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ABSTRACT

Nonlinearity and time delays are two of the prime problems in dynamic system models. There is a very extensive
research volume on both of these subject areas, however, for processes modeled by Partial Differential Equations
(PDEs), dealing with these difficulties is further tedious. This paper considers a general PDE model and order reduction
based on Proper Orthogonal Decomposition (POD) with boundary separation. The reduced order model has time delays
inherited from the PDE process and it is nonlinear. The reduced order model is shown to be capable of capturing the
essential behavior accurately through simulations.

INTRODUCTION

Processes described by PDEs are infinite dimensional due to the spatial continuity. Modeling and control of PDE
processes is an interesting research area and the outcomes of which address many physical phenomena, e.g. heat and
fluid flows. Understanding the behavior of processes governed by PDE:s is a tedious task if the process has nonlinearities
with time delays. Order reduction is therefore a practical choice giving concessions from accuracy yet the reduced order
model is finite dimensional and mathematically tractable. It is a well known fact that for linear PDEs, there are well
established alternatives other than POD, [7], but POD is a widely used method in modeling of more complicated
systems. The goal of this paper is to present a POD based modeling effort involved with nonlinearities and time delays.

Proper Orthogonal Decomposition was introduced in the pioneering work of Lumley [11] with the goal of explaining the
modal nature of turbulent flows. In [10], Sirovich introduced the method of snapshots for reducing the computational
intensity of the original POD algorithm. The POD method is widely accepted as a powerful tool for decomposing the
dynamical content of a time varying spatially continuous PDE process into some spatial and temporal components
meeting orthogonality properties. The spatial part is a set of basis functions while the temporal part is a set of differential
equations. The decomposition is accomplished in the order of dominance, which is a significant property enabling the
designer to truncate the expression at a particular mode number. Modeling of flow problems governed by PDEs have
therefore enjoyed the POD method in obtaining the finite dimensional models at the cost of giving concessions from the
model performance, see for example [1-2,4,6] and the references therein. The amount of uncertainty introduced during
model reduction depends heavily on the numerical solver, grid density, number of snapshots, coherence of the solution
(decomposability) and so on.

Procedurally, the PDE set is solved for the given initial and boundary conditions. Several samples from the solution set
are selected and the POD method with Galerkin projection is applied. As a result of this, a set of autonomous Ordinary
Differential Equations (ODEs) is obtained. The solution of the obtained ODEs with the given initial conditions
synthesize the temporal part of the solution and the spatial basis functions obtained through the POD method yield the
approximate solution of the PDE. Unfortunately, the set of ODEs are specific to the initial and boundary conditions used
in the model derivation stage. In other words, one needs to change the ODE model for every different instance of
boundary excitation regimes and this is a significant problem for boundary control goal. This paper demonstrates how
the aforementioned autonomous set of ODEs is converted into non-autonomous ones and how the external excitations
are seen explicitly in the model.
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This paper is organized as follows. The POD algorithm specific to the chosen PDE process is described in the second
section. In the third section, development of the order reduction and boundary separation is presented. The fourth section
discusses the modeling results. The concluding remarks are given at the end of the paper.

PROPER ORTHOGONAL DECOMPOSITION (POD)

Consider the ensemble U;(X), i = 1,2,...Ns, where N is the number of elements. Every element of this set corresponds to a
snapshot observed from a process, say for example the process with initial and boundary conditions given below

Ut(X,t) = Czuxx(xvt) - ,LlUXX(X,t - Tl) - UU(X,t)UX(X,t) - (;U(X,t - TZ)UX(X,t - Tz) + OU(X,t) +f (X)J/l (t) (l)

u(x,0) =0 VvxeQ:=[01], u(0,t) =y,(), u(l,t) =0
where, C, 1, 17, £, o are known constants, f(X) is a spatial gain with f(0) = f(1) = 0, »(t) and y;(t) are external excitations
affecting the process from the 0-boundary and the domain Q, respectively. The subscripts , and { refer to the partial
differentiation with respect to space and time, respectively. Note that the process in (1) corresponds to 1D heat equation
when ¢ > 0 and the parameters u, 7, ¢, o are all set to zero. Under these settings, the parameter C corresponds to the
thermal diffusivity coefficient. Similarly, if ¢,77 >0 and the parameters x4, ¢, o are all set to zero, the resulting process
becomes the 1D Burgers equation. Switching on the term g introduces the effect of 7; sec. delayed value of the linear
term Uy, and the term { activates the contribution of the 7, sec. delayed value of the nonlinear terms uuy. The variables 7
and 7, are the parameters determining the delay in linear and nonlinear terms and the parameter o is responsible for the
effect of the current solution u. Clearly, the described PDE process is a generalized version of several physical processes
that can be characterized by setting the parameters appropriately. The motivating fact for utilizing this process is its time
delay terms on both linear and nonlinear components.

