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ABSTRACT 

This paper presents a method to design feedback controllers where the plant under control is linear and 
uncertain and its nominal representation is available. The controller handling the effects of the uncertainties has 
two zeros, two poles and a gain. The frequency domain behavior of the necessary controller is obtained and the 
data is approximated by the chosen controller structure. The results are justified through some simulations. The 
relevance of the current paper to the aerospace engineering is the necessity to robust control schemes for every 
air or space vehicle whose motion is subject to uncertain dynamics and disturbances. The contribution of the 
current paper is to develop an effective method to obtain a linear controller to alleviate the difficulties caused by 
uncertainty terms. 
 

INTRODUCTION 

In aerospace systems, particularly for telerobotics applications, the command signal sent from the 
ground control station arrives at the destination after a significant time delay, which depends on the 
physical distance between the source and the target, and the hardware used [Safaric et al, 1999]. The 
delay in the control signal is a significant drawback that entails a careful study to explain the stability 
and performance issues. This paper considers a unit mass and single dimension with single actuator. 
The resulting model is a double integrator with delayed input. Two examples are studied, namely, a 
delayed control input with 1 second of time delay in the first case. The second case considers a time 
delay of 0.1 seconds with a reflection term bringing a delay of 1 second in the control input line. The 
present study considers a nominal control loop and a nominal controller augmented with a secondary 
loop to handle the uncertainties introduced by the delay terms. The importance of the current work is 
to understand the two loop structure of the control system and necessary steps to meet the design 
specifications. 

The technical motivation of this study is to develop a scheme to handle uncertainties. In the literature, 
numerous techniques with different sets of performance specifications and structural properties have 
been studied. The goal in each has been to observe a desired behavior in some optimal sense. In 
each case, a model of the plant is either derived or available. This model is called the nominal model 
and the design is primarily based on the information contained in the nominal model. The field of 
robust control offers solutions to cases where there are deviations from the nominal model and the 
obtained controllers are applicable to plants that belong to particular classes, [Doyle et al, 1990; Foias 
et al, 1996]. What motivates us here is to observe robustness in the presence of uncertainties yet the 
controller based on the nominal system model is responsible for the nominal response and the 
deviations caused by the uncertainties are handled by a secondary controller. The latter admits the 
difference in between the nominal model response and the uncertain plant response and output is 
subtracted from the nominal control signal. The system structure is shown in Figure 1. The shown 
connectivity addresses the aforementioned design philosophy and the question is how to obtain the 
secondary controller. We study time delays as they have significant consequences in stability and 
performance. 

Time delay systems have been studied by many researchers in the past and there is a growing 
interest to the topic as the application areas cover networked control to remotely controlled spacecraft 
systems, [Zhong, 2006], where the essential issues in the design phase are discussed in detail. 
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Among those, most critical one is the stability, which can make the closed loop system unstable [Gu et 
al, 2003]. The literature on time delay systems and control has a certain degree of maturity and the 
interested reader is referred to the references in the cited works. The focus of the current work is to 
describe a system structure to handle uncertainties appropriately. The structure needs a nominal 
model and this aspect makes it similar to internal model control (IMC) [Jin et al, 2014] and model 
predictive control (MPC) [Zhang et al, 2014] approaches. Indeed, neither IMC nor MPC has a second 
control loop to improve the behavior. The proposed structure is therefore an alternative approach to 
the available techniques. Especially the need of optimization at every control period makes MPC 
disadvantageous compared to the current approach. 

This paper is organized as follows: The second section describes the feedback loop, the assumptions 
and the main contribution of the paper. In the third section, we consider the first numerical example, 
which is a double integrator with a single term multiplicative uncertainty. In the fourth section, an 
intermediate problem, i.e. approximating the desired controller is described. The fifth section presents 
the details of the simulations with the second example, which contains two different delay terms. The 
concluding remarks are given at the end of the paper. 

 

STRUCTURE OF THE FEEDBACK LOOP, THE ASSUMPTIONS AND THE CONTRIBUTION 

 

The structure of the control system is shown in Figure 1, where the nominal plant model is denoted by 
Pn and C1 is the controller designed for the control of the nominal system. For the loop formed by 
nominal plant and the nominal controller, we have the following relation. 

