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Abstract 
In this paper we discuss feedback controller design issues for active control of shallow cavity flows.  Linear 

controllers, such as H∞, PID, and Smith predictor based controllers are designed and tested experimentally. The 
ineffectiveness of using fixed linear models in the design of linear controllers for the cavity flows is demonstrated 
via experimental results. In order to better address this problem, we are in the process of developing a nonlinear 
model of the cavity flow dynamics using Proper Orthogonal Decomposition (POD).  We briefly discuss control 
issues related to the class of feedback systems involving this type of nonlinear plants. 

 
 

1. Introduction 
Active closed-loop control of cavity flow has been 

chosen as a benchmark problem by the flow control 
group of the Collaborative Center of Control Science 
(CCCS) at The Ohio State University. A general 
overview of the research activities of this group appears 
in Samimy et al. (2003a, 2003b) and in a companion 
paper (Samimy et al. 2004). Although flow-induced 
cavity resonance is a well-studied problem (see 
Cattafesta et al. 2003 for a recent review), the effects of 
the closed loop dynamic control on the flow dynamics 
are not well understood yet. Therefore, feedback 
controller design for active closed loop cavity flow 
control is still an open problem.   

The difficulty in the controller design lies in the 
fact that the flow dynamics are governed by the Navier-
Stokes equations, which, in control terminology, are 
infinite dimensional and highly nonlinear. These 
equations cannot be solved sufficiently fast for any 
practical models, and hence they cannot be used in any 
“internal model control” scheme. Recently, a physics 
based linear model was proposed and used in control of 

cavity oscillations (Rowley et al. 2002). As a first step, 
we used a similar type of linear model for controller 
design and tested it experimentally. The linear 
controllers designed are deliberately chosen to be 
relatively simple (PID controller, Smith predictor-based 
controller, and H∞ controller) so that stability analysis 
can be done easily, solely based on the linear feedback 
theory. The experimental results summarized in Section 
4 do not match the expected results from the linear 
feedback theory.  Whereas the open loop (in the 
absence of external forcing) system response of the 
linear model to a white noise fits the experimental data 
very well.  Thus, we conclude that a nonlinear input-
output model should be used for feedback controller 
design. However, this model should be simple enough 
for analysis of the effect of feedback control. 

Therefore, as the next step, we try to develop a 
reduced order nonlinear model, which captures the 
essential dynamics of the flow due to external forcing. 
This model is based on the Proper Orthogonal 
Decomposition (POD) and Galerkin projections (see 
Caraballo et al. 2003; Samimy et al. 2003b & 2004). 
Similar approaches to modeling cavity flows are also 
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being considered by others (e.g. Rowley et al. 2000, 
2003). In this paper, we touch upon the characteristics 
of this low order nonlinear model from a system theory 
point of view. 

 

The linear model is described in Section 2, and the 
controllers designed for this model are given in Section 
3. The corresponding experimental results can be found 
in Section 4. The input-state-output form of the low 
order nonlinear model is given in Section 5, and 
concluding remarks are made in Section 6. The overall 
activity of the group, including details of the 
experimental work, can be found in our companion 
paper (Samimy et al. 2004). 

3. Linear Controllers Based on the Linear Model 
2. Physics Based Linear Model of the Cavity 
Flow 

3.1 H∞ Controller Design 

The H∞ controllers are primarily designed to 
reduce the effect of the uncertainty on the system 
response, Doyle et al. (1992). In our particular case, for 
the cavity flow control, we can define a sensitivity 
minimization problem to compare the open loop and 
closed loop responses. The open loop system response 
is 

The physics-based linear model introduced in 
Williams et al. (2002) and Rowley et al. (2002) involve 
separate linear transfer function blocks for the shear 
layer, G(s), scattering, KS, acoustic feedback, and 
receptivity, KR, as shown in Figure 2.1. The plant 
transfer function contains two internal feedbacks: 
acoustic feedback, and receptivity. The shear layer can 
be taken to be a second order system with a time delay:  (3.1) 

and the closed loop response is 

    
(2.1)

 
 

(3.2)
 where the parameters are determined from the 

experimental data. If we define the acoustic feedback as  

 (2.2) 

so we would like to minimize the weighted sensitivity 
over all stabilizing controllers, the weight being the 
plant itself. Similar techniques from linear robust 
control theory have been used for cavity flow control in 
Rowley and Williams (2003). They have discussed the 
effects of actuator saturation too, using describing 
function analysis. 