The continuous time process takes place over the physical domain Q:={x | xe[0,1]} and the solution is obtained on a
spatial grid denoted by €y, which describes the coordinates of the elements of every snapshot in the ensemble. The
entities described over )y, are Nyx1 dimensional vectors. Note that in (1), f(0) = f(1) = 0 so that the problem description
is consistent at the boundaries of (2, and ;(t) becomes independent from y(t), consequently the external excitations can
be selected independently and arbitrarily.

With this problem description, the goal of applying POD is to find an orthonormal basis set letting us to write the
solution as

u(x,t)= _RZL‘,% OD;(x) 2

where (1) is the i-th temporal mode, ®;(X) is the i-th spatial function (basis function or the eigenfunction), R is the
number of independent basis functions that can be synthesized from the given ensemble, or equivalently that spans the
space described by the ensemble. It will later be clear that if the basis set ®i(x), i = 1, 2, ... , R_ is an orthonormal set,
Galerkin projection yields the autonomous set of ODEs directly. The POD procedure for obtaining the basis set can be
outlined as follows.

First we calculate the NsxNs dimensional correlation matrix L, the ij-th entry of which is Lij = (Uj,Uj)qq, where (:,)qq is
the inner product operator defined over R™.

Second the eigenvectors (denoted by v;) and the associated eigenvalues (4;) of the matrix L are found. These are sorted in
a descending order in terms of the magnitudes of ;. Note that every V; is an Ngx1 dimensional vector satisfying
IVill*=1/4;, here, for simplicity of the exposition, we assume that the eigenvalues are distinct.

Then we construct the basis set by using
@, =2 vy, 3)

where vj; is the j-th entry of the eigenvector v; = (Vi Vi, ... viNS)T, and i =1,2,...,R., with R = rank(L). It can be shown that
(Di(X),Di(X))o=05; with g being the Kronecker delta function. Notice that the basis functions are admixtures of the
snapshots, [5-6].

2
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Finally, the temporal coefficients are computed. Taking the inner product of both sides of (2) with ®ji(X), the
orthonormality property leads to

(1) = (D, (.U,
= <¢i’Ut0>Qd
:=Nisjzj¢i<x,-)uto<x,->

=4 () DU, (X)

“4)

where ¢eR™ is a sampled form of the basis function ®; defined over Q. The operator denoted by @ computes a real
number that is the sum of all elements of a matrix obtained through the elementwise multiplication of the two vectors
that @ lies in between. Without loss of generality, an element of the ensemble Ui(x), i=1,2,...,Ns may be U(X,t,).
Therefore, in order to generate the temporal gain, (1), of the spatial eigenfunction ¢, one would take the inner product
of ¢ with the elements of the ensemble as given below,

Uddo, ~a(t)

<U2’¢k>§2d: = (L) 5)

Upgsbdag = o (ty)

The above computation is important for making a comparison between the quantities obtained from the decomposition
(See (5)) and the quantities obtained from the model. Note that the temporal coefficients satisfy orthogonality properties
over the discrete sett € {t, t,,...,txs} (See (6)).

DU hh, = L t) =4 ©)

For a more detailed discussion on the POD method, the reader is referred to [1-6,11] and the references therein.

