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EXCITATIONS
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ABSTRACT Solutions of most Partial Differential Equa-
tions (PDEs) are dominated by coherent modes that can be
extracted through the use of decomposition techniques. This
paper focuses on a benchmark example for low dimensional
modeling, named 2D Burgers flow. The boundary excita-
tions are Dirichlét type and the technique results in a re-
duced order model of the infinite dimensional process. The
issues influencing the performance are discussed and it is
seen that the results obtained from the low order model are
compliant with the desired results.

INTRODUCTION

Finding a representative dynamic model for spatially con-
tinuous systems is a major problem in heat and fluid flows.
The reason that lies behind is tightly associated with con-
trol system synthesis, i.e. the design of best external ex-
citation (boundary condition) such that the the manner in
which the system behaves is the prescribed behavior. From
a boundary controller design point of view, it is seen that
PDE systems do not enjoy the classical tools of control
theory directly, instead, the PDE system is preprocessed
in such a way that the essential behavior is reproduced by
a set of Ordinary Differential Equations (ODE) associated
with some spatial eigenfunctions. Naturally, the obtained
model is an approximation to the original system dynam-
ics. The purpose of this paper is to show how complicated
PDEs could be approximated by finite dimensional ODEs
that can be used for boundary control system synthesis.

The two-dimensional (2D) Burgers equation is a good ex-
ample to study the difficulties encountered in low dimen-
sional modeling of infinite dimensional systems. The reason
is that the involved dynamics is governed by two coupled
nonlinear PDEs. This fact indicates that the efforts towards
a suitable model are to deal with a significant amount of
computational complexity. Referring to [5, 1], the 2D Burg-
ers equation is described by

wt + ε(w · ∇)w = µ∇2w (1)

where w(x, y, t) := (u(x, y, t) v(x, y, t))T, and (x, y, t) ∈
[0, 1] × [0, 1] × [0, T ] with T being some final time. The
similarity of the vector PDE set in (1) with the Navier-
Stokes equations makes the low dimensional modeling ef-
forts worthwhile particularly for the boundary control ap-
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plications in fluid dynamics. A striking example is the prob-
lem of reducing the skin friction of air vehicles through ac-
tive flow control, (See [2]). However, the 2D Burgers equa-
tion is a turbulence free cartoon for Navier-Stokes equations
and has been studied in the past for modeling traffic flows,
shock waves and acoustic transmission. In [14, 16, 18], some
variants of 2D Burgers equation have been considered with
the goal of finding exact solutions under certain circum-
stances. Blender, on the other hand, postulates a method
to obtain the solution of the PDE set in (1) iteratively,
[20]. Güngör demonstrates that if suitable subalgebras can
be defined, the PDE could be converted into an ODE, but
it is a major problem to find such subalgebras particularly
for boundary control purposes, [9]. Nishinari et al. fo-
cus on cellular automaton, which is extensively studied for
developing models of traffic flow, fluids and immune sys-
tems, [10], and therefore a good model to work on is a
variant of Burgers equation. In [17], the dynamics that
arises upon discretization of 2D Burgers equation is an-
alyzed. The effects of chosen time step (∆t) for getting
physically reasonable numerical solutions are elaborated.
Wescott et al. present a computational technique to ob-
tain the numerical solutions of PDEs having nonlinear con-
vection terms like 2D Burgers equation and Navier-Stokes
equations, [11]. The goal of the paper is to reduce the
computation time without giving concessions from the ac-
curacy. Boules et al., [6], obtain the solution for a specific
boundary regime and initial conditions. Using a truncated
Fourier series expansion yields an autonomous ODE set, the
solution of which approximates the numerical solution, and
the derived model rebuilds the situation implied by the cho-
sen initial and boundary conditions. Except [6], the works
on 2D Burgers equation emphasize the similar difficulties
as the motivating factors and focus on the solutions and
solvability issues. The current paper, on the other hand,
derives a non-autonomous ODE model that has external
inputs explicitly and that is valid for some set of boundary
conditions with zero initial conditions.

