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Abstract -This paper proposes a method for tuning the
parameters of a variable structure controller. The approach
presented extracts the error at the output of the controller and
applies a nonlinear tuning law using this error measure. The
adaptation mechanism drives the state tracking error vector to
the sliding hypersurface and maintains the sliding mode. In the
simulations, the approach presented has been tested on the
control of Duffing oscillator and the analytical claims have been
justified under the existence of measurement noise, uncertainty
and large nonzero initial errors.

1. INTRODUCTION

Parameter tuning in adaptive control systems has been a
core issue in dealing with uncertainties and imprecision. One
good alternative to robustify the control system against
disturbances and uncertainties is to exploit a Variable
Structure Control (VSC) scheme [1-3]. The scheme is well-
known with its robustness against unmodeled dynamics,
disturbances, time delays and nonlinearities [4]. A later trend
in the field of VSC design is to exploit the strength of the
technique in parameter tuning issues [5-7]. The resulting
system exhibits the robustness and invariance properties
inherited from VSC technique. As long as the target output of
the adaptive system is known, the utilization of the mentioned
techniques reveals good performance. However, in control
applications, the lack of a priori knowledge on the target
control signal leads the designer to seek for alternative
methods predicting the error on the control signal [8].

This paper presents a method for extracting the error on
the control signal particularly for the variable structure control
purpose. In the second section, we describe the proposed
technique for control error calculation. Simulation studies
presented next, and the concluding remarks are given at the
end of the paper.

II. PROPOSED APPROACH

Consider a nonlinear and non-autonomous system θ(r)=f
(θ, θ(1),…,θ(r-1),t)+τ, , where f(.) is an unknown function, θ

=[θ, θ(1),…,θ(r-1)]T is the state vector, τ is the control input to
the system and t is the time variable. Defining θd

=[θd, θd
(1),…,θd

(r-1)]T as the desired state vector and e=θ−θd is
the error vector, one can set the sliding hypersurface as
sp(e)=ΛTe, for which the VSC design framework prescribe that
the entries of the vector Λ are the coefficients seen in the
analytic expansion of sp=(d/dt+λ)r-1(θ−θd). Here λ is a positive
constant. Let Vp be a candidate Lyapunov function given as
Vp(sp)=sp

2/2; if the prescribed control signal satisfies
dVp(sp)/dt=−spξsgn(sp) with ξ > 0, the negative definiteness of
the time derivative of the above Lyapunov function is ensured.
The conventional design postulates the control sequence given
as
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i
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r
dsmc setf ξθθτ (1)

which enforces dVp(sp)/dt<0. More explicitly, the error vector
is driven towards the sliding manifold and forced to remain in
the vicinity of it. An obvious result of this is the observation of
a sliding regime ultimately ending up with e=0.

Remark 1: When the control in (1) is applied to the
system, we call the resulting behavior as the target Sliding
Mode Control (SMC) and the input vector leading to it as the
target control sequence (τsmc). Since the functional form of the
function f is not known, it should be obvious that τsmc cannot
be constructed by following the traditional SMC design
approach.

Definition 2: Given the system θ(r)=f (θ,t)+τ, and a desired
trajectory θd(t) for t ≥ 0, the input sequence satisfying the
differential equation θd

(r)=f (θd,t)+τd is defined to be the
idealized control sequence denoted by τd, and the differential
equation itself is defined to be the reference SMC model.
Mathematically, the existence of such a model and the
sequence means that the system perfectly follows the desired
trajectory if both the idealized control sequence is known and
the initial conditions are set as θ(t=0)= θd(t=0), more
explicitly e(t) ≡ 0 for ∀  t ≥ 0. Undoubtedly, such an idealized
control sequence will not be a norm-bounded signal when
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there are step-like changes in the vector of command
trajectories or when the initial errors are nonzero. It is
therefore that the reference SMC model is an abstraction due
to the limitations of the physical reality, but the concept of
idealized control sequence should be viewed as the synthesis
of the command signal θd from the time solution of the given
differential equation.

Fact 3: If the target control sequence formulated in (1)
were applied to the system, the idealized control sequence
would be the steady state solution of the control signal, i.e.
limt→∞τ = τd.

Defining the control error by sc�τ −τd and rewriting the
control signal with the idealized SMC model yields τ =τd −(∆f
+ Λr

-1(Σi=1
r-1 Λie

(i)+ ξ sgn(sp))), where ∆f = f (θ,t) − f (θd,t). The
target control sequence becomes identical to the idealized
control sequence, i.e. τ ≡ τd, as long as the condition given
below holds true.