We note that for the numerical values given above 
the plant is stable and can be written in the form and model the receptivity feedback and scattering as 

constant gains. Then, the plant transfer function 
becomes 

 

   

(3.3)

 

 
(2.3)

 
The parameters of the above linear system can be 

optimized to match the open loop response of the cavity 
pressure fluctuations, at a given fixed Mach number. 
That is, when the feedback controller is taken out of the 
loop, the output power spectrum matches the power 
spectrum of the pressure fluctuations measured at the 
center bottom of the cavity.  Figure 2.2 illustrates this 
observation. The parameters of the plant that generate 
the response shown in this figure are listed below, 
where unity gains are for actuator and sensor dynamics, 
see Yuan et al. (2003). For these specific parameter 
values the plant is stable.  

Since the plant and the weight are infinite 
dimensional, there is no direct and easy solution to this 
weighted sensitivity minimization problem. For the 
case where the plant, or the weight, is finite 
dimensional the problem can be solved using certain 
results from operator theory, Foias et al. (1996). In this 
particular case, we approximate the weight by another 
infinite dimensional transfer function, which captures 
the essential dynamics within a large frequency region, 
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and then by exploiting this special structure we solve 
the problem, see Yuan et al. (2003) for details.  The 
controller is in the form given below: 

Besides the gains of these three terms, a small 
parameter ε  is introduced for causality of the 
controller. There are several tuning techniques for the 
PID gains for linear plants. But in the actual 
experimental set-up we first used a proportional (P) 
controller only, and searched for its best gain by trial 
and error. We have noticed that adding an integral term 
does not change the system behavior. We believe that 
this is due to the fact that the actuator is not able to 
generate very low frequency signals (and also recall 
that the actual system is nonlinear, so linear design 
rules do not always work here – more on this in Section 
4). Similarly the derivative term did not have a 
significant impact on this system. The experimental 
results on all of the above controllers are given in the 
next section. 

  (3.4) 
where 

   
(3.5)

 
and  

 (3.6) 
These FIR and IIR filters, as well as all the other 

parameters (including γ, γmin, a, and b) appearing in the 
above formula, can be explicitly computed, Yuan et al. 
(2003). Note that the controller is infinite dimensional, 
but it can be implemented using finite dimensional 
terms, delay blocks, and an FIR filter. In fact, controller 
complexity did not pose any severe restrictions when 
we implemented it on dSPACE real-time control boards 
(see Section 4).  

4. Experimental Results 

The simulation result shown in Figure 3.1 
illustrates that when the plant is taken to be the linear 
model defined above, then the H∞ controller is able to 
suppress the strong sinusoidal oscillations seen at the 
output.  

3.2 Smith Predictor Design 
Smith predictors are simple controllers typically 

used for plants represented by a second order transfer 
function with a time delay, like G(s) defined above. In 
this case, the controller structure is as shown in Figure 
3.2, where C0 is a stabilizing controller for the delay 
free part, G0, such that the delay-free closed loop 
system 

   
(3.7)

 

In this section we summarize the experimental 
results observed for the controllers designed above. For 
the details of the experimental set-up we refer to 
Debiasi and Samimy (2003), and also to our companion 
paper Samimy et al. (2004). It suffices here to recall 
that pressure fluctuations were measured by a Kulite 
XTL-190-25A dynamic pressure transducer mounted 
on the cavity floor. A dSPACE 1103 controller board 
connected to a Dell Precision Workstation 650 
computer was used to acquire at 50 kHz through a 12 
bit channel the Kulite signal that was then manipulated 
to produce the desired control signal from a 14 bit 
output channel. In order to maximize the control board 
performance, its processor was used exclusively for 
running the control routines. Simultaneous data were 
recorded by the computer at a sampling frequency of 
200 kHz through a National Instruments 6036E 16 bit 
DAQ board.  

Debiasi and Samimy (2003) introduced a search 
method for an optimal sinusoidal input frequency at any 
given Mach number. This scheme has been studied 
further in Samimy et al. (2004) to better understand the 
coupling effect of the input with the natural Rossiter 
modes. The experimentally observed resonant 
frequencies at different Mach numbers are compared to 
the Rossiter frequencies predicted analytically in Figure 
4.1, see also the companion paper, Samimy et al. 
(2004). In this work we choose the Mach number 0.3 as 
our baseline uncontrolled case. The Sound Pressure 
Level (SPL) derived from the recorded data is shown in 
Figure 4.2 from which we see that the power is 
concentrated in the 3rd Rossiter mode at the frequency 
of about 2800 Hz.  

is stable. Then, the closed loop feedback response 
from noise to the output becomes the delayed version of 
the above closed-loop transfer function, which is 
designed just from the delay-free part of the plant. This 
idea is used for the delayed second-order transfer 
function representation of the cavity flow system. For 
C0 we took a simple first order controller placing the 
poles as far left in the complex plane as possible. 