When the 1D version is taken into consideration, it is seen
that the 1D Burgers equation has previously been consid-
ered for modeling and control system design purposes, and
it has been shown in [3] and the references therein that the
task is achievable, yet there are very few results reporting
the modeling issues for vector PDE sets and higher dimen-
sional cases as emphasized above. This paper fills the gap
between very simple models such as 1D heat flow or Burgers
system and very complicated systems like those reported in
[2, 12, 13, 15]. Seemingly, the presented work is a step to-
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wards the goal of modeling and control of more complicated
PDE systems.

The current paper approaches the modeling problem from
a control specialist’s point of view, i.e. a suitable model re-
duction associated with a set of well-defined system inputs
and a well-defined range of operating region. This process
contains three major issues that need to be addressed ap-
propriately. First issue is to collect the representative data
and to exploit decomposition techniques for obtaining a set
of ODEs. The next issue is to separate the effect of external
stimuli from the other terms by utilizing the boundary con-
ditions. The last issue is to validate the model. The process
is continuous over a physical domain (Ω := [0, 1]×[0,1]), the
corners of which are the possible entries of external stimuli
for both u(x, y, t) and v(x, y, t). Choosing an adequately
dense grid, say Ωd, makes it possible to obtain a finite ele-
ment representation of the process w(x, y, t) over Ωd. When
the content of the observed data, say w(x, y, t), is decom-
posed into spatial and temporal constituents (u(x, y, t) ≈
〈Φ(x, y), α(t)〉Ωd

and v(x, y, t) ≈ 〈Ψ(x, y), α(t)〉Ωd
), the

essence of spatial behavior appears as a set of spatially
varying gains (Φ(x, y) = {Φ1(x, y),Φ2(x, y), . . . ,ΦRL

(x, y)}
and Ψ(x, y) = {Ψ1(x, y),Ψ2(x, y), . . . ,ΨRL

(x, y)} with RL

being a positive integer), and the essence of temporal evolu-
tion, α(t), appears as the solution of a set of ODEs obtained
after utilizing the orthogonality properties of the spatial ba-
sis functions, i.e. the eigenfunctions.

The dimension reduction in systems having high orders
can be done by utilizing Proper Orthogonal Decomposition
(POD) or Singular Value Decomposition (SVD) in coop-
eration with Galerkin projection [12, 13, 15] or balancing
methods (for linear systems) as discussed in the survey of
Gügercin, [4]. The decomposition based methods exploit
the exemplar solutions obtained from the process and yield
a set of temporal variables associated with a set of spatial
basis functions. In order to obtain a useful approximation,
the data, which is the raw information entering the model-
ing process, should contain coherent modes. The procedure,
if it succeeds, yields a set of autonomous ODEs synthesizing
the aforementioned temporal values.

The motivation of this paper is to draw a clear path be-
tween a given PDE system and the representative finite
dimensional non-autonomous ODE model. With this in
mind, the paper is organized as follows: The second section
presents briefly the POD technique and its relevance to the
modeling strategy. In the third section, obtaining the ODE
model for the 2D Burgers equation is demonstrated. The
justification of the model, results and the contributions are
discussed in Section 4. Concluding remarks constitute the
last part of the paper.

PROPER ORTHOGONAL DECOMPOSITION

Consider the ensemble Pi, i = 1, 2, . . . , Ns, where Ns is the
number of elements. Every element of this set corresponds
to a snapshot observed from a process, say for example, 2D
Burgers equation given in (1) or

ut = µuxx + µuyy − εuux − εvuy

vt = µvxx + µvyy − εuvx − εvvy, (2)

with ε and µ being known constants, and the subscripts x,

y and t refer to the partial differentiation with respect to
x, y and time, respectively. The continuous time process
takes place over the physical domain Ω := {(x, y)|(x, y) ∈

[0, 1]× [0, 1]} and the solution is obtained on a grid denoted
by Ωd, which describes the coordinates of the pixels of every
snapshot in the ensemble.