 

 1
1 1 1

1

( ) ( )
( ) ( ) : ( ) ( )

1 ( ) ( )
n

n
n

P s C s
Y s R s T s R s

P s C s
 


 (1) 

Assumption 1. The nominal representation of the plant is available and the nominal process 
controller denoted by C1(s) is designed in such a way that the closed loop transfer function T1(s) is 
stable and it meets the desired performance specifications if there are no uncertainties. 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Block diagram of the control system 

 

Using the rules of block diagram simplification, it is straightforward to show that the transfer function 
from Y(s) to R1(s) is given as below. 
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Consider the uncertain plant in the following form, which is a multiplicatively perturbed extension of the 
nominal plant dynamics. 
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  ( ) 1 ( ) ( )nP s s P s    (3) 

 

If (3) is inserted into (2), rearranging the terms according to the uncertainty terms simplify and the 
transfer function from Y to Yn can be given as in (4). 
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The expression above can be interpreted as follows. The desired value of Q(s) is unity for all 
frequencies yet this corresponds to P=Pn. The uncertainties affecting the low frequency behavior result 
in visible deterioration in the closed loop performance and the desired choice for Q(s) is to make it a 
low pass transfer function. However, looking at the connectivity in Figure 1, the compensator C2(s) 
addresses the deviations caused by the uncertainties, it needs to have a high pass behavior to 
address the undesired changes. 

 

FIRST NUMERICAL EXAMPLE 

 

As the first numerical example, we consider 
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The nominal plant model is a double integrator. The differential equation in time domain is 

( ) ( )ny t u t . However, the uncertain system modifies this dynamics as ( ) ( ) ( )y t u t u t    , where 

the delayed value of the input is added to itself. This choice is deliberate as the aerospace systems 
are frequently subject to such delays caused by interference or channel impurities. With this plant, 
choose the desired low pass transfer function as 
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and write the transfer function Q by substituting the known variables and equate this to HLP as 
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This yields 
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With m = 2, C2(s) displays a high pass behavior and Q(s) becomes a low pass transfer function. The 
corresponding C2(s) is given in (10). 
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With m = 1, C2(s) again displays a high pass behavior and Q(s) becomes a low pass transfer function 
and C2(s)  becomes a pure differentiator with gain a, i.e. C2(s) = as. 

To study the stability of the closed loop system, write (4) as follows. The open loop transfer function is  
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The transfer function in (11) is always stable with the choice in (7). Regarding the performance, non 
integer values of m could yield better performance compared to integer m values. In order to 
synthesize the controller C2(s), we utilize numerical approximation as explained in the next section. 

 
APPROXIMATING THE DESIRED CONTROLLER 

 

In this paper, we consider the following controller functioning in the place of C2(s). 

 1 2
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We denote the desired C2(s) by C2d(s) and define the magnitude and the phase of the desired C2d(s) as 
follows. 

  2 ( ) ( ) exp ( )dC j M jA    (13) 

The numerical values of M() and A() will be obtained from the design approach presented in the 
previous section (See (9)). Denote the frequency by  and define the following cost function: 
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where L and U are the lower and upper bounds of the considered frequency spectrum, respectively, 
and we have the following error definitions to compute the cost in (14). 
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The optimization problem is to find the best z1, z2, p1, p2 and K parameters that fit the desired 
magnitude and phase responses. In order to perform this optimization, we chose the Levenberg-
Marquardt technique and formulate the following partial derivatives. 
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Considering the finite set of frequencies, i.e.  := 1, 2,… N, the partial derivatives above yield 
vectors of dimensions N1 and the Jacobian matrix of Levenberg-Marquardt algorithm is constructed 
as given below. 

 1 2 1 2

1 2 1 2 2 5

( ) :

M M M M M

A A A A A

N

e e e e e

K z z p p
t

e e e e e

K z z p p 

     
       
     

      

 (25) 

 

  
1 1 1

5 52 2

1 1

2 2

( 1) ( )

( 1) ( )

( ) ( ) ( ) ( ),    0( 1) ( )

( 1) ( )

( 1) ( )

T T

K t K t

z t z t

I t t t E tz t z t

p t p t

p t p t

 




   
      
        
      
      

 (26) 

where 
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The rule in the above behaves like the Gauss-Newton algorithm for small , whereas it is like gradient 
descent for large . The algorithm is started with small random controller gains and it finds the best 
matching parameters quickly. In this paper  = 10 is selected in all simulations. 

Since the optimization process cannot guarantee zi > 0 or pi > 0, during the iterations, a stability check 
condition is inserted. If any one of the zeros or poles of C2(s) tend to be unstable, that variable is 
reinitialized randomly to a very small positive value and the optimization is continued with the new 
value of the parameter of interest 
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SIMULATION STUDIES 
 

First Example: Double Integrator 

 

A number of cases have been studied for the nominal plant in (5) and the uncertain plant in (6). The 
controller for the nominal plant has been designed as given in (27), and used in all simulations. 
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The response of the nominal plant model with the above C1(s) is shown together with the response of 
the uncertain plant and the nominal controller in Figure 2, where it is seen that the desired response is 
fairly smooth yet the uncertain plant response exhibits undesired oscillations The goal of adding the 
loop with C2(s) is to suppress these oscillations to an admissible extent. 

