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Abstract 
Flow control is one of the main thrust areas of the Collaborative Center of Control Science (CCCS) at the 
Ohio State University. The primary objective of the flow control team at CCCS is to develop tools and 
methodologies for closed-loop flow control. The team possesses synergistic capabilities in all of the 
required multidisciplinary areas of flow simulation, low dimensional modeling, controller design, and 
experimental integration and implementation of the components along with actuators and sensors. The 
initial application chosen for study is closed-loop control of shallow cavity flows in subsonic Mach 
numbers. Shallow cavity flows have well known characteristics, are amenable to low dimensional 
modeling, possess known and localized receptivity, and are amenable to external forcing. Therefore, they 
are quite suited for closed-loop control technology development. The team has made significant progress in 
the development of various components necessary for low dimensional model based control strategy, which 
will be presented and discussed in this paper. The current experimental set up utilizes a titanium diaphragm 
compression driver for actuator, which is capable of forcing the flow up to about 10 kHz in the Mach 
number range of 0.25 to 0.5. While the low dimensional model based controller design is progressing 
steadily, a simple logic-based controller has been implemented, which can suppress the peak pressure 
fluctuations in the cavity up to 23 dB. The effectiveness of the controller is reduced at higher Mach number 
flows, presumably due to the lack of actuation authority.  

 
1. Introduction 

The flow control team at the Ohio State University 
(OSU) Collaborative Center of Control Science (CCCS) 
is working to develop tools and methodologies for 
closed-loop aerodynamic flow control.  The team, 
composed of OSU, Air Force Research Laboratory, and 
NASA researchers, is taking a truly multidisciplinary 
approach from the outset by bringing together people 
with skills in experimental and computational fluid 
mechanics, reduced order modeling, control law design, 
sensor and actuator development, and applied 
mathematics to tackle this challenging problem in a 
coordinated fashion rather than in a piecemeal approach.  

The team’s ultimate goal is to enable the use of closed-
loop aerodynamic flow control to control the flow over 
maneuvering air vehicles and ultimately to control the 
motions of the vehicles themselves.  To that end, a 
systematic approach consisting of simulation, reduced-
order modeling, control law design, and experimental 
validation was adopted.  This is necessary to develop 
tools that will be generally useful, rather than developing 
a method that applies for one problem to be addressed by 
flow control but is less relevant for another. 

The initial application chosen for study is closed-
loop control of the large amplitude pressure fluctuations 
created by a shallow cavity flow (Samimy et al. 2003 and 
Caraballo et al. 2003).  Cavity flows have well known 
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characteristics, are amenable to low dimensional 
modeling (i.e. dominated by coherent structures), possess 
known and localized receptivity, and are amenable to 
external forcing.  The cavity problem has long been an 
attractive problem for researchers due to the rich nature 
of the flow physics and its relevance to practical 
applications (Rossiter 1964).  Attempts to control the 
cavity flows using open-loop control, or methods that do 
not require feedback, have been successful at suppressing 
cavity tones at specific flow conditions (e.g. McGrath and 
Shaw 1996, Cain et al. 2000, Stanek et al. 2002a & b).  
The use of feedback can increase robustness to external 
disturbances and changes in flight conditions (Cabell et 
al. 2002, Rowley and Williams 2003, Rowley et al. 2001 
& 2002, and Williams et al. 2002) and can potentially 
reduce actuator power requirements by an order of 
magnitude (Cattafesta et al. 1997).  While several 
researchers have been successful at implementing closed-
loop control of cavity flows, all of the efforts required 
extensive experimental testing for model development 
prior to control law design.  In addition, many resulted in 
models that were based on the physical mechanisms that 
pertain specifically to cavity flows.  As a consequence, 
the resulting techniques would be difficult to use for 
objectives other than the suppression of cavity tones.  
Toward that end, the CCCS flow control team is working 
to develop a systematic method for control of the tones 
created by subsonic flow over a shallow cavity.  The 
ultimate goal is to develop methods for the closed-loop 
control of aerodynamic flows that could be extended to a 
wide variety of problems. 

A systematic study of the level of fidelity required to 
accurately capture the flow physics was conducted to 
determine the appropriate level of computational 
complexity at which to carry out the needed simulations.  
While two-dimensional simulations allow the generation 
of results more quickly than three-dimensional 
simulations, some of the processes involving vortical 
structures are not properly modeled.  As a result, quasi-
three-dimensional simulations that allow for processes 
such as vortex-tilting and vortex-stretching while 
ignoring sidewall effects are being used to model the 
flow.  Two-dimensional simulations are currently being 
used for preliminary modeling work in order to develop 
the tools that will be later used when the three-
dimensional simulations become available.  To date, two-
dimensional simulations are complete for two baseline 
(no actuation) cases with Mach numbers 0.38 and 0.30, 
and for the forcing of the latter case by a synthetic jet at 
two different frequencies.  In addition, a quasi-three-
dimensional simulation for the second baseline case is 
underway. 

With input from preliminary simulation data, an 
excellent experimental facility was constructed.  The 
cavity has an adjustable depth to allow multiple 
configurations, although all data collected thus far are for 

a square cavity of length-to-depth ratio of four.  The flow 
spectra without actuation were characterized for Mach 
numbers ranging from 0.25 to 0.50, and the resonant 
frequencies correlate well with predictions by Rossiter 
(1964).  A zero net-mass flow rate actuator, using a 
titanium diaphragm, is used to force the flow at the 
leading edge of the cavity, i.e. at the receptivity location 
of the shear layer spanning the cavity. As it will be 
discussed in Section 5 and is detailed in Debiasi and 
Samimy (2003), the actuator was characterized and found 
to be well suited for forcing in a broad range of 
frequencies and amplitudes.  In addition, a logic-based 
controller was developed and used to demonstrate the 
experimental capability of applying feedback control. 

Due to the large number of states in the 
computational fluid dynamics model of the cavity, a 
reduced order model of the flow is required.  Until the 
quasi-three-dimensional simulations are complete, the 
two-dimensional data are being used as a test case.  
Proper orthogonal decomposition (POD) is being used in 
conjunction with Galerkin projection to produce a model 
for control law design.  The model for some Mach 
numbers is well behaved, while stability issues arise for 
some other Mach numbers.  Hence, stability issues are 
the current focus of the reduced order modeling effort. 

Until a reduced order model is developed for control 
law design, several sample problems are being addressed.  
Control laws were designed for one- and two-
dimensional heat flow and for one-dimensional Burgers’ 
equation with an emphasis on the separation of the 
control input from the remainder of the spatial locations 
in the set of ordinary differential equations.  In addition, 
the model of Rowley et al. (2002) based on the physical 
processes in cavity flows is being used for additional 
control law design work. 

Progress made to date in each of the components 
discussed above will be presented below. More details of 
the experimental component are given in a companion 
paper by Debiasi and Samimy (2003).  