The goal is to find an orthonormal basis set letting us to
write the solution as

(

u(x, y, t)
v(x, y, t)

)

≈

(

û(x, y, t)
v̂(x, y, t)

)

=

RL
∑

i=1

αi(t)

(

Φi(x, y)
Ψi(x, y)

)

(3)

where αi(t) is the temporal part,

(

Φi(x, y)
Ψi(x, y)

)

is the spa-

tial part,

(

û(x, y, t)
v̂(x, y, t)

)

is the finite element approximate

of the infinite dimensional PDE and RL is the number of
independent basis functions that can be synthesized from
the given ensemble, or equivalently the set of eigenfunctions
that spans the space described by the ensemble. It will later

be clear that if the elements of the basis set,

(

Φi(x, y)
Ψi(x, y)

)

,

are orthonormal for i = 1, 2, . . . , RL, then the modeling
task can exploit Galerkin projection technique. More ex-
plicitly, the inner product operator defined in over the basis
functions should function as,

〈

(

Φi

Ψi

)

,

(

Φj

Ψj

)

〉Ω :=

∫∫

Ω

(ΦiΦj +ΨiΨj) dΩ = δij (4)

where δij = 1 when i = j and zero otherwise, i.e. the Kro-
necker delta. With these definitions, the POD procedure
can be summarized as follows:

Step 1. Define the concatenated process snapshot cap-
tured at time t as

Pt :=

(

Ut
Vt

)

, where Ut and Vt are R×R, Pt is 2R×R and

R determines the spatial resolution. Without loss of gener-
ality, t could be an integer that is used to index the snap-
shots. Start calculating theNs×Ns dimensional correlation
matrix L, the (ij)-th entry of which is Lij := 〈Pi, Pj〉Ωd

,
where 〈., .〉Ωd

is the inner product operator defined over
the chosen spatial grid Ωd. Notice that the basis vectors
(

Φi(x, y)
Ψi(x, y)

)

are defined over Ω, whereas the bases that

are obtained numerically (the sampled forms)

(

φi
ψi

)

are

defined over Ωd and, φi and ψi are R×R matrices. There-
fore, we need the equivalent form of the used inner product,
which is given as

〈

(

φi
ψi

)

,

(

φj
ψj

)

〉Ωd

:=
1

Ns

(φi ? φj + ψi ? ψj)

=
1

Ns

R
∑

p=1

R
∑

q=1

φi(p, q)φj(p, q) + ψi(p, q)ψj(p, q)

= δij , (5)

where ? stands for the sum of all elements of a matrix that
is obtained through elementwise multiplication of two ma-
trices.
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Step 2. Find the eigenvectors denoted by ξi and the as-
sociated eigenvalues (λi) of the symmetric matrix L. Sort
them in a descending order in terms of the magnitudes of
λi. Note that every ξi is an Ns × 1 dimensional vector sat-
isfying ξTi ξi =

1

λi
, here, for simplicity of the exposition, we

assume that the eigenvalues are distinct.

Step 3. Construct the basis set by utilizing the snapshots

(

φi
ψi

)

=

Ns
∑

k=1

ξikPk =

Ns
∑

k=1

(

ξikUk
ξikVk

)

, (6)

where ξik is the k-th entry of the eigenvector ξi, and
i = 1, 2, ..., RL, where RL = rank(L). It can be shown

that 〈

(

φi
ψi

)

,

(

φj
ψj

)

〉Ωd
= δij with δij being the Kro-

necker delta function. Notice that the basis functions are
admixtures of the snapshots, [3, 13].

Step 4. Calculate the temporal coefficients. When t = tk,

taking the inner product of both sides of (3) with

(

Φi

Ψi

)

,

the orthonormality property leads to

αi(tk) = 〈

(

Φi(x, y)
Ψi(x, y)

)

,

(

û(x, y, tk)
v̂(x, y, tk)

)

〉Ω

= 〈

(

φi
ψi

)

,

(

Utk
Vtk

)

〉Ωd
, (7)

Note that the temporal coefficients satisfy orthogonality
properties over the discrete set tk ∈ {t1, t2, . . . , tNs

} (See
(8)). For a more detailed discussion on the POD method,
the reader is referred to [12, 13, 15] and the references
therein,

Ns
∑

i=1

〈

(

Ui
Vi

)

,

(

φk
ψk

)

〉2Ωd
≈

Ns
∑

i=1

α
2

i (ti) = λk. (8)