As the a parameter, we considered a={0.5, 1, 2, 4}, and as the m parameter, we considered m={1, 1.1, 
1.5, 1.9, 2, 2.1}. The combinations have been studied exhaustively and the results for a = 0.5 are given 
in Figures 3-4, those for a = 1 are given in Figures 5-6, for a = 2 are given in Figures 7-8, and for a = 4 
are given in Figures 9-10. Since Q needs to be a low pass type transfer function, according to the 
presented sets of figures, as a increases, gain margin (GM) decreases and oscillations become 
visible. For small a, the convergence is considerably quick and the initial overshoot is large. In Figures 
3, 5, 7, 9, the response corresponding to m = 1 is drawn by a thick curve. For this choice, C2(s) 
approximates to the pure differentiator, given as C2d(s) = as. 

 

Second Example 

 

In the second example, we consider the same nominal plant model but the uncertain system now 
contains another term as described below. 
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The nominal controller cannot stabilize the closed loop, the results for a = 0.5 are as seen in Figure 11. 
When the proposed scheme is used, the response in time domain is as seen in Figure 12, where the 
system in (28) converges the desired setpoint. The Nyquist plot for this case is shown in Figure 13 and 
the output of the proposed controller is shown in Figure 14. Bounded nature of the produced control 
signal is a prominent feature. The time domain results for a = 1, corresponding Nyquist plots and the 
produced control signals are shown, respectively, in Figures 15-17. The results in the same order are 
shown in Figures 18-20 for a = 2. In all cases considered, the output of the proposed controller 
remained bounded and the system followed the reference signal with zero error. 

The interpretation of the transfer function Y/Yn for a general case is illustrated in Figure 21, where it is 
seen that the transfer functions in the numerator and the denominator of (2) generate two triangles in 
the Nyquist plot. The uncertainty is bounded and the feedback connectivity in Figure 1 results in the 
ratio in (2). Clearly in Figure 21, it is possible to apply PID based design and tuning rules as the 
frequency domain picture is in compliance with classical approaches. 

 

CONCLUSIONS 

 

This paper presents a method to obtain the desired frequency response of an auxiliary controller to 
handle the deviations from the nominal model response. The approximation to the desired controller is 
achieved using Levenberg-Marquardt technique. Both the magnitude and the phase values are forced 
to approximate the desired frequency response data and the obtained controller is a real rational 
transfer function with two zeros, two poles and a gain, all of which are adjustable. Once fixed, the 
controller is installed into the closed loop system and tested. The proposed approach enables the 
designer to study non-integer values of the alternatives and this is an important design flexibility 
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offered to the designer. However, the controller needs the inverse of the nominal system, which is a 
constraint forcing to study plants with no right half plane zeros. 

Motivation of the study was to stabilize a remote system that is subject to delays in the input channel, 
like what occurs in telerobotic applications. The nominal plant chosen is a double integrator, which 
represents a mechanical system dynamics and reference signal is a constant setpoint. The delays in 
the input channel adversely affect the performance and it is shown by a series of simulations and two 
different cases that the proposed technique enables the designer to obtain a good alternative to 
suppress the effects of time delays. 
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Figure 4. Nyquist plot of ( ) exp( )Q j j    for a=0.5 
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Figure 6. Nyquist plot of ( ) exp( )Q j j    for a=1 
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Figure 7. Time domain results for a=2 
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Figure 8. Nyquist plot of ( ) exp( )Q j j    for a=2 
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Figure 9. Time domain results for a=4 
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Figure 10. Nyquist plot of ( ) exp( )Q j j    for a=4 
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Figure 11. Response of the nominal system (dotted) and the response of the uncertain plant with 

nominal controller (solid) 
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Figure 12. Time domain results for a=0.5 
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Figure 13. Nyquist plot of  ( ) exp( ) exp( 0.1 )Q j j j        for a=0.5 
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Figure 14. Contribution of the proposed controller for a=0.5 
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Figure 15. Time domain results for for a=1 
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Figure 16. Nyquist plot of  ( ) exp( ) exp( 0.1 )Q j j j        for a=1 
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Figure 17. Contribution of the proposed controller for a=1 
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Figure 18. Time domain results for a=2 
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Figure 19. Nyquist plot of  ( ) exp( ) exp( 0.1 )Q j j j        for a=2 
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Figure 20. Contribution of the proposed controller for a=2 
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Figure 21. Interpretation of the ratio in (2), which is the transfer function Y/Yn 
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