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ABSTRACT 
Nonlinearity and time delays are two of the prime problems in dynamic system models. There is a very extensive 
research volume on both of these subject areas, however, for processes modeled by Partial Differential Equations 
(PDEs), dealing with these difficulties is further tedious. This paper considers a general PDE model and order reduction 
based on Proper Orthogonal Decomposition (POD) with boundary separation. The reduced order model has time delays 
inherited from the PDE process and it is nonlinear. The reduced order model is shown to be capable of capturing the 
essential behavior accurately through simulations. 
 
 

INTRODUCTION 
Processes described by PDEs are infinite dimensional due to the spatial continuity. Modeling and control of PDE 
processes is an interesting research area and the outcomes of which address many physical phenomena, e.g. heat and 
fluid flows. Understanding the behavior of processes governed by PDEs is a tedious task if the process has nonlinearities 
with time delays. Order reduction is therefore a practical choice giving concessions from accuracy yet the reduced order 
model is finite dimensional and mathematically tractable. It is a well known fact that for linear PDEs, there are well 
established alternatives other than POD, [7], but POD is a widely used method in modeling of more complicated 
systems. The goal of this paper is to present a POD based modeling effort involved with nonlinearities and time delays. 
 
Proper Orthogonal Decomposition was introduced in the pioneering work of Lumley [11] with the goal of explaining the 
modal nature of turbulent flows. In [10], Sirovich introduced the method of snapshots for reducing the computational 
intensity of the original POD algorithm. The POD method is widely accepted as a powerful tool for decomposing the 
dynamical content of a time varying spatially continuous PDE process into some spatial and temporal components 
meeting orthogonality properties. The spatial part is a set of basis functions while the temporal part is a set of differential 
equations. The decomposition is accomplished in the order of dominance, which is a significant property enabling the 
designer to truncate the expression at a particular mode number. Modeling of flow problems governed by PDEs have 
therefore enjoyed the POD method in obtaining the finite dimensional models at the cost of giving concessions from the 
model performance, see for example [1-2,4,6] and the references therein. The amount of uncertainty introduced during 
model reduction depends heavily on the numerical solver, grid density, number of snapshots, coherence of the solution 
(decomposability) and so on. 
 
Procedurally, the PDE set is solved for the given initial and boundary conditions. Several samples from the solution set 
are selected and the POD method with Galerkin projection is applied. As a result of this, a set of autonomous Ordinary 
Differential Equations (ODEs) is obtained. The solution of the obtained ODEs with the given initial conditions 
synthesize the temporal part of the solution and the spatial basis functions obtained through the POD method yield the 
approximate solution of the PDE. Unfortunately, the set of ODEs are specific to the initial and boundary conditions used 
in the model derivation stage. In other words, one needs to change the ODE model for every different instance of 
boundary excitation regimes and this is a significant problem for boundary control goal. This paper demonstrates how 
the aforementioned autonomous set of ODEs is converted into non-autonomous ones and how the external excitations 
are seen explicitly in the model. 
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This paper is organized as follows. The POD algorithm specific to the chosen PDE process is described in the second 
section. In the third section, development of the order reduction and boundary separation is presented. The fourth section 
discusses the modeling results. The concluding remarks are given at the end of the paper. 
 
 

PROPER ORTHOGONAL DECOMPOSITION (POD) 

Consider the ensemble Ui(x), i = 1,2,...Ns, where Ns is the number of elements. Every element of this set corresponds to a 
snapshot observed from a process, say for example the process with initial and boundary conditions given below 
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where, c, μ, η, ζ, σ are known constants, f(x) is a spatial gain with f(0) = f(1) = 0, γ0(t) and γ1(t) are external excitations 
affecting the process from the 0-boundary and the domain Ω, respectively. The subscripts x, and t refer to the partial 
differentiation with respect to space and time, respectively. Note that the process in (1) corresponds to 1D heat equation 
when c > 0 and the parameters μ, η, ζ, σ are all set to zero. Under these settings, the parameter c corresponds to the 
thermal diffusivity coefficient. Similarly, if c,η >0 and the parameters μ, ζ, σ are all set to zero, the resulting process 
becomes the 1D Burgers equation. Switching on the term μ introduces the effect of τ1 sec. delayed value of the linear 
term uxx, and the term ζ activates the contribution of the τ2 sec. delayed value of the nonlinear terms uux. The variables τ1 
and τ2 are the parameters determining the delay in linear and nonlinear terms and the parameter σ is responsible for the 
effect of the current solution u. Clearly, the described PDE process is a generalized version of several physical processes 
that can be characterized by setting the parameters appropriately. The motivating fact for utilizing this process is its time 
delay terms on both linear and nonlinear components. 
 