First Fundamental Assumption: The majority of works dealing with POD and model reduction applications presume
that the flow is dominated by coherent modes, which means that the flow can be decomposed into distinguishable
components in the order of dominance. Because of the dominance of coherent modes, the typical spread of the
eigenvalues of the correlation matrix turns out to be logarithmic and the terms decay very rapidly in magnitude. This fact
enables us to assume that a reduced order representation, say with M modes (M<R|) can also be written as an equality

M
ux,t) =3 o (H®;(x) ()

i=1

and the reduced order model is derived under the assumption that (7) satisfies the governing PDE in (1), ([3-6,8]).
Unsurprisingly, such an assumption results in a model having uncertainties, however, one should keep in mind that the
goal is to find a model, which matches the infinite dimensional system in some sense of approximation with typically
M<<R_<Ns. To represent how good such an expansion is, a percent energy measure is defined as follows

M
>
E == x100% 8)

A

where the tendency of E—100% means that the model captures the dynamical information contained in the snapshots
well. Conversely, a poor model will be obtained as E gets away from 100%. Clearly, POD lets us reduce the
dimensionality of the problem from infinity to R;, and the first fundamental assumption further enables us to reduce the
low dimensional (LD) model order to M. In the next section, we demonstrate how the order reduction is performed and
how the boundary conditions are transformed into explicit control terms in the corresponding set of ODEs.

ORDER REDUCTION AND BOUNDARY SEPARATION

In the order reduction phase, we need to obtain the autonomous ODE model first. Towards this goal, if (7) is a solution
to the PDE in (1), then it has to satisfy the PDE. Substituting (7) into (1) with the fundamental assumption yields
3
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Mz

za O, (00 =X (0% (0~ (= 7)¥00 =7 D et OB, (A, ()

i=1 j=I

)

M=
Mz

-G o (t=7,)a;(t=17,)D; (XA, (X)+0'Za OD;(x)+ f(X)7, (1)

i=1

1]

where Wj(x) = 6°¥(x)/0x". Taking the inner product of both sides with ®y(x) and remembering (Di(X),Dy(X))q=0 with 5
being the Kronecker delta results in

Mz

a,(t)= 02

o (OCY (0, P (X)) — ﬂza (t=7)(Fi (%), @ (X)) — Uzza(t)a (O(D@; (X)A;(X), Dy (X))

i=l j=1

o (t=7)a; (=7, XP; (X)A; (X), P, (X)) +O'Za (O(D; (%), D, (X)) + (£ (), P, (X)) 7, (D)

1 i=1

(10)
-

=
Mz

i

Defining ¢, Wk, 5k and F as the entities in Qg corresponding to the entities @y ,¥y , A« and f respectively in Q, one could
rewrite (10) as

i=l

MM (11
=0 > ai(t-1)a;(t— 1,4 ® B 4o, +cha (OB aq +(F.day (D

i=1 j=1

M M M
dk (t) = szai (t)<‘ui’¢k>ﬂd Za (t 7 )<\V|’¢k>9d 7722“. (t)a (t)<¢L ®ﬁ|’¢k>9d
j=I

where ® stands for the elementwise multiplication of the entities it lies in between. The equation in (11) can be written
explicitly by using ® and @ operators as

@ () =Y o O @ )- 1 et -7) (v @4 )-12. Y iV (¢ ® 5) @ ¢y)
i=1 i=l i=l j=

M M (12)
-0 o(t-1,)a; (t - r2>((¢®ﬂ)@¢k)+62aa>(¢@¢k) (Fog M

i=l j=I

A. Processing of the linear term Z. 5 I(t)( @¢k)

Notice that @ operator can be applied individually over Q},Q;,...,Q}, which are n nonoverlapping subdomains of Q4

such that Q) UQ; U...UQf =Q, . This lets us separate the entries corresponding to boundaries without modifying the
value of (4, V;)q, 1. ¢ Dy, asseenin (13),

za Oy ®4¢)= Za OV ¢
" (13)

<

& O, () () + v ;)

In above, ¢, denotes a vector which is obtained when the 0-boundary element of ¢ is removed. In the computation of
terms like @, @ y;, the term ¢, (1) and y;(1) correspond to the first elements of the vectors ¢k and ;, respectively.