 

2. Numerical Simulation 
The primary objective of the simulation is to provide 

detailed flowfield data in order to develop a reduced-
order model of the cavity using Proper Orthogonal 
Decomposition (POD) and Galerkin projection.  
Previously reported results (Caraballo et al. 2003) 
focused on developing an understanding of the 
consequences of various modeling approaches and 
assumptions.  The goal of this prior work was to develop 
a methodology to produce accurate simulation data with 
the minimum required computational cost.  Details of the 
numerical scheme, computational grid, and boundary 
conditions can be found in Caraballo et al. (2003), and 
only a summary will be given below. 
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First, the effect of using two-dimensional (2-D) 
versus three-dimensional (3-D) simulations was explored.  
It was shown that the two-dimensional simulations could 
not reproduce the pressure spectra found in the 
experimental results.  By solving the 2-D version of the 
Navier-Stokes equations, the motion of turbulence 
structures in the fluid is restricted in such a way that it 
does not allow for vortex stretching and tilting.  This 
resulted in very large structures in the cavity shear layer 
and modes with frequencies much lower than those 
observed in the experimental results.  The 3-D 
simulations yielded much smaller and higher frequency 
structures in the cavity shear layer.  The resulting 
pressure spectra accurately matched the experimental 
results (Samimy et al. 2003).  To save computational 
cost, the 3-D simulations did not model the entire width 
of the cavity.  Only a narrow span of the cavity was 
modeled with periodic boundary conditions used to allow 
for three-dimensional flow structures to develop and 
convect realistically.  This simplification significantly 
reduced computational cost without adversely affecting 
accuracy. 

Second, the effect of the state of the upstream 
boundary layer and its modeling was examined.  The 
simulation is run on a very coarse grid relative to the 
turbulent scales in the upstream boundary layer.  Without 
a turbulence model, the simulation produces a laminar 
boundary-layer.  The use of a Baldwin-Lomax turbulence 
model (Baldwin and Lomax 1978) in the boundary layer 
upstream of the cavity was examined.  A comparison of 
the laminar and turbulent 2-D simulations showed that 
the turbulent boundary layer did have some effect on the 
flowfield and resulting pressure spectra in the cavity.  
However, the effect was small compared to the difference 
between the 2- and 3-D simulation results.  In addition, 
the turbulence model adversely affected the stability of 
the solution.  The turbulent solution required a time step 
10 times smaller than the laminar simulation.  It was 
decided that the simulation would forgo turbulence 
modeling to reduce simulation time, a necessity for 3-D 
calculations. 

Recent work has focused on the simulation of the 
actuator and the effect of forcing on the cavity flow.  The 
actuator is a compression driver with a titanium 
diaphragm with zero net-mass flow rate located near the 
top of the upstream cavity wall - the receptivity region of 
the cavity shear layer.  Detailed hot-wire measurements 
in the experimental facility (Debiasi and Samimy 2003), 
at the exit of the actuator were used to characterize the 
actuator output.  It was determined that for the purposes 
of the simulation a sinusoidal variation of the velocity at 
the actuation frequency would be a reasonable 
representation.  The actuator is simply modeled as a 
boundary condition imposed on the surface of the 
upstream cavity wall (Figure 2.1).  Note that the grid has 
been magnified near the cavity entrance and the height of 

the outlet of the actuator is only 1 mm. The amplitude, 
frequency, exit angle, and total temperature of the pulsing 
jet are specified.  To account for the characteristic wave 
moving from the domain to the boundary in a simple 
manner, the density on the boundary is extrapolated from 
the interior grid points. 

The 3-D simulations of the cavity are very time 
intensive but necessary for developing accurate low-order 
models.  While the 3-D results are being computed, it was 
desired to have preliminary data to use for low 
dimensional model development and to evaluate the 
various processes involved.  Even though the 2-D results 
do not match the experimental results, they are still valid 
solutions to the 2-D Navier-Stokes equations and can 
therefore be used for preliminary low dimensional 
modeling work. Three 2-D simulations were obtained for 
the Mach 0.3 flow: one for the baseline (unforced) case, 
and two for sinusoidal forcing with amplitude 20 m/s and 
frequency 1650 Hz and 2200 Hz.  The actuator output is 
angled upward 30 degrees to the incoming horizontal 
flow.  Surface static pressure data at the center of the 
cavity floor was sampled at 50 kHz.   Figure 2.2 presents 
the power spectra of the pressure signal for the three 
cases using 2048 samples and a frequency range of up to 
25 kHz and frequency resolution of about 12 Hz.  Unlike 
in the experimental measurements, the averaging spectra 
over 50 or 100 blocks of data is not possible in the 
simulations and therefore these spectra are not smooth.  
However, normalizing the spectra with the amplitude of 
the baseline peak brings out the dominant peaks. 

The baseline case (Figure 2.2a) shows that the cavity 
produces a very strong tone at 293Hz and a weaker one at 
its harmonic. The frequency of the primary peak is much 
lower than both the shear layer instability frequency of 
2.1 kHz (obtained assuming a shear layer momentum 
thickness θ = 1 mm and using fθ/U~0.02) and the first 
Rossiter mode of approximately 800Hz.  Comparing this 
case with the actuated cases (Figures 2.2b & 2.2c) clearly 
shows that the actuator has a strong effect on the 
flowfield.  First, a tone at the actuating frequency can be 
seen.  But more importantly, both spectra with actuation 
have been significantly altered from the baseline case. 
Even though the modes in the baseline case are different 
than the Rossiter modes, the response of the flow seems 
to be quite similar to the experimental case (Williams et 
al. 2002); the result in Figure 2.2b is similar to “peaking” 
and in Figure 2.2c is similar to “peak splitting.”  It should 
be noted that while these two phenomena were observed 
experimentally by changing the actuation amplitude, in 
this simulation the actuation amplitude is fixed, but the 
forcing frequency is changed. 

From Figure 2.2 it is clear that the actuator, as 
implemented through the boundary condition, does 
significantly affect the flowfield.  These results are being 
used to discern the effect of actuation on the 
corresponding POD modes and low dimensional models.  
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Three-dimensional simulations of the cavity with and 
without actuation are currently underway.  These results 
will be validated against experimental data and then used 
to develop the low order model and resulting controller 
for the flow.  

 

3. Low Dimensional Modeling  
Fluid flows are governed by the N-S equations, 

which is a set of highly non-linear partial differential 
equations. Due to the need for very large computing 
power and storage for practical problems and the infinite 
dimensionality of these equations, they are not useful for 
feedback control purposes. Therefore, a key to successful 
implementation of closed-loop flow control is the 
development of simple flow models that can capture the 
essential dynamics of the flow upon which a controller 
can be based.  