  

3.3 PID Controller Design 
The classical PID controller has three terms, 

proportional, integral and derivative: 
 First, we designed a PID controller by simply 

searching for the best controller parameters by 
manually adjusting them. It turned out that, due to the 
actuator dynamics, the integral term does not have any 

 
(3.8)
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significant effect on the system response since the 
loudspeaker cannot produce very low frequency 
signals, where integral action is most significant. 
Similarly, the derivative term did not have a significant 
impact; so we replaced it with a first order filter with an 
adjustable cut-off frequency to have a PD-like 
controller in the form  

 
(4.1)

 
Note that when h=0 and τd is small we have the 
derivative action, with appropriate scaling of Kd. 
Otherwise, when τd is large, the system behaves like a 
P-P controller (two proportional terms), which is 
equivalent to a single proportional term, but later we 
will add a non-zero time delay, h, to introduce zeros. 
This is the reason why we keep the two terms separate 
when τd is large. 

The second type of controller has the Smith 
predictor form, as discussed in Section 3.2, and it is 
based on a second order transfer function with a time 
delay fit to the baseline case.  

The H∞ controller is derived as outlined in Section 
3.1 for the linear model of the baseline case, whose 
structure is as given in Section 2.  

These three controllers, designed for M=0.3, were 
tested in the experimental facility for M=0.27 and 
M=0.3. The results are very similar in all three cases as 
illustrated in Figures 4.3, 4.4, and 4.5. All these 
controllers are successful in eliminating (or 
significantly reducing) the main frequency of 
oscillation (third Rossiter mode), but they lead to strong 
oscillations with frequency about 1900 Hz in the 
vicinity of the second Rossiter mode. This is expected 
since the linear controllers were designed for the 
baseline case and thus excitement of the other Rossiter 
modes was not taken into account. Therefore, the 
controllers should be re-designed in such a way that the 
second Rossiter mode does not get excited. With this 
observation in mind we turned our attention to the 
simple PD-like controller, whose optimal parameters 
were found to be:  

 
By adding a time delay of h=260 µs to the “derivative” 
term we put a 180 degree phase shift for signals 
operating at 1923Hz, i.e. in the neighborhood of the 
second Rossiter frequency.  The performance of this 
PD-like controller with delay on the Mach 0.27 and 0.3 
flows is shown in Figure 4.6. It is interesting to note 
that the performance of this controller was also quite 
satisfactory at Mach numbers with multi-mode 
resonance (as shown in Fig. 4.6 (c) for Mach 0.37) or at 
higher Mach numbers exhibiting stronger, single-mode 
resonance at the 2nd Rossiter mode (as shown in Fig. 4.6 

(d) for Mach 0.43). Since τd is relatively large, the 
controller acts like a P-P control with individual delay 
terms. In fact, we changed the controller to  

 (4.2) 
in order to place a “zero” in the frequency response 
exactly at 1923Hz. We noticed that the performance of 
this controller is very much like the performance of the 
PD-like controller with the same time delay. 

5. Nonlinear Models of the Cavity Flow 
The experimental results showed us that when we 

derive a linear model from the baseline experiments 
(without external forcing input) the model does not 
contain any information on other Rossiter modes, which 
could potentially get excited in the flow. Linear 
controllers derived from such a linear model do not 
perform well, in the sense that they are likely to excite 
one or more of the other modes. This observation has 
been made previously in the literature; see e.g. 
Cattafesta et al. (2003) and their references. In order to 
avoid this situation, a better nonlinear model is sought. 
We have been working in this line in parallel, Caraballo 
et al. (2003), Samimy et al. (2003b). The approach 
taken is the POD based low order nonlinear modeling, 
as in Berkooz et al. (1993), Freund and Colonius 
(2002), and many others. Next, we summarize the latest 
results in this line of work, taken from our companion 
paper Samimy et al. (2004), and then discuss control 
theoretic issues associated with this model. We also 
discuss extensions of the POD-based nonlinear model, 
and other nonlinear models. 