Fundamental Assumption: The majority of works deal-
ing with POD and model reduction applications presume
that the flow is dominated by coherent modes and the quan-

tities

(

u(x, y, t)
v(x, y, t)

)

and

(

û(x, y, t)
v̂(x, y, t)

)

are indistinguish-

able, [15, 12, 13]. Because of the dominance of coherent
modes, the typical spread of the eigenvalues of the corre-
lation matrix L turns out to be logarithmic and the terms
decay very rapidly in magnitude. This fact further enables
to assume that a reduced order representation, say with
M modes (M ≤ min(RL, Ns)) can also be written as an
equality

(

û(x, y, t)
v̂(x, y, t)

)

=
M
∑

i=1

αi(t)

(

Φi(x, y)
Ψi(x, y)

)

, (9)

and the reduced order model is derived under the assump-
tion that (9) satisfies the governing PDE set. Unsurpris-
ingly, such an assumption results in a model having un-
certainties, however, one should keep in mind that the
goal is to find a model, which matches the infinite dimen-
sional system in some sense of approximation with typically
M ¿ RL ≤ Ns. To represent how good such an expansion
is, a percent energy measure is defined as follows

E = 100

∑M

i=1 λi
∑RL

i=1 λi
, (10)

where the tendency of E → 100% means that the model
captures the dynamical information contained in the snap-
shots well. Conversely, an insufficient model will be ob-
tained if E is far below 100%. In the next section, we
demonstrate how the boundary condition is transformed to
an explicit control input in the ODEs.

OBTAINING THE ODE MODEL

According to the underlying assumption of POD based
model reduction scheme, the approximate solution in (9)
must satisfy the PDE in (2). Substituting (9) into (2) and

taking the inner product of both sides with

(

Φk

Ψk

)

yields,

α̇k = µ

M
∑

i=1

αi〈

(

Φxxi +Φyyi

Ψxxi +Ψyyi

)

,

(

Φk

Ψk

)

〉Ω

−ε

M
∑

i=1

M
∑

j=1

αiαj〈

(

ΦiΦxj

ΦiΨxj

)

,

(

Φk

Ψk

)

〉Ω.

−ε
M
∑

i=1

M
∑

j=1

αiαj〈

(

ΨiΦyj

ΨiΨyj

)

,

(

Φk

Ψk

)

〉Ω.

(11)

Notice that, the orthonormality property of the basis vec-
tors leaves the α̇k term alone on the left hand side. Equiv-
alently, by using the numerical quantities, the expression
above can be rewritten as follows:

α̇k = µ

M
∑

i=1

αi〈

(

φxxi + φyyi
ψxxi + ψyyi

)

,

(

φk
ψk

)

〉Ωd

−ε
M
∑

i=1

M
∑

j=1

αiαj〈

(

φi ◦ φxj
φi ◦ ψxj

)

,

(

φk
ψk

)

〉Ωd

−ε
M
∑

i=1

M
∑

j=1

αiαj〈

(

ψi ◦ φyj
ψi ◦ ψyj

)

,

(

φk
ψk

)

〉Ωd

(12)

where ◦ stands for the elementwise multiplication of two
matrices.

Although it is straightforward to conclude with the ODEs
given in (11) and (12), it is apparent that these equations
do not have the boundary conditions (external inputs) ex-
plicitly. Chosen initial conditions and boundary excitation
regime determine the solution, and the ODEs above resyn-
thesize the temporal variables, αi(t), associated to that par-
ticular solution (See (9)). It is clear that such an ODE
model is useless as it is specific to the chosen boundary
conditions. Our goal is to obtain a model that has exter-
nal inputs explicitly and that can be used for the boundary
conditions other than the used ones. For this purpose, a
method needs to be postulated for separating the bound-
ary excitations appropriately. According to the definition
of the inner product operator, it should be obvious that

〈

(

φi
ψi

)

,

(

φj
ψj

)

〉Ωd
=

〈

(

φi
ψi

)

,

(

φj
ψj

)

〉Ωd\∂Ωd
+

〈

(

φi
ψi

)

,

(

φj
ψj

)