A well-known technique in the fluid dynamics 
community that can be used for deriving low dimensional 
models is the Proper Orthogonal Decomposition (POD). 
The method provides a spatial basis (a set of 
eigenfunctions) for a modal decomposition of an 
ensemble of data obtained from experiments or numerical 
simulations. The eigenfunctions, or modes, are extracted 
from the velocity fluctuations cross-correlation tensor, 
and can be used as basis functions to represent the flow. 
However, to go one step beyond the mere identification 
of these modes and to investigate their evolution with 
time, one needs to project the N-S equations (e.g. via 
Galerkin projection) onto these eigenfunctions to derive a 
set of ordinary differential equations (ODE) that can be 
used to reconstruct, at least in an overall sense, the 
behavior of the flow (e.g. Gordeyev and Thomas 2000, 
Smith et al. 2002).  

In an earlier work from our team, the POD method 
was used to study the flow over a cavity using numerical 
simulation data for a baseline case with a Mach number 
of 0.38 (Caraballo et al. 2003). Two aspects of the low 
dimensional model development were investigated: the 
effect of the norm definition used for the inner product, 
and the convergence of the time coefficients obtained 
from a reduced system of ODEs, derived by projection of 
the governing equations onto the POD basis.  For the 
cavity flow, it was observed that the shape of the POD 
modes as well as the amount of energy captured by each 
mode did not change significantly for the two different 
norms (a vector-valued and a scalar-valued norm). Also, 
four modes captured over 90% of the energy in the flow 
in either approach. When the Galerkin projection method 
was used, it was observed that with less than five POD 
modes the solution of the time coefficients obtained from 
the system of ODEs did not converge for either norm. 
Additionally, the time coefficients of the scalar-valued 
norm followed the original value only for one cycle after 
which they diverged regardless of the number of modes. 

On the other hand, for the vector-valued norm as the 
number of modes was increased, improvements in the 
level and phase of the time coefficient were noticed, with 
the best results obtained using 8 to 10 modes. However, 
when more than 12 modes were used, the solution 
diverged. These results are in agreement with the results 
of Rowley et al. (2001), showing that, for the 
reconstruction of the flow dynamics in the case of 
compressible flow, an inner product defined by a vector 
norm produced better results than a scalar norm.  

The current effort is on deriving a low dimensional 
model for different cases of external forcing applied to 
the flow and on how to represent the external forcing 
effect explicitly. This paper is a follow up of the work 
presented by Caraballo et al. (2003) where further details 
of the background of low dimensional modeling can be 
found. Below a brief background and some preliminary 
results will be presented and discussed.    

 
3.1 POD Method 

The POD method was introduced by Lumley (1967) 
to the fluid dynamics community as an objective way to 
extract large-scale structures in a turbulent flow. Details 
on the fundamentals of the POD method can be found in 
Berkooz et al. (1993) and Holmes et al. (1996). The 
general idea is to decompose the flow field into a set of 
orthogonal bases that contains the most dominant 
characteristics of the flow. To reduce computational 
requirements POD modes can be obtained from highly 
spatially-resolved data sets like those obtained from 
numerical simulations or advanced laser based 
diagnostics using the snapshot method, Sirovich (1987). 
The method requires a sufficiently large number, k = 
1,2… M, of time realizations for the instantaneous 
velocity field u(x,tk), with the realizations being 
uncorrelated at least over several snapshots. Then the 
POD eigenfunctions ϕ n(x) can be written as linear 
combinations of the instantaneous flow field, 

( ) ( )∑
=

=
M

k
kk

n t
1

,xuAxϕ
  (3.1) 

where Ak is the matrix of time coefficients corresponding 
to the kth time realization obtained by solving the 
intermediate eigenvalue problem,  

( ) AAC n
ktt λ=,   (3.2) 

where nλ  is the eigenvalue. The two-point correlation 
tensor (C) of independent snapshots integrated over the 
spatial domain of interest is defined as:  

( ) xxuxuC d ),( ),(1, k
D

k tt
M

tt ∫=  (3.3) 

This procedure reduces the eigenvalue problem from one 
that depends on the number of grid points to one that 
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depends only on the number of snapshots (M) or 
ensembles used. In this work the snapshot method is used 
to obtain the POD basis (Caraballo et al. 2003).  Then the 
flow field can be reconstructed using the eigenfunctions, 
as: 

( ) ( ) ( )xxu n
N

n

n
POD

tat ϕ∑
=

=
0

 ,  
(3.4) 

where NPOD is the number of POD modes to be used, and 
an(t) are the time coefficients obtained by projecting the 
instantaneous realizations u(x,t) of the flow field onto the 
empirical eigenfunctions ϕ n(x) as follows: 

( ) ( ) ( ) .
*   , xxxu dtta n

D

n ϕ•= ∫  
(3.5) 

Obviously, to calculate the random or temporal 
coefficients, the instantaneous flow field must be 
measured or numerically calculated simultaneously at 
every point in the flow domain of interest. 

 
3.2 Galerkin Projection and Low Dimensional 

Model 
In developing a low dimensional model, we are 

interested in estimating the flow evolution from a given 
state.   We use the Galerkin projection method to derive a 
reduced system of ODEs from which the time 
coefficients an(t) in Eqn. 3.5 and thus the evolution in 
time of the flow from an initial state can be estimated. 
The idea is to project the governing equations, the 
compressible N-S equations in this case, onto the POD 
basis. More precisely, the flow variables are first 
decomposed into their mean and fluctuating components. 
The latter are then substituted into the governing 
equations and the resulting expression is projected onto 
the POD basis by taking the inner product of each term 
with the basis, according to the specified norm (scalar-
valued or vector-valued). The system of ODEs so 
obtained is then truncated at the number of desired 
modes.  

Following Rowley (2002), we use a simplified set of 
compressible, isentropic N-S equations as governing 
equations, which for the vector-valued norm approach 
can be written as: 

uu

u

2

1
2

0 
2

1

∇=∇
−

+

=⋅∇
−

+

ρ
µ

γ

γ

cc
Dt
D

c
Dt
Dc

 (3.6) 

where c is the speed of sound, ρ is the fluid density, µ is 
the viscosity and γ is the ratio of specific heats. 
After following all the steps and simplifications outlined 
above, the resulting system of differential equations for 
calculating the time coefficient has the form: 

∑ ∑∑
= = =

++=
n

j

n

j

n

m

mjjmkjjkkk aagadbta
1 1 1

)()()(&
 (3.7) 

where b, d and g are constant coefficients obtained from 
the Galerkin projection. The number of modes, n, to be 
used defines the final number of ODEs.  