The k-th component of the first summation in (13), which is obtained when i = k, can be separated from the expression
and we obtain (14), which lets us embed the boundary conditions into the expression,

> a0 @)= -2 O AW + ;')
:Nigl <t>\ui<1>¢k(1>+N—§ai<t)wf¢; (14)

1 ak(t)wk(lm(l)+N—Z(l—@k)ai(t)wi(1)¢k(1)+NiZai<t>wa¢;

s i=l s i=l

4
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At this stage of the modeling, we need to paraphrase the 0-boundary condition in such a way that the final expression
above can be incorporated with this expression. The underlying idea is straightforward: If (7) is a solution, then is must
be satisfied at the boundaries as well, i.e.

iMZlai O 1) =7, (1) (15)
which can be paraphrased as
a (g (1) =y,(t) - .ﬁ: (-6 (D (1) (16)
or equivalently
—ak O Dy, (1) = —70 ®Ow, M- N—Z (1= ) (g Dy, (1) (17)

s i=1

Substituting (17) into the last line of (14) yields

2w, @)= 7o<t)wk(1)+N—za Ovi"#; +N—za O D D=4 Dw(1) (18)

s i=l s i=l

Arranging the terms lets us have the following term

zam(w.@qﬁk) yo(t>wk<1)+ LS a0y — 4y, 0) (19)

S s i=l
B. Processing of the linear and delay term ™ o (t—7,)(v; ®¢,)

The difference in this term is the time delay in temporal part of (19), therefore the corresponding term would be as
follows:

Dent-)ln @)=t~ D+ -7, -4 D) 0)

s i=1
C. Processing of the nonlinear term ZZIZ?L a, (t)ozj(t)((qiI ® B, )Jo4)

Referring to (12), the first nonlinear term seen in the expression can be rewritten as follows

3 (Ve (Ddiaglh 57

i=l j=

a; (O (I)Za Op; (1)¢k(1)+N—ZZa (Da; (t)dlag(¢ﬂ )¢ 1)

s i=l j=1

M§

55 mo onjonl

Mg

L
N

«
T

Ni (t)Za 05,04, (1)+N—22a (Oa, (Odiaglg 5 by
s i=l j=1

D. Processing of the nonlinear and delay term ZZIZ?"ZI a(t—1,)a;(t- () ® B )@ 4,)

Similar to the delay in the linear terms, the delay in nonlinear terms can be expressed as follows. This is due to (21).

™=
Mz

> (t - rz)a,-<t—r2>((¢i®ﬂ,—)@¢k)=Niyo<t—rz)zaj(t—r2)ﬂ,-(1)¢k(1)+
j=1

lM
>

s i=l j

(22)
a(t-1,)a,(t - 7,)diaglg B i

Mz

1

5
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E. Processing of the term > o, (t)(¢, © ¢,)

Among other terms, the contribution of the term ZZ N (4 @¢k) is simplest due to the orthonormality of the basis
functions and the result is given in (23).
zamM@m) > (D49,
(23)

T Mz T MZ

1
— at§
N ()Ik

F. Processing of the domain excitation term (F @ ¢, )y, (t)

The excitation (1) is distributed over Q4 by the spatial gain F. The contribution of this term is NLFTgék;/] t).
S
Concatenating the terms computed so far yields the model given in (24).

ERCREA L LIS SO (vid, < Ov) 0

s i=l s

Stog i . o, 03 (t)’7("3+)¢k“)) 330, (t)%
) S (B mg ) u :"" S ;i;;(# B S (24)
77/0(':772)2051’(':71'2)—‘( Zzai(tf'{z)a](t*‘[z)%+
j=l s i=l j=I s
ial(t)O-N;;Ik_FﬁFNTi)yl(t) k:1,2,"',M
Defining the state vector a(t) = (al ® a,t) - ay (t))T , one can compactly write the reduced order dynamics as in
(25);
a(t) = (CA+ ol Jr(t) - pha(t - 7,) — B (@ (1)) - B(a(t - 7)) + (¢°C = nDa(®) Iy (1) — 1Cy (t—17,) 03)
—¢Da(t—1,)y,(t—7,) + Ey (1)
where the computation of the terms are as follows
A= i - 0w )
B(a() = («(®)'Ba) a®)'Ba®) - a®'Bya®)
(B, = -dinelt 57 i
(26)

C=arn® v = vy )

S

D, =~ A (DA (D

E-—-(F' F'o. - F'a)

S

This result practically lets us have a representative nonlinear dynamical model for the infinite dimensional process in
(1), which is excited through the 0-boundary and the domain. The next section presents to what extent the modeling
strategy discussed here could be successful.