The continuous time process takes place over the physical domain Ω:={x | x∈[0,1]} and the solution is obtained on a 
spatial grid denoted by Ωd, which describes the coordinates of the elements of every snapshot in the ensemble. The 
entities described over Ωd, are Nx×1 dimensional vectors. Note that in (1), f(0) = f(1) = 0 so that the problem description 
is consistent at the boundaries of Ω, and γ1(t) becomes independent from γ0(t), consequently the external excitations can 
be selected independently and arbitrarily. 
 
With this problem description, the goal of applying POD is to find an orthonormal basis set letting us to write the 
solution as 
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where αi(t) is the i-th temporal mode, Φi(x) is the i-th spatial function (basis function or the eigenfunction), RL is the 
number of independent basis functions that can be synthesized from the given ensemble, or equivalently that spans the 
space described by the ensemble. It will later be clear that if the basis set Φi(x), i = 1, 2, ... , RL is an orthonormal set, 
Galerkin projection yields the autonomous set of ODEs directly. The POD procedure for obtaining the basis set can be 
outlined as follows. 
 
First we calculate the Ns×Ns dimensional correlation matrix L, the ij-th entry of which is Lij = 〈Ui,Uj〉Ωd, where 〈·,·〉Ωd is 
the inner product operator defined over ℜNx. 
 
Second the eigenvectors (denoted by vi) and the associated eigenvalues (λi) of the matrix L are found. These are sorted in 
a descending order in terms of the magnitudes of λi. Note that every vi is an Ns×1 dimensional vector satisfying 
||vi||2=1/λi, here, for simplicity of the exposition, we assume that the eigenvalues are distinct. 
 
Then we construct the basis set by using 
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where vij is the j-th entry of the eigenvector vi = (vi1 vi2 ... viNs)T, and i = 1,2,...,RL, with RL = rank(L). It can be shown that 
〈Φi(x),Φj(x)〉Ω=δij with δij being the Kronecker delta function. Notice that the basis functions are admixtures of the 
snapshots, [5-6]. 
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Finally, the temporal coefficients are computed. Taking the inner product of both sides of (2) with Φi(x), the 
orthonormality property leads to 
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where φi∈ℜNx is a sampled form of the basis function Φi defined over Ω. The operator denoted by ⊕ computes a real 
number that is the sum of all elements of a matrix obtained through the elementwise multiplication of the two vectors 
that ⊕ lies in between. Without loss of generality, an element of the ensemble Ui(x), i=1,2,...,Ns may be U(x,t0). 
Therefore, in order to generate the temporal gain, αk(t), of the spatial eigenfunction φk, one would take the inner product 
of φk with the elements of the ensemble as given below, 
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The above computation is important for making a comparison between the quantities obtained from the decomposition 
(See (5)) and the quantities obtained from the model. Note that the temporal coefficients satisfy orthogonality properties 
over the discrete set t ∈ {t1, t2,...,tNs} (See (6)). 
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For a more detailed discussion on the POD method, the reader is referred to [1-6,11] and the references therein. 
 
First Fundamental Assumption: The majority of works dealing with POD and model reduction applications presume 
that the flow is dominated by coherent modes, which means that the flow can be decomposed into distinguishable 
components in the order of dominance. Because of the dominance of coherent modes, the typical spread of the 
eigenvalues of the correlation matrix turns out to be logarithmic and the terms decay very rapidly in magnitude. This fact 
enables us to assume that a reduced order representation, say with M modes (M<RL) can also be written as an equality 
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and the reduced order model is derived under the assumption that (7) satisfies the governing PDE in (1), ([3-6,8]). 
Unsurprisingly, such an assumption results in a model having uncertainties, however, one should keep in mind that the 
goal is to find a model, which matches the infinite dimensional system in some sense of approximation with typically 
M<<RL<Ns. To represent how good such an expansion is, a percent energy measure is defined as follows 
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where the tendency of E→100% means that the model captures the dynamical information contained in the snapshots 
well. Conversely, a poor model will be obtained as E gets away from 100%. Clearly, POD lets us reduce the 
dimensionality of the problem from infinity to RL, and the first fundamental assumption further enables us to reduce the 
low dimensional (LD) model order to M. In the next section, we demonstrate how the order reduction is performed and 
how the boundary conditions are transformed into explicit control terms in the corresponding set of ODEs. 
 