Several attempts to derive a low dimensional model 
that can be used for different flow/forcing conditions 
have been made. For example, Ukeiley et al. (2001) 
compared the POD modes obtained from different flow 
conditions with the modes obtained from a combined set 
of snapshots taken from all flow conditions under study.  
They concluded that the main characteristics of all the 
flow conditions were captured in the combined set and 
suggested that this set could be used as a basis for the 
development of a low dimensional model. Smith et al. 
(2002) used the same approach of stacking snapshots of 
different forcing conditions for the wake behind a 
cylinder to obtain a single POD basis, and compared the 
results of this set with the individual forced results. They 
noticed that the required number of modes for the stack 
case increased with the forcing frequency, when 
compared to the individual forced cases. Sirovich and 
Rodriguez (1987) showed that for the Ginzburg-Landau 
equation the basis obtained for a particular value of the 
parameter µo could still be used to represent a region of 
the parameter space with a three mode approximation.  
Additional information on the subject can be found in 
Delville et al. (1998). 

Our approach is to derive a low dimensional model 
for the system where the control input appears explicitly 
in the final equation of the model.  As detailed in (Efe et 
al. 2003a and 2003b) and briefly discussed in the next 
section, one can define Γ as the vector of control input. 
Performing the Galerkin projection with the control or 
forcing input applied at a specific location of the cavity, 
the following system of ODEs is obtained:  

 

∑

∑ ∑ ∑

=

= = =

Γ+Γ+

++=

n

j

j
s

jk
s

k

n

j

n

j

n

m

mjjmkjjkkk

afe

aadacbta

1
11

1 1 1

,,

)()()(&

 (3.8) 

 
The constant coefficients b, c, d, e and f are obtained 
from the Galerkin projection, as was done in the baseline 
case, and Γ is the control input applied at the forcing 
location.  
 Due to a convergence problem encountered in 
the solution of the system of ODEs obtained from the 
Galerkin projection for the Mach 0.3 baseline and forced 
cases, an alternative approach is also being investigated. 
The method is based on a least square fitting of the 
constant coefficients of the resultant system of ODEs for 
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the time coefficients and has been used by Gilles (1995) 
and Cohen et al. (2003) with good results when using 
only a low number of POD modes.  The idea is to use the 
known form of the system of ODEs, equations 3.7 or 3.8, 
and to obtain the time coefficients by projecting the 
instantaneous velocity field onto the POD basis to find 
the best approximation of the constant coefficients b, c, d, 
e and f. Then the first step is to fit the known time 
coefficients with a cubic spline and calculate their time 
derivatives. Replacing these values into equation 3.7 the 
only unknowns left are the constant coefficients. Using 
all the time steps available the resultant system will have 
more equations than unknowns. Therefore the system is 
over determined and can be solved by the least square 
method. For more details on the procedure see appendix 
A on Gilles (1995).  Furthermore, Gilles (1995) added 
some cubic terms to the quadratic model (Eqns. 3.7 and 
3.8) to improve the solution without increasing the 
number of modes    
 
3.3 Preliminary Results 

Figure 3.1 shows the percent of energy recovered 
versus number of modes for the baseline case of M = 
0.38, the baseline case of M = 0.3, the two forced cases at 
1650 Hz and 2200 Hz for the latter flow, and for a 
combination of snapshots from the last three cases. To 
capture 90% of the energy, one needs only three modes in 
the M = 0.38 case and about nine modes in all other 
cases. Also, it seems that the higher frequency forcing 
slightly improves the amount of energy captured per 
number of modes while the lower frequency forcing 
worsens it. The combination case closely follows the 
lower frequency forcing case. 

Figure 3.2-3.5 shows the first four POD modes for 
the four different cases (two baseline and two forced 
cases). As expected, the modes for the two baseline cases 
are quite different.  For all the cases the modes seem to 
appear in pair in terms of the amount of energy content 
and also the size of structures, in agreement with the 
results of Rowley et al. (2001). In the two forced cases, 
some differences in the shape of the modes can be 
observed, where some of the structures seem to have been 
stretched or tilted, but there are no major changes in the 
energy content. The modes for the combined case (not 
shown here) seem to capture the main characteristics of 
all three cases used to form the combination. 

Figure 3.6 shows the time coefficient obtained from 
the system of ODEs for M = 0.38 case (Caraballo et al. 
2003). For this case there is convergence in the solution 
when the number of modes used ranges between five and 
twelve - best results are obtained when 8 or 10 modes are 
used. Increasing the number of modes beyond ten does 
not show any appreciable improvement in the solution, 
which in most of the cases starts to deviate substantially 
from the original values after four or five cycles. Similar 
results have been cited by other researchers (Rowley et 

al. 2001). While intuitively one would think that 
increasing the number of modes would improve the 
results, apparently there is no mathematical basis for such 
a trend (Burns 2002).  In the case of M = 0.3 flow, up to 
this point the system of equations has shown an unstable 
behavior for any number of modes used. The cause of 
this problem is currently being investigated.   

Figure 3.7 shows a comparison of the first time 
coefficient calculated with the Galerkin projection and 
the least square approximation with the original value, for 
the case of M = 0.38. It can be noticed that, when the 
Galerkin projection was used, the solution did not 
converge to the original value. When only quadratic 
terms were used in the least square method the solution 
did not improve much. Finally when the cubic terms 
involving the first two time coefficients were included 
(Cubic2) the solution converged to the original value, 
showing only a small phase shift after several cycles. For 
the case of M = 0.3 (not shown here), although the 
solution is stable it diverges from the original values of 
the time coefficients. This issue is currently being 
investigated. The main difference between M = 0.38 and 
M = 0.3 is that the former is characterized by a single-
mode with robust structures and quite periodic behavior 
for the time coefficient while the latter has multiple 
modes with a pseudo-periodic and more random 
behavior.  

While the issues discussed above are being 
investigated, we are using two different approaches in the 
development of the low dimensional model for the 
controller design. In the first approach, individual basis 
for each case as well as for a composed set, where all the 
baseline and forced cases for the M = 0.3 flow are being 
used by stacking different snapshots, are obtained with its 
corresponding system of ODE’s. In the second approach 
the control input in a small region (or point) is separated 
from the rest of the domain, and thus appears explicitly in 
the resulting system of equations. As it will be discussed 
in the next section, this is the preferred system and will 
be used in the design of the controller. 

 

4. Controller Design 
The low dimensional model, which is developed by 

using POD and Galerkin projection as discussed above, 
represents the “plant” in the closed loop control scheme. 
When the coefficients in (Eqn. 3.7) are calculated, it 
becomes apparent that the corresponding system of ODEs 
is specific to a set of particular experimental or 
simulation conditions for which the coefficients have 
been determined, and the model (Eqn. 3.7) carries the 
effect of the boundary excitation/control input implicitly. 
However, to design and implement a controller, the 
boundary excitation must be identified explicitly. In the 
following, we describe a way to handle this problem. The 
emphasis of this section is to show how a transition from 
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an experiment-specific/simulation-specific set of ODEs 
to a more generally descriptive input-equipped model is 
established. 