〉∂Ωd
(13)
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where ∂Ωd indicates the boundaries of the considered do-
main. Apparently, the last term in (13) can enjoy the
boundary conditions that are specified freely. Denote
(xc, yc) as one of the points at which the solution is in-
dependently specified (i.e. the boundary), and (pxc

, qyc
) as

the row and column numbers of this location in matrices φi
and ψi. Note that the prescribed solution in (9) must be
satisfied also at (xc, yc), i.e. we have,

û(xc, yc, t) := γxcycu(t) =
M
∑

i=1

αi(t)φi(pxc
, qyc

)

v̂(xc, yc, t) := γxcycv(t) =

M
∑

i=1

αi(t)ψi(pxc
, qyc

)

(14)

or equivalently

αk(t)φk(pxc
, qyc

) = γxcycu(t)−

M
∑

i=1

(1− δik)αi(t)φi(pxc
, qyc

), (15)

αk(t)ψk(pxc
, qyc

) = γxcycv(t)−

M
∑

i=1

(1− δik)αi(t)ψi(pxc
, qyc

). (16)

Since we consider the problem on a square domain, Ωd, for
both states, every corner can be a possible entry for the ex-
ternal excitations, i.e. we may have at most eight distinct
inputs for this system. Once the Dirichlét type corner con-
ditions are specified, the numerical solutions u(x, y, t) and
v(x, y, t) on x = 0, y = 0, x = 1 and y = 1 segments of Ωd

are obtained by setting the relevant partial derivatives to
zero. For example, we solve

ut = µuyy − εvuy

vt = µvyy − εvvy (17)

along x = 1 segment. For the simplicity of the exposition,
assume xc = 0 and yc = 0 ((pxc

, qyc
) = (1, 1)) is the chosen

corner, and rewrite (12) as follows:

α̇k =
µ

Ns

M
∑

i=1

αi (ζi ? φk + θi ? ψk)

−
ε

Ns

M
∑

i=1

M
∑

j=1

αiαj ((φi ◦ φxj + ψi ◦ φyj) ? φk)

−
ε

Ns

M
∑

i=1

M
∑

j=1

αiαj ((φi ◦ ψxj + ψi ◦ ψyj) ? ψk)

. (18)

where ζi := φxxi + φyyi and θi := ψxxi + ψyyi. De-
fine φ′k = {φ′k|φ

′
k(i, j) = φk(i, j) when i 6= pxc

, j 6=
qyc

, and φ′k(pxc
, qyc

) = 0} and ζ ′k = {ζ ′k|ζ
′
k(i, j) =

ζk(i, j) when i 6= pxc
, j 6= qyc

, and ζ ′k(pxc
, qyc

) = 0} and
so on. By this means, the matrices used in the derivation
have zero values corresponding to the external excitation

entries. Now we can explicitly write the first term in (18)
as follows:

M
∑

i=1

αiζi ? φk =
M
∑

i=1

αi
(

ζ
′
i ? φ

′
k

)

+

αkζk(1, 1)φk(1, 1) +

M
∑

i=1

(1− δik)αiζi(1, 1)φk(1, 1). (19)

Utilizing (15) for the term αkζk(1, 1)φk(1, 1), we get

αkζk(1, 1)φk(1, 1) = γ00u(t)ζk(1, 1)−

M
∑

i=1

(1− δik)αiζk(1, 1)φi(1, 1). (20)

Inserting (20) into (19) yields the following

M
∑

i=1

αiζi ? φk = γ00u(t)ζk(1, 1) +

M
∑

i=1

αi (ζi ? φk − ζk(1, 1)φi(1, 1)) . (21)

For the second term in the first summation of (18), this
result implies the equality in (22), and the concatenated
form is given in (23),

M
∑

i=1

αi(θi ? ψk) = γ00v(t)θk(1, 1) +

M
∑

i=1

αi (θi ? ψk − θk(1, 1)ψi(1, 1)) . (22)

M
∑

i=1

αi(ζi ? φk + θi ? ψk) (23)

= γ00u(t)ζk(1, 1) + γ00v(t)θk(1, 1)

+
M
∑

i=1

αi(ζi ? φk) +

−

M
∑

i=1

αi(ζk(1, 1)φi(1, 1) + θk(1, 1)ψi(1, 1)).