5.1 Structure of the POD-based Nonlinear 
Model 

The main goal of the POD-based low dimensional 
modeling work is to characterize the flow in the cavity 
in terms of certain orthogonal basis functions, and their 
time coefficients. For example, in the 2-D case, we 
would like to be able to write the stream-wise velocity 
u(t,x,y), at any time instant t and any point (x,y) in the 
cavity, as  

 
(5.1)

 
where spatial modes, ϕk, are fixed, and they are 
determined from the simulation data, and time 
coefficients, αk, satisfy an Nth order ordinary 
differential equation, see Caraballo et al. (2003) and 
Samimy et al. (2003b) for details of how this is done. 
As illustrated in Samimy et al. (2004), the Nth order 
ODE that the temporal variables satisfy can be written 
in a compact input to state equation form, and moreover 
the pressure output is shown to be a linear combination 
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of the time coefficients. Thus, we deal with a nonlinear 
system, whose dynamics are in the form
 

    

(5.2)

 
α(t): vector of time coefficients 
Γ(t): input voltage applied to the actuator 
p(t): pressure output signal 
 
and all the matrices involved in the above equation can 
be considered to be dependent only on the Mach 
number. In fact we have observed that they vary 
slightly depending on the input signal applied, but this 
dependence is very difficult to express analytically and 
it is not as significant as the dependence on the Mach 
number.  

Therefore, for a given fixed Mach number, we will 
try to design a feedback controller for the above 
nonlinear system. 

5.2 Control Problems Associated with the POD-
based Nonlinear Model 

One of the first tasks we are facing now is the 
implementation of the nonlinear dynamical system 
model described in Section 5.1, with feedback 
controller in the loop (see Figure 5.1), in Matlab’s 
Simulink environment. Then, we will compare its 
results under the same feedback control schemes 
defined in Section 4. Once we verify that these 
simulation results match the above-mentioned 
experimental results, we can safely assume that the 
nonlinear model captures the essential dynamical 
behavior of the system under different feedback control 
schemes.  

The next task, then, will be controller design for 
the above nonlinear input-state-output model. There are 
several system theoretic issues to be addressed, 
specifically:  

− Is there a limit cycle around an equilibrium 
state? 

− What is the fundamental frequency of the limit 
cycle? 

− How does the input affect the magnitude and 
frequency of oscillations? 

− How do the model parameters change with the 
Mach number? 

5.3 Interpolation of POD-based Nonlinear 
Models 

A fundamental issue in the POD based flow 
modeling is the validity range of the model. It is known 
that the dynamical content of the model depends upon 

the snapshots of the flow, which constitute the sole 
source of information for the POD model. This way of 
thinking stipulates the following fact: dynamical 
richness of a POD model is characterized by the 
snapshots. Conversely, a POD model cannot synthesize 
a behavior whose signature is absent in the snapshots. 
This results in a locality problem, which can be 
addressed by the use of fuzzy decision mechanisms. 
The use of such an expert soft-switching approach 
would allow us to switch between different POD 
models that are valid for different operating conditions. 
An example of this approach is shown on 1-D Burgers 
equation with successful results in Efe et al. (2004a). 

5.4 Modeling by Neural Networks 
Neural networks are well known for their powerful 

nonlinear mapping capabilities. The computational 
flexibility and the diversity of algorithms allowing the 
designer to tune for a given map makes 
neurocomputing a good technique for flow modeling 
and control, Haykin (1994), Jang et al. (1997). Such 
applications are involved with the imprecision in the 
measured quantities, nonlinear process dynamics, 
presence of multiple and potentially nonlinear 
subsystems and so on. A combination of these in a 
single application limits the applicability of pure 
mathematical techniques and encourages the use of 
computationally feasible and high performance devices 
such as neural systems. Technically speaking, given 
some history of the inputs (excitation or control signal) 
and outputs (pressure readings from some particular 
locations of the cavity), a neural network can be trained 
such that the output at the next time instant is estimated.  

We have used the data collected from the 
experimental setup to train such a neural network, as 
shown in Figure 5.2, with the settings given below. 
Note that to keep the notation consistent with the 
literature on neural networks we have defined the 
voltage input applied at discrete time instant k as u(k), 
the observed pressure output d(k), and the estimated 
pressure output x(k). 

− The neural identifier has the structure 5-12-1 
− Hidden neurons have hyperbolic tangent 

nonlinearity 
− Output neuron is linear 
− Inputs are [x(k) x(k-1) u(k) u(k-1) u(k-2)], and 

the output is x(k+1) 
− One epoche is the feedforward pass of 16,381 

data pairs  
− Training takes 188 epoches (≈1/2 hour time on a 

P4 PC) 
− Mean squared error decreases to 8.85e-6 
− The data is collected at 200 kHz sampling rate 
− Training algorithm is the Levenberg-Marquardt 

technique. 
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For training the network, we have used the data 
collected for the excitation input given by zero mean 4 
Vrms amplitude sine wave at 2 kHz. Successively, we 
have tested the trained network against the data 
collected for the excitation input of a zero mean 4 Vrms 
amplitude sine wave at 3.25 kHz.  Figure 5.3, which is 
taken from Efe et al. (2004b), shows the comparison of 
the frequency contents of the measured and estimated 
pressure output signals. For time domain simulation 
results, and details of the neural network map we refer 
to Efe et al. (2004b). 