 

ORDER REDUCTION AND BOUNDARY SEPARATION 

In the order reduction phase, we need to obtain the autonomous ODE model first. Towards this goal, if (7) is a solution 
to the PDE in (1), then it has to satisfy the PDE. Substituting (7) into (1) with the fundamental assumption yields 
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where Ψi(x) = ∂2Ψi(x)/∂x2. Taking the inner product of both sides with Φk(x) and remembering 〈Φi(x),Φk(x)〉Ω=δik with δik 
being the Kronecker delta results in 
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Defining φk, ψk, βk and F as the entities in Ωd corresponding to the entities Φk ,Ψk , Λk and f respectively in Ω, one could 
rewrite (10) as 
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where ⊗ stands for the elementwise multiplication of the entities it lies in between. The equation in (11) can be written 
explicitly by using ⊗ and ⊕ operators as 
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A. Processing of the linear term ( )∑ =
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Notice that ⊕ operator can be applied individually over ,,...,, 21 n

ddd ΩΩΩ  which are n nonoverlapping subdomains of Ωd 

such that d
n
ddd Ω=Ω∪∪Ω∪Ω ...21 . This lets us separate the entries corresponding to boundaries without modifying the 

value of 
dik Ω〉〈 ψ,φ , i.e. ik ψ⊕φ  as seen in (13), 
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In above, o

kφ  denotes a vector which is obtained when the 0-boundary element of φk is removed. In the computation of 
terms like ik ψ⊕φ , the term )1(kφ  and )1(ψi  correspond to the first elements of the vectors φk and ψi, respectively. 
 
The k-th component of the first summation in (13), which is obtained when i = k, can be separated from the expression 
and we obtain (14), which lets us embed the boundary conditions into the expression, 
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At this stage of the modeling, we need to paraphrase the 0-boundary condition in such a way that the final expression 
above can be incorporated with this expression. The underlying idea is straightforward: If (7) is a solution, then is must 
be satisfied at the boundaries as well, i.e. 
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which can be paraphrased as 
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Substituting (17) into the last line of (14) yields 
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Arranging the terms lets us have the following term 
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B. Processing of the linear and delay term ( )∑ =
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The difference in this term is the time delay in temporal part of (19), therefore the corresponding term would be as 
follows: 
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C. Processing of the nonlinear term ( )( )∑ ∑= =
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Referring to (12), the first nonlinear term seen in the expression can be rewritten as follows 
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D. Processing of the nonlinear and delay term ( )( )∑ ∑= =

⊕⊗−−M
i

M
j kjiji tt1 1 22 )()( φβφτατα  

 
Similar to the delay in the linear terms, the delay in nonlinear terms can be expressed as follows. This is due to (21). 
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Among other terms, the contribution of the term ( )∑ =

⊕M
i kii t1 )( φφα  is simplest due to the orthonormality of the basis 

functions and the result is given in (23). 
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F. Processing of the domain excitation term ( ) )(1 tF k γφ⊕  
 

The excitation γ1(t) is distributed over Ωd by the spatial gain F. The contribution of this term is )(1
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Concatenating the terms computed so far yields the model given in (24). 
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Defining the state vector ( )T

21 )()()()( tttt Mαααα L= , one can compactly write the reduced order dynamics as in 
(25); 
 

( ) ( )
)()()(           

)()()( ))(())(()()()(

1212

100
2

21
2

tEttD
tCttDCctBtBtAtIAct MM

γτγταζ
τγμγαηταζαηταμασα

+−−−
−−−+−−−−−+= ×&

 (25) 

 
where the computation of the terms are as follows 
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This result practically lets us have a representative nonlinear dynamical model for the infinite dimensional process in 
(1), which is excited through the 0-boundary and the domain. The next section presents to what extent the modeling 
strategy discussed here could be successful. 



AIAC-2007-014                                                                                                               Efe 

7 
 

Ankara International Aerospace Conference 

SIMULATIONS FOR JUSTIFICATION OF THE DYNAMIC MODEL 
 
The first issue in the order reduction procedure is to obtain several exemplar snapshots. Due to the numerical 
advantages, the PDE has been solved by using Crank-Nicholson method, [9]. For this purpose, we discretize the PDE in 
(1) as follows: The time derivative is approximated as in (27), 
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where we set Δt = 1 msec. and the second derivative is approximated as 
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where we set λ = 0.5 and Δx = 1/(Nx−1)and the second derivative is approximated as 
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(29) 

 
Second Fundamental Assumption: A snapshot is obtained from the spatial and temporal running of the expression in 
(29). If the grid is dense enough then the uncertainty on a snapshot gets tolerable. The assumption here is the use of 
equality in (29), which states that the performed discretization is accurate enough to collect snapshots. 
 
Corollary: A natural conclusion of the first and the second fundamental assumptions is the order reducibility and 
boundary separability for a PDE process. 
 