The same reasoning can be applied to the terms seen in the
second and third lines of (18). Due to the space limit, we
skip repeating the same step. Such a separation technique
lets us obtain the low dimensional model for the 2D Burgers
equation given by

Ẋ (t) = AX (t)− B (X (t)) + CΓ(t)−D(X (t),Γ(t)), (24)

where X (t) =
(

α1(t) α2(t) . . . αM (t)
)

T

, Γ(t) =
(

γ00u(t) γ00v(t)
)

T

, A is M ×M , B is M × 1, C is M × 2
and D is M × 1. From (23), we can write the (ki)-th entry
of matrix A and k-th row of matrix C as given below:

(A)ki =
µ

Ns

(ζi ? φk + θi ? ψk) (25)

−
µ

Ns

(ζk(1, 1)φi(1, 1) + θk(1, 1)ψi(1, 1)) ,
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(C)k =
µ

Ns

(ζk(1, 1) θk(1, 1)) . (26)

where k, i = 1, 2, . . . ,M . Similarly,

B(X ) =
(

X TB1X X TB2X . . . X TBMX
)

T

(27)

where the j-th of matrix Bk is

(Bk)ij =
ε

Ns

(

φ
′
i ◦ φ

′
xj

)

? φ
′
k +

ε

Ns

(

ψ
′
i ◦ φ

′
yj

)

? φ
′
k +

ε

Ns

(

φ
′
i ◦ ψ

′
xj

)

? ψ
′
k +

ε

Ns

(

ψ
′
i ◦ ψ

′
yj

)

? ψ
′
k, (28)

and the k-th row entry of vector D is computed as

(D)k = γ00u
ε

Ns

M
∑

j=1

αj (φk(1, 1)φxj(1, 1)) +

γ00u
ε

Ns

M
∑

j=1

αj (ψk(1, 1)ψxj(1, 1)) +

γ00v
ε

Ns

M
∑

j=1

αj (φk(1, 1)φyj(1, 1)) +

γ00v
ε

Ns

M
∑

j=1

αj (ψk(1, 1)ψyj(1, 1)) (29)

or

D = DuXγ00u +DvXγ00v (30)

where Du and Dv are M × M matrices and the (kj)-th
entry is computed as

(Du)kj =
ε

Ns

(φk(1, 1)φxj(1, 1) + ψk(1, 1)ψxj(1, 1)) , (31)

and

(Dv)kj =
ε

Ns

(φk(1, 1)φyj(1, 1) + ψk(1, 1)ψyj(1, 1)) . (32)

with k, j = 1, 2, . . . ,M . According to the derivation dis-
cussed in this section, once the initial and boundary con-
ditions are specified, one can get a dynamic model that
captures the essential features contained by the solution.
Although we have derived the model by assuming the ex-
ternal excitation enters at a single point for u and v dynam-
ics, it is straightforward to apply the scheme for obtaining
a model having up to eight inputs. In the next section, jus-
tification of the model is presented through some exemplar
cases.

JUSTIFICATION OF THE MODEL

In order to obtain the model, the 2D Burgers equation in
(1) is solved for the boundary conditions given as
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Figure 1: Boundary signals used for model derivation
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Figure 2: First set of boundary signals that are used
for model validation

γ00u(t) = sin(1000πt(T − t))

γ00v(t) = cos(1000πt(
T

2
− t)). (33)

The time plots and the Fast Fourier Transforms (FFT) of
the signals above are depicted in Figure 1. The reason that
drives us to choose such signals is the spectral richness. If
the spectral content of the excitations are rich enough, the
resulting model is more likely to operate properly over the
covered frequency range, [3]. The other important parame-
ters of the simulation are tabulated in Table 1. The numer-
ical solution is obtained through Crank-Nicholson method
with zero initial conditions, [19], and after the application
of the modeling procedure discussed in the previous section,
a model is obtained in the form of (24).