6
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SIMULATIONS FOR JUSTIFICATION OF THE DYNAMIC MODEL

The first issue in the order reduction procedure is to obtain several exemplar snapshots. Due to the numerical
advantages, the PDE has been solved by using Crank-Nicholson method, [9]. For this purpose, we discretize the PDE in
(1) as follows: The time derivative is approximated as in (27),

1 t+At t
U, z—(u; _ux) (27)
where we set At = 1 msec. and the second derivative is approximated as
ut

20 +u L2l Ul ) (28)

X+AX X X—AX

(ax)’

where we set A = 0.5 and AX = 1/(N,—1)and the second derivative is approximated as

A
U. =~ (U t+At

XX (AX)Z Hire )+ 1 — i (

L(UHAt _ut): c’A (ut+At _oyt +ut+At)+ Cz(l_/l)<ut Zout +ut )
X

At U X (AX)Z X+AX X X—AX (AX)Z X+AX X—AX
uA ( t+At-NAt trAt-NAt t+At-NAt ) ,u(l - ﬂ,) ( t-NAt t-NAt thm)
- B Usiax - 2ux + Uy ax - P Ugiax — 2ux Uy _ax
(Ax) (Ax) -
TN yiPAt | tPat (29)
+ OU; _nu; X+AX X —CU::PA{ X+AX X + fxyl
AX AX

X=iAX, i=23,,N -1, t=kaAt, k=0T /At

Second Fundamental Assumption: A snapshot is obtained from the spatial and temporal running of the expression in
(29). If the grid is dense enough then the uncertainty on a snapshot gets tolerable. The assumption here is the use of
equality in (29), which states that the performed discretization is accurate enough to collect snapshots.

Corollary: A natural conclusion of the first and the second fundamental assumptions is the order reducibility and
boundary separability for a PDE process.

In the modeling stage, the initial values are taken zero everywhere and we have c =2, u=-1, n=0.2, {=-0.2, c=1.In
order to form the solution, a linear grid having N,=100 points is chosen. According to the above parameter values, a set
of 501 snapshots embodies the entire numerical solution, among which a linearly sampled N = 251 snapshots have been
used for the POD scheme. Although one may use the entire set of snapshots, it has been shown by Sirovich that a
reasonably descriptive subset of them can be used for the same purpose, [10]. In the literature, this approach is called
method of snapshots, which significantly reduces the computational intensity of the overall scheme, [6,8]. Once the
modes have been obtained, we truncate the solution at M = 6, which represents 99.9999957739675% of the total energy
described in the denominator of the expression in (8). It is visible that if the snapshots are descriptive enough, a LD
model with the first six modes captures the information contained implicitly within the snapshots almost perfectly. In
order to demonstrate the performance of the dynamic model, we choose the function which is effective over Q as
f(x)=sin(4nx). As the temporal excitations for modeling we chose the following excitation signals,

7o (t) = sin(2m50t(T 1)) (30)
7,(t) = 50sin(10nt) (31)

where T = 0.5 seconds. The choice of the above excitations signals is deliberate as they are spectrally rich enough. As
can be seen from Figure 1, a(t)'s will undergo regimes that change sometimes slowly and sometimes fast depending on
the spectral composition of the excitations. The POD algorithm computes the eigenvalues of the correlation matrix L as
depicted in Figure 2. The sufficiency of choosing the first six modes is apparent from the figure too. The
Matlab/Simulink realization of the reduced order model is shown in Figure 3. The response of the LD model is
illustrated in Figure 4, in which every subplot on the left contains two curves. Obviously, the temporal variables
obtained form the POD algorithm are very close to those obtained from the LD model and this observation indicates that
the LD model is a good representative for the chosen modeling conditions. This can also be seen from Figure 5, where
the approximate solution obtained from (7) and (25) is shown with the numerical solution obtained from (29).
Unsurprisingly, the two responses are very similar. In (32)-(41), the numerical details of the model in (25) are given.