 
4.1 Control Oriented Modeling 

As discussed in Section 3 of the paper, POD is a 
mathematical technique that uses spatial correlations 
obtained experimentally or numerically to extract the 
modes that contain the most significant dynamics of the 
flow. The scheme yields a set of orthonormal basis 
functions with a set of associated temporal coefficients. 
The N-S equations are then projected onto these basis 
functions using the Galerkin projection to obtain a set of 
ODEs, which characterize the flow under a set of 
conditions over which the spatial correlations were 
obtained. An important part of the dynamical system for 
controller design is the boundary excitation or the 
control/forcing input. It is not obvious how to incorporate 
this control input into POD based ODEs. More precisely, 
application of the Galerkin projection to a POD model 
yields an autonomous set of ODEs (consisting of only the 
state variables), which does not illustrate the effect of the 
control input (i.e. the boundary excitation). Therefore, 
this model does not explicitly describe the 
input/state/output behavior of the plant to be controlled. 
In what follows, we discuss a generic method to separate 
the effect of boundary excitation from the remaining 
terms of the POD based model so that it appears in the set 
of ODEs as an external input that we can manipulate by 
the feedback controller. As before, boldface symbols are 
used to denote vector quantities. 

Let us define S2 as the physical location/region at 
which the boundary excitation or flow forcing enters, and 
S1 as the remainder of the domain of interest. The overall 
physical domain is then 

21 SS: S ∪= . A discrete 
representation of S denoted by SD is used. The 
algorithmic schemes are computed over SD (the grid) that 
matches the simulation or the experimental data over the 
physical space. This idea naturally brings us to work on 
partitioned subsets to capture the effect of the forcing 
input boundary condition and its effect over the spatial 
domain individually. A precise mathematical derivation 
of this procedure is given below. 

Consider a process characterized by the partial 
differential equation 
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where q is a generic vector of flow variables that are 
functions of space and time with the subscripts denoting 
the derivatives with respect to the corresponding 
variables. Assume that the equation above admits a 
unique solution, which can be expressed as 
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where qm, ai and ϕi denote the mean flow variables, the i-
th temporal component, and the i-th spatial basis, 
respectively. Noting that the process takes place over the 
physical domain S, and inserting the above solution in 
equation 4.1 yields 
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Taking the inner product of both sides with )S(kϕ  
results in 
 

{ }〉〈= tta kk S,),S()( fϕ& ,  k=1,2,…, M. (4.4) 
 

The key here is to notice that 
{ } { } { }〉〈+〉〈=〉〈 ttt kkk ,S),S(,S),S(S,),S( 2211 fff ϕϕϕ  holds 

true by the definition of the inner product. Clearly, the 
above partitioning corresponds to calculating an integral 
over two domains, the union of which gives the original 
domain of the problem while the intersection is obviously 
an empty set. This significantly influences the dynamical 
representation of the set of ODEs, which now turn out to 
be 
 

{ } { }〉〈+〉〈= ttta kkk ,S),S(,S),S()( 2211 ff ϕϕ& , 
k=1,2,…, M. (4.5) 

When the above inner products are calculated over 
the discrete sets SD1 and SD2, the latter referring to the 
control location, the final equation can be rewritten as  
 

{ } { }〉〈+〉〈= ttta kkk ,S),S(,S),S()( D2D2D1D1 ff ϕϕ& , 
k=1,2,…, M. (4.6) 

 
This equation contains sufficient degrees of freedom 

to derive an analytic model. This is because the suggested 
solution must be satisfied at SD2, and this makes the term 

{ }〉〈 tk ,S),S( D2D2 fϕ  computable by utilizing the boundary 
excitation denoted by Γ explicitly. Depending on the 
form of the vector function f, the procedure described 
will yield a non-autonomous set of ODEs capturing the 
dynamics in the following form: 

Γ+= )()()( aBaAta&  (4.7) 

From this point on, the control objectives can be put 
forward. The achievability of these objectives will strictly 
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be dependent upon the content of the vector functions A 
and B described as 
 

aaaGFaA H~~~)( T++=  (4.8) 

aQPaB ~~)( +=  (4.9) 
 

The calculation of the tilde-terms seen above is 
straightforward yet tedious. For a detailed treatment of 
the control separation technique as applied to simpler 
systems, the reader is referred to Efe and Özbay (2003a 
and 2003b). The underlying idea is to manipulate the grid 
points around external excitation separately (refer to 
(4.6)): the solution there is independently specified; yet, it 
has to satisfy the Navier-Stokes equations. As a result, 
the control inputs appear explicitly in the last term of 
(4.6). In what follows, the frequency dependence of the 
model in (4.7) is discussed. 
 
4.2 Controller Design and Frequency 

Dependence of POD Models 
The design of a controller closing the loop with the 

needed excitation signals depends heavily on how well 
the model describes the physical system. The frequency 
dependence of POD based models is a fundamental issue 
from this point of view (Efe and Özbay 2003a). Although 
the problem can be remedied at the cost of dealing with 
more complex models, the ultimate form of the dynamics 
will admit the form given in equations (4.7)-(4.9). 

Given the temporal dynamics (4.7), the control 
engineering expertise offers a set of approaches 
depending on the objectives (Slotine and Li 1991, Isidori 
1995, Aström and Wittenmark 1992). These include -but 
are not limited to- feedback linearization, adaptive 
control, optimal control, expert control (Jang et al. 1997), 
or hybrid variants of them. 

The work towards the dynamical system modeling is 
in progress, and systematic approaches for controller 
design are underway. 
 
4.3 An Alternative Modeling Viewpoint and 

Approach to Controller Design 
Although research in closed-loop flow control is 

mostly dominated by decomposition-based model 
construction, a different approach has recently focused on 
the development of a physics based model (Williams et 
al. 2002, Rowley et al. 2001, and Rowley et al. 2002). In 
this approach, the fundamental physical processes in a 
cavity flow (e.g. shear layer instability, acoustic 
scattering, etc.) are represented by transfer function 
models. One advantage of a model devised with this 
approach is that the model is parameterized. Such 
flexibility is useful for capturing important flow features 
with a time varying set of parameters. Our work has 
shown that the H∞ control synthesis technique of Toker 

and Özbay (1995), developed for a class of infinite 
dimensional systems, is applicable to the models 
introduced by Rowley et al. (2001, 2002). 

In Yuan et al. (2003), it is demonstrated that the H∞ 
controller for delay based models is useful particularly in 
suppressing the undesired tones in the frequency response 
of pressure fluctuations, which are observed from a 
sensor located at the center floor of the cavity. The paper 
fits a model to the simulation data of Navier-Stokes 
equations and presents the controller design in detail. 

