significantly excite the third model (HIGH). The transition
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is smooth and is handled by the second model (MIDDLE). The sampling period (Ts) is 1
msec, therefore, every entry of the membership functions in Figure 2 occurs at the integer
multiples of 1

1024Ts
Hz. Since we are interested in frequencies up to 10 Hz, the universe of

discourse for fuzzy model interpolation is [0 Hz, ≈ 10 Hz] band. It should be noted that the
excitations around 10 Hz are termed as high frequencies but 10 Hz might not give the feeling
of high frequency from a technical perspective. One should see this as the upper bound of the
frequency range of interest. If a wider band of frequency domain is to be addressed, then more
local models (more fuzzy levels) should have been used to capture the necessary dynamical
information. Considering the change depicted in Figure 1, a fuzzy scheme interpolating the
models generated for example at 0.01 Hz, 50 Hz and 100 Hz would fail since these models do
not carry any information for 25 Hz excitations.

In the view of all these, first the frequency picture of the boundary excitation is con-
structed, then its first 11 elements are masked. The 11-tuple vector (denoted by Γ) is nor-
malized to unit sum. Then the unit sum vector and each membership function are passed
through an inner product to get the scaling factor for corresponding model. This process can
be described compactly as

wj =

11∑
k=1

µj(k)

(
Γ(k)∑11

p=1
Γ(p)

)
. (13)

where k is the frequency index seen on Figure 2 and j = 1, 2, 3; or equivalently LOW, MIDDLE
and HIGH respectively.

Next the input signal for each model is computed as γj(t) = wjγ(t) and the subsystems
are left for state and output evolution. The total output of the system is calculated through
a weighted summation of the outputs of the local models:

û(x, t) =

3∑
n=1

yn(t)un(x, t), (14)

where yn(t) is the weight used to determine the contribution of nth local model on the recon-
structed output.

Clearly a comparison of the result obtained through the numerical solution of the PDE
and the proposed model can be made by setting some boundary excitation, solving the PDE,
choosing a test location and picking up the values computed at that location as the desired
output (ud(x, t)) and analyzing the difference between this value and û. In the next section,
simulation results are presented.

5 Simulation Results

A. Obtaining the Local Models
According to the procedure described in the second and third sections, the PDE has been

solved by using Crank-Nicholson method (See [13] for details), with a step size of 1 msec.
The initial conditions are taken as zero everywhere and the process parameter is set as ε = 1.
In order to form the solution, a linear grid having S = 100 points is chosen. According to
the above parameter values, a total of 1001 snapshots embody the entire numerical solution,
among which a linearly sampled N = 101 snapshots have been used for the POD scheme.
Clearly the simulation end time is 1 sec. Although one might use the entire set of snapshots,
it has been shown that a reasonably descriptive subset of them can be used. In the literature,
this approach is called method of snapshots, which significantly reduce the computational
intensity of the overall scheme, [1,2,7]. Once the modes have been obtained, we have truncated
the solution at M = 5, which represents almost %100 of the total energy which is described
as E =

(∑M

i=1
λi

)
/
(∑N

i=1
λi

)
.

The low frequency local model is obtained with the boundary condition γ(t) = sin(2π0.01t),
similarly, for the middle frequency region and the high frequency region we utilize γ(t) =

MECHATRONICS2004

6/10



sin(2π5t) and γ(t) = sin(2π10t) respectively. The basis functions for these three cases have
already been depicted in Figure 1, which demonstrate the slight change as the frequency
content of the boundary condition changes.

For each case we have reconstructed the temporal variables (α) and verified that the mod-
els function properly.

B. Nonadaptive Case - yn(t) = 1
An intuitive selection of the weights is to set them all to unity. Since all the models are syn-

thesizing the response relevant frequency domain, the output should be built up collectively.
Based on this idea, we observed the results seen in Figure 3.
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Figure 3: Simulation results for the nonadaptive case.

It is seen that the desired signal taken from the numerical solution has both low and high
frequency components. The boundary condition leading to the observation of this signal at
x = 0.5 was

γ(t) =
1

3
(sin(2π0.05t)− sin(2π3t) + cos(2π8t)) , (15)

which has enough spectral richness to excite all three membership functions depicted in Figure
2. The time variation of the quantity described in (13) is depicted in the second row of Figure
3. The soft switching strategy excites a model a the level read from these values.