6. Concluding Remarks  
The long-term goal of our project is to derive new 

design techniques for closed loop aerodynamic flow 
control. As a first step, we have chosen cavity flow as 
the benchmark problem, and tried simple linear 
controllers, designed from linear models that match the 
open loop response of the system very well.  Our 
experimental results confirmed previously observed 
phenomena: (i) linear controllers derived from a single 
dominant mode plant model are able to suppress the 
cavity oscillations at this frequency, but they shift the 
oscillations to another Rossiter frequency, which was 
not visible in the unforced case but could easily be 
excited; (ii) adding a zero to the controller at this 
hidden Rossiter frequency avoids this problem.   

By using extensive simulations, we derived a 
nonlinear model based on the POD. Next, we will test 
this nonlinear model under linear feedback by using 
Matlab/Simulink based simulations. Then, by 
exploiting the structure of this type of nonlinear 
systems, we will derive nonlinear controllers, to be 
tested experimentally. Our previous studies have sown 
that POD-based models are dependent not only on the 
Mach number, but also on the frequency of external 
input signal. Interpolation of the local models will also 
be studied, as well as neural network based models.  
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Figure 2.1 Linear feedback system. 

 

 
 
 

Experimental data

Predicted by the linear model 

 
Figure 2.2 Comparison of output power spectra from experimental data and the linear model. 

 
 
 

- 8 - 



AIAA 2004-0573 

 

 
Figure 3.1. H∞ controller performance for the plant described by the linear model. 

 
 
 
 

 
 

 
Figure 3.2 Structure of the Smith predictor controller  
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Figure 4.1 Rossiter frequencies (lines) and measured frequencies (circles) as a function of the flow Mach 

number. 
 
 
 
- 

 
Figure 4.2 Cavity-flow SPL spectrum at the center of the cavity floor for the baseline case (no control) M=0.3 

flow. 
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(b) (a) 

 
Figure 4.3 Effect of PD control on Mach 0.27 flow (a) and on Mach 0.3 flow (b); upper (thin) line is the baseline 
flow SPL spectrum and lower (thick) line is the controlled flow. 

 
 
 
 
 
 
 

(a) (b) 

 
Figure 4.4 Effect of Smith predictor-based control on Mach 0.27 flow (a) and on Mach 0.3 flow (b); upper 

(thin) line is the baseline flow SPL spectrum and lower (thick) line is the controlled flow. 
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(b) (a) 

Figure 4.5 Effect of H∞ control on Mach 0.27 flow (a) and on Mach 0.3 flow (b); upper (thin) line is the 
baseline flow SPL spectrum and lower (thick) line is the controlled flow.  

 

 

(b) (a) 

(c) (d) 

Figure 4.6 Effect of PD-like (effectively P-P) control with time delay of 260 µs on the derivative term (zero 
placement at 1923 Hz); Mach 0.27 flow (a); Mach 0.3 flow (b); Mach 0.37 flow (c); Mach 0.43 flow (d). Upper 
(thin) line is the baseline flow SPL spectrum; lower (thick) line is the controlled flow. 
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Figure 5.1 Simulink implementation of the nonlinear model and the controller. 
 
 
 
 
 

 
 

Figure 5.2 Neural Network based identification 
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Figure 5.3 Comparison of the frequency contents of the measured and estimated pressure output signals. 
 
 


	1Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210
	2Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210
	3NASA Glenn Research Center, Brookpark, OH 44135
	4Air Force Research Laboratory, Air Vehicles Directorate, WPAFB, OH 45433
	5 Now with the Department of Mechatronics Engineering, Atilim University, Ankara, Turkey
	§ Corresponding author: part the work was done a�
	Linear Controllers Based on the Linear Model
	H( Controller Design
	Smith Predictor Design
	PID Controller Design
	Structure of the POD-based Nonlinear Model
	Control Problems Associated with the POD-based Nonlinear Model
	Interpolation of POD-based Nonlinear Models
	Modeling by Neural Networks

	Acknowledgements
	References