Current research on the real-time implementation of 
the controller described in Yuan et al. (2003) in a cavity 
flow experiment (Debiasi and Samimy 2003) is in 
progress. Several issues need to be addressed in order to 
assess the performance of the controller. These include 
numerically robust implementation of the controller, on-
line parameterization of the flow dynamics, and modeling 
of actuator. 
 

5. Experiments 
In this section we briefly discuss the experimental 

activities and present the experimental results obtained up 
to date at the OSU Gas Dynamics and Turbulence 
Laboratory (GDTL) by the CCCS flow-control team.   A 
small subsonic wind tunnel with a shallow cavity has 
been built and tested. The flow field in the Mach number 
range 0.25-0.5 has been explored.  The tunnel in the 
current arrangement can operate continuously up to Mach 
1. By replacing its converging nozzle with a converging-
diverging nozzle, the facility can operate continuously in 
the supersonic regime. A synthetic-jet type actuator with 
a large bandwidth is used to force the shear layer at its 
receptivity region. A preliminary study of the effect of 
the actuation frequency on the Mach 0.3 flow has been 
conducted. While working on the development of a low 
dimensional model based controller, an initial logic-based 
controller has been implemented that searches in a 
closed-loop fashion the frequencies that reduce the 
cavity-flow resonant peaks. The technique has performed 
well in the experimental trials and has allowed 
identification of optimal frequencies for the reduction of 
resonant peaks in the Mach number range explored. 

The flow facility, baseline flow characteristics, 
actuator behavior, effects of forcing on the flow, and 
finally the results obtained with the logic-based feedback 
control will be briefly presented and discussed. Details of 
the work can be found in Debiasi and Samimy (2003).  
 
5.1 Flow facility 

A modular, optically accessible experimental facility 
has been designed and fabricated at the Gas Dynamics 
and Turbulence Laboratory (GDTL) at The Ohio State 
University. The facility is of the blow-down type and 
operates with air supplied by two four-stage compressors. 
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The air is filtered, dried, and stored at 16.5 MPa in two 
high-capacity tanks. The air is conditioned in a stagnation 
chamber before entering the test section through a 
smoothly contoured converging nozzle. The total 
pressure in the stagnation chamber can be controlled 
within 0.07% of the test section static pressure (near 
ambient pressure). The cross-section of the test section is 
square with width W = 50.8 mm (2 in). The high of the 
upper wall of the test section is adjustable to compensate 
for the growth of the boundary layer and of the shear 
layer. A variable depth cavity that spans the entire width 
of the test section is recessed in the floor. In the current 
experiments, the cavity depth D is 12.7 mm (1/2 in) and 
its length L is 50.8 mm (2 in) for an aspect ratio L/D = 4. 
A schematic of the test section with the cavity and the 
actuator is shown in Fig. 5.1. Large optical windows and 
numerous ports allow the use of advanced imaging 
diagnostics as well as an array of transducers for pressure 
and velocity measurements. The facility allows 
continuous operation in the subsonic range with the 
current converging nozzle, but can easily be adapted to 
supersonic operation by changing this nozzle with a 
converging-diverging one.   

The actuator is a 2D synthetic jet issuing from an 
high-aspect-ratio converging nozzle embedded in the 
cavity leading edge as shown in Fig. 5.1. The jet exhausts 
at an angle of 30° with respect to the main flow through a 
slot of width W = 50.8 mm (the cavity span) and height h 
= 1 mm. Actuation is provided by the movement of the 
titanium diaphragm of a Selenium D3300Ti compression 
driver whose voltage signal is amplified by a Crown D-
150A amplifier. The compression driver diaphragm is 
capable of oscillating in the frequency range 1-20 kHz.   
In the rather unconventional arrangement of our 
experiments, where the compression driver is connected 
to a highly-converging nozzle, we expect a non-linear 
behavior as will be briefly discussed. 

 
5.2 Baseline flow characteristics 

Preliminary static and dynamic measurements of the 
flow characteristics have been carried out. Measurements 
of the static pressure at various locations were used to 
adjust the upper wall so to maintain a uniform pressure 
close to the ambient value along the test section. Flow 
velocity profiles were measured using a miniature pitot 
probe (0.8 mm tip diameter) traversing the test section in 
the horizontal and vertical planes 6.35 mm (1/4 in) 
upstream of the cavity leading edge. The boundary layer 
thickness at this location is about 2.5 mm both in the 
vertical and in the horizontal planes and follows a 1/n 
power law profile with n = 6. The flow outside of the 
boundary layer is very uniform across the test section. 
The Reynolds number based on the cavity step height is 
105 and based on the incoming boundary layer thickness 
is 2 x 104. Further details on the quality of the flow can 
be found in Samimy et al. (2003). 

A complete survey of the cavity-flow resonance in 
the Mach range 0.25-0.5 was performed using a Kulite 
XTL-190-25A dynamic pressure transducer with 
frequency response up to 50 kHz flush-mounted in the 
middle of the cavity floor (Fig.5.1). The corresponding 
voltage signal was sampled at 200 kHz through a 
National Instruments PCI-6036E board installed on a 
Dell Dimension 8200 computer. The signal was band-
pass filtered between 200 Hz and 20 kHz to remove 
spurious frequency components and converted to non-
dimensional pressure value relative to the reference 
pressure 20 µPa. Then Sound Pressure Level spectra were 
derived.  

The predicted Rossiter modes for our setup with L 
(the cavity length) = 50.8 mm), the ε (the phase lag 
parameter) = 0.25, and β (the ratio of the convective 
velocity to the freestream velocity) = 0.66 are presented 
in Figure 5.2 as a function of the flow Mach number. 
Small circles in the figure represent the frequency of the 
resonant peaks measured in our experimental setup.   
More specifically, closed circles represent dominant 
peaks, while open circles represent other peaks appearing 
in multi-mode resonance. The experimental setup 
exhibits strong, single-mode resonance in the Mach 
number ranges 0.25-0.31 and 0.39-0.5, and multi-mode 
resonance in the Mach range 0.32-0.38. The pressure 
spectra at Mach numbers 0.26 and 0.37 shown in Fig. 5.3 
illustrate this point more clearly.   Consistent with the 
observations of Cattafesta et al. (1998), it seems that in 
multi-mode resonance the energy available for generation 
of the acoustic tones had been split among the rapidly 
alternating peaks instead of concentrating on a single 
large peak.  
 