It is apparent that the observed error is admissibly small in magnitude and justifies the
intuitive selection of yn(t) = 1 (n = 1, 2, 3) depicted also in the last row of Figure 3.

C. Adaptive Case - ẏn(t) = ηe(t)un(t)
Define the cost function J(t) = 1

2
e(t)2, where e(t) := ud(x, t) − u(x, t) at a given x. The

gradient descent (or MIT rule) prescribes the following update law

ẏn = −η
∂J

∂yn
, (16)

where η > 0 is a design parameter. Calculating the derivative, we have

ẏn = −ηe
∂e

∂yn
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= ηe
∂û

∂yn

= ηeun. (17)

The results obtained through the adaptive case are illustrated in Figure 4, with η = 1000.
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Figure 4: Simulation results for the adaptive case.

As the above figure suggests, under the same conditions, adaptive case removes the mean of
the error signal (See Figure 3). The tiny variation in the parameters is also visible. Clearly the
cost of the removal of error mean is a slight increase in the computational burden. However, in
terms of parametric stability, there is no guarantee of parametric convergence or finite volume
evolution for yis.

We have repeated the tests for the following adaptation law too:

ẏn(t) = ηun(t)sgn(e(t)), (18)

which further reduces the error magnitude at the cost of introducing very fast parametric
fluctuations taking place all around unity. A more detailed discussion on these issues can be
found in any adaptive control textbook.

D. An Overall Assessment
Advantages:
i) The method is simple, and it works in a relatively large frequency region.
ii) There is no limit on the number of models to be involved in the procedure.
iii) If the number of local models increases, the increase in the computational complexity

is affordable as the fuzzy system has a single input.
iv) As an alternative to the presented technique, one might propose filtering the signals

before applying to the local models, however, this would introduce delay into the feedfor-
ward path. The method presented here does not introduce delays, furthermore filter based
transitions do not provide as more flexible smoothness as fuzzy systems do.

v) The proposed technique is quite flexible to integrate with adaptive schemes.
vi) The partitioning can arbitrarily be done in the frequency domain. If the local models

are valid on sub-domains which are not topologically similar, one can still use fuzzy decision
mechanisms with modified membership functions.

vii) Time variations can be handled by utilizing parameterized membership functions.
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viii) Rule number can be increased/decreased easily.

Disadvantages: Although the state of the art DSP hardware and computing tools provide
extensive possibilities

i) The algorithm needs 1024-point FFT at every time step.
ii) When used with adaptive schemes more computational power is required.
iii) The adaptive cases entail proof of stability for bounded parameter evolution.

The presented technique aims to demonstrate the efficacy of the fuzzy decision mechanisms
in interpolating local models of POD. Burgers system is a simple example for this, however,
there is an ongoing research aiming to demonstrate the use of such techniques for aerodynamic
flows, which are governed by Navier-Stokes equations. It is our understanding that the results
presented in this paper are promising in the sense of applicability to the aerodynamic flow
modeling problems.

6 Conclusions

Proper Orthogonal Decomposition based models are found to be useful in many applications
displaying spatial continuum. However, these models are valid only under the conditions which
have been used to generate them. Therefore, a model derived with low frequency boundary
excitation is invalid for high frequency excitations and vice versa. A remedy to this problem
is to find an interpolation technique which smoothly activates one model when the conditions
leading to it are encountered. A fuzzy decision mechanism constitutes a good candidate for
these problems. It allows a smooth transition from one region to another as those regions
are characterized by fuzzy sets. Burgers equation is used as the test bed, and three models
have been generated around 0.01 Hz, 5 Hz and 10 Hz points. A simple fuzzy model is used
to quantify the frequency content of the boundary excitation, and the models have been
excited by a scaled version of γ(t). The coefficient is determined from the frequency picture
and the membership functions covering the universe of discourse. It is observed that the use
of fuzzy decision mechanisms in frequency domain provide good interpolation. A detailed
discussion of advantages and disadvantages has been presented in the previous section. The
method introduces significant improvements and a real-time version of it would be useful with
high-power computing devices.

Future work in this field aims to demonstrate the efficient model interpolation techniques
for aerodynamic flow modeling problems.
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