7
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Figure 1. (Left) The excitation y,(t) and (Right) its spectral view
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06176 69689 74282 199304 -209198 -21.6081
34470 60575 -15387 116700 -179604 -249351
g _| 1654 59399 27703 37539 -04243 -237748

> 71-00691 48431 51633 96452 -143005 -18.4730 G4
07227 -05180 -95642 -05426 92660 16.0355
11304 27321 93642 -53636 26319 85675
11027 14929 12345 127549 -143040 -9.1131
11654 59399 27703 37539 -04243 -23.7748
g _| 33713 05968 09293 -36308 -106210 -54872

7102249 33281 54885 32106 -71517 -101129 (35)
05174 -12366 19605 -82096 27647 27833
10711 26398 -06542 -03378 66114 52517
12567 02640 -12871 108927 -191720 -37.9435
-00691 48431 51633 9.6452 -143005 -184730
| 02249 33281 54885 32106 -71517 -101129

B, = 29425 58443 82394 91895 -93010 -186174 (36)
13660 -7.7399 24911 -89989 86451 80415
09504 -05583 -39711 -50815 91487 92594
09975 25790 34666 -1.6219 92748 281855
07227 -05180 -95642 -05426 92660 16.0355

B, - 05174 -12366 19605 -82096 27647 27833 a7
213660 -7.7399 24911 -89989 86451 80415
24591 29250 7.0272 59043 -7.6344 -96191
00403 49787 43408 93279 -69734 -73946
02023 31254 -22817 144102 -48491 126354
11304 27321 93642 -53636 26319 85675

B - 10711 26398 -06542 -03378 66114 52517 a8)
09504 -05583 -39711 -50815 91487 92594
00403 49787 43408 93279 -69734 -73946
43487 101925 45050 101452 -9.6047 -79217

C=(01689 -03328 -12986 -13813 72871 16.0609)" (39)
-0.0298 -04318 -04150 -10536 18493 32569
00328 -04748 -04564 -11585 20334 35811

D _| 00198 -02867 -02756 -06996 12279 21624 “0)
-0.0405 -05865 -05637 -14309 25116 44232
00410 05945 05714 14504 -25458 -44835
00497 07203 06923 17575 -30848 -54327

E=(-01344 -00882 -02820 03030 -0.0038 -0.0009)" (41)
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Figure 3. Block diagram of the Matlab realization of the reduced order model in (25)

Solid: Predicted, Dashed: Desired

- L L 1
0 0.1 0.2 0.3 0.4 0 0.2 0.4
Time (sec) Time (sec)

Figure 4. Left: Temporal responses of the reduced order model and the desired values obtained from POD.

Right: The orthonormal set of basis functions
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Numerical Solution Approximate Solution

Figure 5. The responses for the modeling conditions in (31) and (42). Left: Numerical solution obtained from (29) and
Right: The approximate solution obtained from the LD model

Undoubtedly, one would expect a good match between the state variables obtained from the POD algorithm and the state
variables obtained through the numerical solution of the ODE set in (25). One might question whether the model is
specific to the boundary conditions above. A practical remedy to this can be accomplished by choosing another set of
external inputs and obtaining the response of the model without modifying the model parameters. For this purpose, we
change the boundary excitation y(t) as follows and leave the domain excitation as it is.

7o(t) = sin(2m40t> (1 - 2t — t*)) (42)

With this change we obtain the results illustrated in Figure 6 and Figure 7. It is seen that the state variables are obtained
precisely and a very good match between the spatiotemporal views are observed.

CONCLUSIONS

This paper considers POD based order reduction and boundary separation of a flow described by a PDE. Proper
orthogonal decomposition is a widely used technique to express the approximate solution in an ordered fashion. The
ordering provided by the algorithm is based on the energy carried by a mode. Therefore, the designer is able to truncate
the expansion at an affordable mode number. The higher the number of modes contained, the more complicated the
resulting LD model will be. The paper considers a general PDE model that can be used to simulate the Burgers equation,
heat equation and similar flows. Furthermore, the paper focuses on the effect of time delays on the reduced order
models. Two fundamental assumptions are given. First states that the flow is dominated by coherent modes and a finite
term approximation can be written as equality. The second fundamental assumption states that the numerical solution is
accurate enough to utilize in the modeling stage. The paper validates the delay based nonlinear dynamic model and
emphasizes that the resulting model is useful on a range of operating conditions that display some similarity to the model
derivation conditions. The simulation results have shown that the finite dimensional model reconstructs the behavior
very precisely.
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Figure 6. Temporal responses of the reduced order model and the desired values obtained from POD.
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Figure 7. The responses for the test conditions in (31) and (42). Left: Numerical solution obtained from (29) and Right:
The approximate solution obtained from the LD model
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