Table 1: Simulation Settings

R 25
M 8
∆T 0.1msec.
T 0.2sec.
Ns 201
ε 1
µ 5
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Figure 3: The desired values (thick curves) of αi(t) and
the obtained values (thin curves) for the first set of test
conditions

It has been observed that the eigenvalues (λi) decay very
rapidly, and the captured energy content described by (10)
is 99.9021%, which is found acceptable. The justification
has been done with the same settings as shown in Table 1,
and the first set of boundary excitations that are used in
the model validation phase are

γ00u(t) = sin(700πt(T − t)) +

0.2 sin(1700πt(T − t)),

γ00v(t) = cos(500πt(
T

2
− t)) +

0.1 cos(1500πt(
T

2
− t)). (34)

Figure 2 illustrates these signals and the low frequency ap-
pearance of their FFT magnitude plots. The PDE is solved
for this new case and the αi(t) values are obtained by us-
ing (7), which yield the desired values. On the other hand,
the model had already been developed, and it is simulated
for the test boundary conditions in (34) with zero initials.
The outcome is expected to approximate the desired ones if
the algorithm succeeds. The results are shown in Figure 3,
where the first remark of us is the number of ODEs that let
us obtain this result. With M = 8 modes (ODEs), the task
can be achieved to the extent seen in the figure. For the
first five modes, the match is quite good yet as the mode
number increases the dissimilarity between the desired and
generated values become more distinguishable. Since the
dominance of the corresponding modes decrease logarith-
mically, as seen from the figure as well, so do their effect
on the overall result. Therefore the similarity of the first
few modes is more substantial than the similarity of modes
having high index numbers. A rough look at the eight sub-
plots of Figure 3 altogether gives the idea of a successful
approximation from a higher dimensionality to low orders,
which is the goal of this paper.

We have repeated our tests for many other test signals but
some of them have driven us to conclude with the relevance
of model performance and spectral content of the exter-
nal excitations. The descriptive nature of the signals used
in the model derivation is inherited by the developed dy-
namical model, and the signals that do not resemble to the
model derivation conditions make the system fail depending
on the level of dissimilarity between the model derivation

and validation signals. The spectral dependence is an im-
portant conclusion if the model is to be used in a feedback
system synthesis. This claim has been justified by choosing
signals that are spectrally similar to and dissimilar from
the test conditions.

According to the results of this paper, it is fair to claim
that the dynamic model in (24) functions properly up to
100 Hz. Considering the results obtained in [6], it is seen
that the presented work achieves the modeling goal with a
few ODEs and associated spatial eigenfunctions.

A natural issue that needs to be highlighted is the ways of
improving obtained results. Expectedly, increasing the grid
fineness, decreasing ∆t, increasing the number of snapshots
entering the POD procedure (Ns), increasing the number of
modes (M) are the alternatives that result in better model
performance yet the price paid for this improvement is the
increased computational requirements.

CONCLUSIONS

The research on flow control is in its infancy due to the
unavailability of widely accepted and standardized frame-
works for design. One central issue if the model reduction
POD is one alternative among many others (see e.g. [4, 8, 7]
and the references therein). Its capability of capturing the
essential dynamics dominating the entire physical phenom-
ena makes POD preferable in flow modeling and control
research.

This paper focuses on the low dimensional modeling of 2D
Burgers equation. The driving fact for focusing on this
system is its similarity to Navier-Stokes equations, and its
nonlinear, coupled and vector valued PDE nature. Once
the POD algorithm is implemented, it is seen that the re-
sulting ODE model is an autonomous one and a method to
overcome this problem needs to be developed. One major
contribution of this paper is on this issue, i.e. the separa-
tion of boundary terms to obtain a non-autonomous ODE
model is demonstrated step by step on such a complicated
system. The second contribution of the paper is its empha-
sis on the locality of the developed low order models. It is
seen that the conditions used in the model derivation are
critically important and the POD procedure has a natu-
ral propensity to build models that are valid on particular
conditions. With these results, the present work advances
the subject area to the establishment of a clear connection
between state-space methods of control theory and com-
plex infinite dimensional systems of PDEs. The fact that
this connection is built through the numerical observations
from the infinite dimensional process is worthwhile to stress
the applicability of the bottom-up modeling effort for other
systems of PDEs.
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