( )( )∑ −
=

− +ΛΛ−=∆ 1
1

)(1 sgnr
i p

i
ir sef ξ (2)

However, this condition is of no practical importance as
we do not have the analytic form of the function f. Therefore,
one should consider this equality as an equality to be enforced
instead of an equality that holds true all the time, because its
implication is sc=0, which is the aim of the design.

After straightforward manipulations, dsp/dt can be
rewritten as dsp/dt=Λr(∆f+sc)+Σi=1

r-1Λie
(i). Inserting (2) into

dsp/dt and solving for sc gives

( )( )pprc sss sgn1 ξ+Λ= −
� (3)

Remark 4: It should be noted that the application of τd to
the system with zero initial errors will lead to e(t) ≡ 0 for ∀  t ≥
0, on the other hand, the application of τsmc to the system will
lead to sp=0 for ∀  t ≥ th, where th is the hitting time, and the
origin will be reached according to the dynamics described by
the sliding manifold. Therefore, the adoption of (3) as the
equivalent measure of the control error loosens e(t) ≡ 0 for ∀  t
≥ 0 requirement and introduces all trajectories in the error
space to tend to the sliding manifold, i.e. (2) is enforced.
Consequently, the tendency of the control scheme will be to
generate the target SMC sequence of (1).

Now consider the feedback control loop illustrated in
Figure 1, and define the Lyapunov function Vc(sc)=sc

2/2, which
is a measure of how well the controller performs.

Remark 5: An adaptation algorithm ensuring dVc(sc)/dt
when sc≠0 enforces (2) to hold true and creates the predefined
sliding regime after a reaching mode lasting until the hitting
time denoted by th, beyond which sc=0 as the system is in the
sliding regime.

Consider the controller τ=φ Tu, where φ is the vector of
adjustable parameters and u=(eT  1)T. The switching manifold
is defined as sA=[sc ; ∂Vc/∂φ], and the candidate Lyapunov
function is set as given in (4).
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where, ||• || is the Euclidean norm and, µ and ρ are positive
constants determining the relative importance of the terms.

Remark 6. A likely question that can be raised at this
point would be how such a Lyapunov function is selected.
After straightforward manipulations, it can be shown that
VA=α(t)Vc, where α(t)=µ+ρuTu, or equivalently,
α(t)=µ+ρ+ρeTe. Referring to Figure 2, which visualizes VA for
µ=1 and ρ=10, a direct conclusion would be the fact that as
||e|| increases, the two flaps become steep, and as ||e|| decreases
the local property of the surface gets shallower. Choosing such
a Lyapunov function will therefore enable us to represent how
well the controller performs as well as how well the plant
performs jointly. As seen from the contour plot of Figure 2,
the surface is symmetric with respect to sc=0 line, and the cost
of any disturbance leading to an increment in ||e|| will be more
than the identical disturbance arising around sc=0 and ||e||=0.
This is particularly important since the tuning activity will be
trying to cope with noise, which is substantially effective
during the sliding mode, i.e. when sc=0 is reached.

In order not to violate the constraints of the physical

reality, the following bound conditions are imposed: φφ B≤ ,

uBu ≤ , uBu �
� ≤ , ττ B≤ , 

d
Bd ττ ≤  and 

d
Bd ττ �

� ≤ .

Theorem 7: If the adaptation strategy for the adjustable
parameters of the controller is chosen as

( ) ( )csuuuIK sgn
1T −

+−= ρµφ� (5)

with K is a sufficiently large constant satisfying

( )( ) ( ) uuuu BBBBBBBBK
dd ��� τττφ ρρµ ++++> 2 ; then the

negative definiteness of the time derivative of the augmented
Lyapunov function in (4) is ensured.

Proof: Evaluating the time derivative of the Lyapunov
function in (4) yields
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(6)

Since the controller is τ=φTu and sc�τ−τd, following
terms can be calculated: (∂Vc/∂φ)T=scu

T, (∂Vc/∂u)T = scφ T,
∂Vc/∂τd = −sc, ∂2Vc/∂φ∂φT = uuT, ∂2Vc/∂φ∂uT = uφT+scI, and
∂2Vc/∂φ∂τd = −u. The time derivative in (6) can now be
rearranged as follows;
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The last inequality above is due to the fact that