5.3 Actuator behavior 

Limited velocity measurements at the exit slot of the 
actuator without and with the main flow have been 
performed using a subminiature hot-film probe.  
Measurements were made without and with a main Mach 
0.3 flow by placing the probe in the middle of the exit 
slot, i.e. at equal distance between the upper and the 
lower actuator outlet lips. To verify the spanwise 
uniformity of the jet, measurements were done at the test-
section centerline (i.e. 1 in away from both the side-
walls) as well as closer to the side-wall but outside the 
boundary layer (0.25 in from the wall).   No difference 
has been detected between the center and side 
measurements both without and with the main flow. 
Figures 5.4 and 5.5 show the velocity at the actuator exit 
in terms of time and frequency, respectively, for no flow 
case. Figure 5.4 shows the velocity time traces at the exit 
slot for excitation at 1.6 kHz with 5 Vrms excitation 
voltage. The results with the Mach 0.3 main flow are very 
similar (Debiasi and Samimy 2003). Similar time traces 
were observed at the other actuation frequencies with 
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velocity values varying with frequency and decreasing at 
lower excitation voltages. Figure 5.4 also shows that, 
although the hot film records absolute velocity values, 
there is no indication of zero-velocity crossing. That is, 
apparently no negative velocity component is recorded in 
the middle of the exit slot.   In fact the overall behavior 
resembles that recorded by Smith and Glezer (1998) 
immediately downstream of the exit slot of a 
piezoelectric-driven synthetic jet where the jet has 
already lost the sinusoidal momentum fluctuations 
occurring at the nozzle and exhibits a positive net 
momentum with peak instantaneous velocities 2-3 times 
the average one.  

Figure 5.5 shows the variation of the peak and mean 
velocity at the exit slot as function of the actuation 
frequency for excitation at 5 Vrms without the main flow. 
As expected the actuator behavior is significantly non-
linear with several peaks and valleys in the explored 
range of 1-10 kHz. This confirms the preliminary 
observations of non-linear behavior reported by Samimy 
et al. (2003) based on measurements of the forcing flow 
mean velocity obtained with the miniature pitot probe. 
The peak velocity values in excess of 20 m/s and the 
mean velocity values above 5 m/s shown in Figure 5.5 at 
some frequencies compare well with those observed by 
Chen et al. (2000) and by Guy et al. (2002) using high 
aspect ratio rectangular synthetic jets. The addition of the 
Mach 0.3 flow in the test section does not affect the 
behavior of the actuator. 
 
5.4 Effect of forcing on Mach 0.3 cavity flow 

In a series of experiments the actuator voltage was 
adjusted with the varying frequency to isolate the 
influence of frequency from that of amplitude and to 
maintain, as much as possible, a constant mean velocity 
of about 5 m/s at the forcing slot. The baseline Mach 0.3 
cavity-flow spectrum is characterized by a single 
resonant peak of 132 dB at 2800 Hz (thin line in Figure 
5.6). The forcing frequency was varied from 2 kHz to 10 
kHz and complex response dynamics were observed. The 
response varied from; 1) a significant reduction in the 
baseline resonance peak with addition of a significant 
peak at the forcing frequency, 2) to reinforcement of the 
baseline resonance peak, 3) to a significant reduction in 
the resonance peak without adding new peaks.  Figure 5.6 
presents two forced cases (thick line) in comparison with 
the baseline case, illustrating the first and the third 
behaviors, respectively. With forcing at 2000 Hz, Figure 
5.6 (a), the resonant peak is suppressed while a strong 
peak appears at the actuation frequency, an indication 
that the natural feedback has been interrupted and the 
system has been tuned to the actuator frequency. Figure 
5.6 (b) shows the spectrum for actuation at 3250 Hz 
where the resonant peak is reduced by 18 dB without 
introducing a strong peak at the actuation frequency.  
Details of these results, which are consistent with the 

results in the literature (e.g. Cattafesta et al. 1997, 
Williams et al. 2000, Cabell et al. 2002), are presented in 
Debiasi and Samimy (2003).  
 
5.5 A simple logic-based feedback control 

As was described above, various members of the 
team working on different components of the low 
dimensional model based feedback control are making 
steady progress. The experimental work, which is a part 
of the overall activities, will implement and evaluate the 
model-based controller. Meantime, we have developed a 
preliminary logic-based feedback control to test the 
experimental capabilities and to provide additional results 
on cavity flow control. An automated online routine was 
developed that continuously reads the cavity 
pressure/acoustic, determines its spectral distribution, 
then finds the actuation frequencies, if any, for which the 
spectral peak were eliminated or reduced by a specified 
value. If no major changes occur in the flow, the 
actuation is kept on at the optimum forcing frequency for 
spectral peak reduction. If there is a major change in the 
flow (e.g. a change in the Mach number in the range of 
0.25 to 0.5 in the current set up) that affects the spectral 
characteristics, the actuation is automatically updated to 
achieve the set goal of reducing the peak amplitude by a 
certain level. 

While this approach can hardly be classified as a 
closed-loop control scheme according to the established 
control theory, it nevertheless performed remarkably well 
as it was able to find and maintain forcing frequencies 
reducing strong cavity-flow resonant peaks in the whole 
range of Mach number explored. It also proved to be a 
powerful tool for extracting valuable information in a 
large range of flow and forcing conditions. In addition, 
this exercise showed that the experimental facility is 
ready for the implementation of various controller 
designed by our team or by other researchers working on 
the subject area. 

In Figure 5.7 the solid line captures the "optimal" 
frequencies with actuator excitation voltage of 5 Vrms  
while the circles, similar to Figure 5.2, represent the 
original flow resonant frequencies for cavity flow Mach 
number of 0.25 to 0.5. Sometimes more than one forcing 
frequency exists for which a significant peak reduction is 
achieved.  The "optimal" indicates the case for which the 
largest reduction has been observed. Based on the results 
presented in this figure, a simple controller can be 
derived that, at each Mach number, forces the flow at the 
optimal frequency for peak pressure reduction.  

Figure 5.8 compares the highest values of the 
spectral peak as a function of the Mach number for the 
unforced resonant flow and for flow with optimal 
frequency forcing at 5 Vrms actuator excitation voltage. 
The thin line refers to the unforced case while the dotted 
line represents the intensity of the low-frequency noise 
plateau (i.e.. the broadband pressure fluctuations at 
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frequencies below 1 kHz in Figure 5.3). The thicker solid 
line refers to the forcing case. These results show that 
optimal frequency forcing eliminates altogether the 
resonant peaks in the Mach 0.25-0.4 range. The resulting 
flow is so devoid of any significant peak that the 
maximum spectral level basically drops to the low-
frequency noise plateau level. At higher Mach numbers, 
especially above Mach 0.45, the original resonant peak is 
much stronger and the optimal actuation is capable of 
producing a peak reduction of 10 dB. This is most 
probably due to the limitation of the actuator. It is also 
important to note that forcing produces little benefit at 
Mach numbers for which low-intensity peaks at multi-
mode resonance exist (e.g. Mach 0.32) as the system is 
already in a state comparable to that induced by the 
actuation at optimal frequency.  