In the modeling stage, the initial values are taken zero everywhere and we have c = 2, μ = −1, η = 0.2, ζ = −0.2, σ = 1. In 
order to form the solution, a linear grid having Nx=100 points is chosen. According to the above parameter values, a set 
of 501 snapshots embodies the entire numerical solution, among which a linearly sampled N = 251 snapshots have been 
used for the POD scheme. Although one may use the entire set of snapshots, it has been shown by Sirovich that a 
reasonably descriptive subset of them can be used for the same purpose, [10]. In the literature, this approach is called 
method of snapshots, which significantly reduces the computational intensity of the overall scheme, [6,8]. Once the 
modes have been obtained, we truncate the solution at M = 6, which represents 99.9999957739675% of the total energy 
described in the denominator of the expression in (8). It is visible that if the snapshots are descriptive enough, a LD 
model with the first six modes captures the information contained implicitly within the snapshots almost perfectly. In 
order to demonstrate the performance of the dynamic model, we choose the function which is effective over Ω as 
f(x)=sin(4πx). As the temporal excitations for modeling we chose the following excitation signals, 
 

( )( )tTtt −= 50π2sin)(0γ  (30) 
 

( )tt 0π1sin50)(1 =γ  (31) 
 
where T = 0.5 seconds. The choice of the above excitations signals is deliberate as they are spectrally rich enough. As 
can be seen from Figure 1, αk(t)'s will undergo regimes that change sometimes slowly and sometimes fast depending on 
the spectral composition of the excitations. The POD algorithm computes the eigenvalues of the correlation matrix L as 
depicted in Figure 2. The sufficiency of choosing the first six modes is apparent from the figure too. The 
Matlab/Simulink realization of the reduced order model is shown in Figure 3. The response of the LD model is 
illustrated in Figure 4, in which every subplot on the left contains two curves. Obviously, the temporal variables 
obtained form the POD algorithm are very close to those obtained from the LD model and this observation indicates that 
the LD model is a good representative for the chosen modeling conditions. This can also be seen from Figure 5, where 
the approximate solution obtained from (7) and (25) is shown with the numerical solution obtained from (29). 
Unsurprisingly, the two responses are very similar. In (32)-(41), the numerical details of the model in (25) are given. 
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Figure 1. (Left) The excitation γ0(t) and (Right) its spectral view 
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Figure 2. Spread of the eigenvalues of the correlation matrix L 
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Figure 3. Block diagram of the Matlab realization of the reduced order model in (25) 
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Figure 4. Left: Temporal responses of the reduced order model and the desired values obtained from POD. 

Right: The orthonormal set of basis functions 
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Figure 5. The responses for the modeling conditions in (31) and (42). Left: Numerical solution obtained from (29) and 

Right: The approximate solution obtained from the LD model 
 
Undoubtedly, one would expect a good match between the state variables obtained from the POD algorithm and the state 
variables obtained through the numerical solution of the ODE set in (25). One might question whether the model is 
specific to the boundary conditions above. A practical remedy to this can be accomplished by choosing another set of 
external inputs and obtaining the response of the model without modifying the model parameters. For this purpose, we 
change the boundary excitation γ0(t) as follows and leave the domain excitation as it is. 
 

))21(40π2sin()( 22
0 tttt −−=γ  (42) 

 
With this change we obtain the results illustrated in Figure 6 and Figure 7. It is seen that the state variables are obtained 
precisely and a very good match between the spatiotemporal views are observed. 
 
 

CONCLUSIONS 
 
This paper considers POD based order reduction and boundary separation of a flow described by a PDE. Proper 
orthogonal decomposition is a widely used technique to express the approximate solution in an ordered fashion. The 
ordering provided by the algorithm is based on the energy carried by a mode. Therefore, the designer is able to truncate 
the expansion at an affordable mode number. The higher the number of modes contained, the more complicated the 
resulting LD model will be. The paper considers a general PDE model that can be used to simulate the Burgers equation, 
heat equation and similar flows. Furthermore, the paper focuses on the effect of time delays on the reduced order 
models. Two fundamental assumptions are given. First states that the flow is dominated by coherent modes and a finite 
term approximation can be written as equality. The second fundamental assumption states that the numerical solution is 
accurate enough to utilize in the modeling stage. The paper validates the delay based nonlinear dynamic model and 
emphasizes that the resulting model is useful on a range of operating conditions that display some similarity to the model 
derivation conditions. The simulation results have shown that the finite dimensional model reconstructs the behavior 
very precisely. 
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Figure 6. Temporal responses of the reduced order model and the desired values obtained from POD. 

 
 
 

x

T
im

e 
(s

ec
)

Numerical Solution

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

Approximate Solution

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
Figure 7. The responses for the test conditions in (31) and (42). Left: Numerical solution obtained from (29) and Right: 

The approximate solution obtained from the LD model 
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