( ) ( )
d

BBsss cdcc ττττ +≤−=2 . The selection of the

parameter K ensures the negative definiteness of the time
derivative of the Lyapunov function in (4) and proves
Theorem 7. 
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Apparently if eTe ≤ ε holds true, the first r entries of the
parameter vector will dominantly be influenced by the noise
terms (ηi) corrupting the state vector. More explicitly,
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However, the (r+1)th entry of the parameter vector will be

tuned by ( ) ( )cr suuK sgn
1T

1
−

+ +−= ρµφ� . Therefore, once eTe

≤ ε is satisfied, the tuning of the first r parameters are stopped
and only the (r+1)th entry is tuned. If eTe > ε, all adjustable
parameters are tuned. This mechanism ensures that the
parameter tuning due to the noise sequence is suppressed in
the vicinity of the origin. Since K is designed for the worst
possible conditions, the time derivative in (7) will always be
negative.

Remark 8. Given system of structure θ(r)=f (θ,t)+τ, where
the function f is unknown, and a desired trajectory θd(t),
assuming that the SMC task is achievable, utilization of (3) as
the control error together with the tuning law of (5) for the
controller τ=φ Tu enforces the desired reaching mode followed
by the sliding regime for some set of design parameters µ, ρ, ξ
and Λ.

III. SIMULATION STUDY

In the simulations, we study a second order system of the
form θ(2)=f (θ,t)+τ , where

( ) ( )
( ) ( )tttf

t
 )(sin

1
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In above, β is a time varying parameter given by

)1.0sin(2)( tt +=β . (9)

In the presented experiment, we set µ=1, ρ=10 and Λ=[1
1]T, ξ=1, K=1000 and ε=0.01. The block diagram of the
control system is depicted in Figure 1 in detail. The
measurement noise sequences for both states are Gaussian
distributed, zero mean and both have equal standard
deviations, which is 0.0025. The disturbance caused by the
measurement noise satisfies |ηi(t)|≤0.01 with probability very
close to unity.

In Fig. 3, the phase space behavior for θ(0)=−1 and

θ� (0)=0 have been demonstrated. The plot seen figures out
that ee −=�  (λ=1 or sp=0) line is the attracting invariant.
Clearly the error vector is guided towards the sliding manifold
and due to the design presented, it is forced to remain in the
vicinity of the attracting loci without explicitly knowing the
analytical details of the function f. However, it can fairly be
claimed that the sliding manifold is most probably a locally
invariant subspace as the results heavily depend upon the
unknown function f. The figure demonstrates that the behavior
observed in the phase space is composed of the prescribed
reaching phase followed by the sliding regime. Despite the
presence of a reasonablu high magnitude observation noise,
the origin is reached as imposed by the design.

The desired state trajectory and the observed response are
depicted in the top row of Fig. 4. The bottom row of the figure
illustrates the state tracking errors, which quickly approach
approaches zero.

In Fig. 5, the applied control signal is illustrated. The
signal carries a significant amount of fluctuations that are
related to the exact use of the sign function in (3) and (5). In
the practical implementations of variable structure controllers,
several approximations to the original form of the sign
function have been utilized, however, our aim is to
demonstrate the usefulness of the technique under the most
challenging conditions of real life.

Fig. 6 illustrates the time evolution of the controller
parameters (φ=[ φ1 φ2 φ3]

T). The result obtained emphasizes
the internal stability of the tuning scheme. More explicitly, the
parameters converge to their steady state values even the
system dynamics radically changing its behavior in time. This
result proves the robustness claim of the paper too.

Finally, the presented technique is computationally
inexpensive, for the considered application, the total number
of floating point operations for the control calculation and
tuning is equal to 36 with 2 comparisons for sign function
evaluations. This result stipulates that the computational
complexity of the presented technique is affordable even for
low speed microprocessors.

IV. CONCLUSIONS

This paper introduces a novel approach for creating and
maintaining the sliding motion in the behavior of an uncertain
system. The system under control is of known structure and it
is under the ordinary feedback loop with an adaptive variable
structure controller. The presented results have demonstrated



that the predefined sliding regime could be created and
maintained if the controller parameters are tuned in such a
way that the reaching is enforced. Computational simplicity of
the method is another prominent feature that should be
emphasized.

The potential difficulty of applying the presented scheme
in highly noisy environments is the need for numerical
derivative in (3).

Future research aims to discover the properties of the
class of functions determining the applicability range of the
approach.
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Fig. 2 3D Appearance and contour plot of VA for µ=1,
ρ=10
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Fig. 4 System response and the state tracking errors
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Fig. 6 Time evolution of the controller parameters
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