 

6. Concluding Remarks 
The primary goal of the flow control team at the 

Ohio State University Collaborative Center of Control 
Science is to develop tools and technologies for closed-
loop aerodynamic flow control enabling the control of 
flow over maneuvering air vehicles and ultimately the 
control of the motions of the vehicles themselves.  The 
team, composed of OSU, Air Force Research Laboratory, 
and NASA researchers, is taking a truly multidisciplinary 
approach by bringing together people with skills in 
experimental and computational fluid dynamics, reduced 
order modeling, control law design, sensor and actuator 
development, and applied mathematics to tackle from the 
outset this challenging problem in a coordinated fashion.  
The initial application chosen for study is closed-loop 
control of the large-amplitude pressure fluctuations 
created in a shallow subsonic cavity flow.  Shallow cavity 
flows have well known characteristics, are amenable to 
low dimensional modeling, possess known and localized 
receptivity, are amenable to external forcing, and 
therefore, well suited for technology development.  The 
cavity flow has long been an attractive problem for 
researchers due to the rich nature of the flow physics and 
its relevance to practical applications.  

The coordinated efforts undertaken by the team 
include numerical simulation of the cavity flow; 
development of low order model of the flow using data 
from simulation results; design of a controller using the 
low-order model of the flow; and finally an experimental 
effort evaluating the simulation results and implementing 
and testing the overall control scheme. Significant 
progress has been made in all components. In the 
simulation work, a systematic study of the level of 
fidelity required to accurately capture the flow physics 
was conducted to determine the appropriate level of 
computational complexity at which to carry out the 
needed simulations.  While two-dimensional simulations 
allow the generation of results more quickly than three-

dimensional CPU-intensive simulations, some of the 
processes involving vortical structures are not properly 
modeled.  As a result, quasi-three-dimensional 
simulations that allow for processes such as vortex-tilting 
and vortex-stretching while ignoring sidewall effects are 
being used to model the flow.  Two-dimensional 
simulations are being used for preliminary modeling 
work in order to develop the tools that will be used with 
the three-dimensional simulation results when they 
become available.  To date, two-dimensional simulations 
are complete for two baseline (no actuation) cases with 
Mach numbers 0.38 and 0.30, and, with the latter flow, 
for two cases with actuation by a synthetic jet at two 
different frequencies.  In addition, a quasi-three-
dimensional simulation for the second baseline case is 
underway. 

The computational fluid dynamics model of the 
cavity includes a large number of states, which makes it 
less useful for the design of a controller. Therefore, a 
reduced order model of the flow is required.  Until the 3-
D simulations are complete, results from the two-
dimensional data are being used to provide the spatial 
correlation tensors required by proper orthogonal 
decomposition technique in conjunction with Galerkin 
projection to produce a model for control law design.  
While the model for some Mach number cases is well 
behaved, stability issues arisen in some other Mach 
number cases are currently the focus of the reduced order 
modeling effort. 

Until a reduced order model is developed for control 
law design, several sample problems are being addressed.  
Control laws were designed for one- and two-
dimensional heat flow and for one-dimensional Burgers’ 
equation with an emphasis on the separation of the 
control input from the remainder of the spatial locations 
in the set of ordinary differential equations.  In addition, 
an extended physics based model of Rowley et al. (2002) 
and other simple models are currently being used for 
additional control law design work. 

With input from preliminary simulation data, an 
excellent experimental facility with adjustable cavity 
height and adjustable upper wall to achieve constant test 
section pressure has been constructed.  All data collected 
thus far are for a square cavity of length-to-depth ratio of 
four.  The flow facility has been evaluated and is well 
behaved where the resonant frequencies correlate well 
with Rossiter modes for Mach numbers ranging from 
0.25 to 0.50.  A compression driver with zero net-mass 
flow rate is used to force the flow at the leading edge of 
the cavity, the receptivity location of the shear layer 
spanning the cavity. The actuator was characterized and 
found to be well suited for this application in a broad 
range of frequencies.  While the low dimensional model 
based controller design is progressing steadily, a simple 
logic-based controller has been implemented, which can 
suppress the peak pressure fluctuations in the cavity up to 
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23 dB. The effectiveness of controller is steadily reduced 
at Mach numbers above 0.4, presumably due to the lack 
of actuation authority. Details of the experimental work 
can be found in Debiasi and Samimy (2003). 
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Figure 2.1: Simulation grid distribution around the actuator. The actuator outlet height is 1 mm. 

 
 

Actuator 
flow 

Cavity 



AIAA 2003-4258 
 

  
American Institute of Aeronautics and Astronautics 

14

a.  Baseline (no actuation) 

 
b.  1650Hz actuation 

 

c. 2200Hz actuation 

 
Figure 2.2:  Normalized pressure spectra at the center of the cavity floor. 

 
 

 
Figure 3.1:  Percent of energy recovered by the POD modes in various flow/forcing cases. 
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 Figure 3.2:  First four modes for the streamwise velocity 
of M = 0.38 baseline cavity flow. 

 Figure 3.3:  First four modes for the streamwise velocity 
of M = 0.3 baseline cavity flow.

 Figure 3.4: First four modes for the streamwise velocity of 
M = 0.3 cavity flow at forcing frequency of 1650 Hz. 

 Figure 3.5: First four modes for the streamwise velocity of  
M = 0.3 cavity flow at forcing frequency of 2200 Hz 

 
Figure 3.6: First time coefficient from the system of ODEs for M =0.38 baseline cavity flow for eight and ten modes. 
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Figure 3.7: Comparison of first time coefficient obtained using Galerkin projection or least square method for M = 0.38 
baseline cavity flow; left: two modes, right: three modes.  

 
 

(a) (b) 

Figure 5.3: Noise spectra of cavity flow at selected Mach numbers: (a) M = 0.26; (b) M = 0.37 

 

Figure 5.1: Section of the experimental facility showing the 
converging nozzle, the test section, the cavity, the actuator, 

and the placement of the Kulite transducer. 

  
Figure 5.2: Rossiter resonant frequencies (lines), measured 
frequencies (dots), and cavity longitudinal mode (dashed 

line) as a function of the flow Mach number. 
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Figure 5.4: Timetrace and mean value of the velocity at 
exit slot for actuation at 1600 Hz and excitation 5 Vrms in 

absence of main flow. 

Figure 5.5: Variation of the peak and mean velocity at the exit 
slot as a function of the actuation frequency for excitation at  

5 Vrms in absence of main flow.  

 
(a) 

 

(b) 

 
Figure 5.6: Effect of actuation frequency on Mach 0.3 flow; thin (top) line is the spectrum without actuation, 

thick (bottom) line with actuation at: (a) 2000 Hz; (b) 3250 Hz 

 
 

Figure 5.7: Peak frequencies and optimal frequency for 
their reduction as a function of the flow mach number. 

Figure 5.8: Intensity of the dominant resonant peak and of 
the maximum noise level at optimal frequency for peak 

reduction as a function of the flow Mach number. 
 

  


