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Abstract— Modeling issues of infinite dimensional systems is
studied in this paper. Although the modeling problem has been
solved to some extent, use of decomposition techniques still pose
several difficulties. A prime one of this is the amount of data to be
processed. Method of snapshots integrated with POD is a remedy.
The second difficulty is the fact that the decomposition followed
by a projection yields an autonomous set of finite dimensional
ODEs that is not useful for developing a concise understanding of
the input operator of the system. A numerical approach to handle
this issue is presented in this paper. As the example, we study 2D
heat flow problem. The results obtained confirm the theoretical
claims of the paper and emphasize that the technique presented
here is not only applicable to infinite dimensional linear systems
but also to nonlinear ones.

I. I NTRODUCTION

Although the applications of Proper Orthogonal Decomposi-
tion (POD) particularly focus on the extraction of coherent and
dominant modes available in aerodynamic flows, the problem
of tackling with huge amounts of data and technical difficulties
in the obtained model constitute barriers between the stipulated
efforts and the thorough understanding of the process, [1-6].
For this reason, we study the modeling problem that addresses
the above mentioned difficulties appropriately on a 2D, simple,
and a linear dynamics, namely the heat flow. The goal of
the paper is to introduce how the data is obtained, how the
external stimuli enter into the dynamics, and how the data set is
processed so as to obtain a set of orthogonal basis, and finally,
how the external stimuli is made explicit in an autonomous set
of ODEs.

Modeling of systems displaying spatial continuum requires
a careful consideration since the physical process under in-
vestigation is an infinite dimensional one due to the spatial
continuity. Efforts in understanding the behavior of such
systems have particularly focused on the low dimensional
models capturing the essential behavioral properties with a few
Ordinary Differential Equations (ODEs). This has been done
by using modal decompositions such as Proper Orthogonal
Decomposition (POD) and Singular Value Decomposition
(SVD). Although neither the decomposition techniques nor the
infinite dimensionality are new issues in this field, obtaining
a model having the boundary conditions as external inputs
is a major problem in the POD and SVD methods. More

explicitly, these approaches result in models where external
control input appears in the dynamical equations implicitly,
and this is not very useful for controller design. Another
difficulty is the presence of modeling uncertainties, which
stem from varying internal parameters or hypotheses that are
not thoroughly valid. For the heat transport process, imprecise
knowledge on thermal diffusivity parameter is a good example
to study uncertainties.

The use of decomposition techniques in modeling of spa-
tially continuous systems has extensively been studied in the
field of aerodynamic flow control problems, [1-4]. Since the
dynamics of the process under investigation is governed by
Navier-Stokes equations, obtaining closed form solutions are
very difficult and the modeling studies particularly focus on the
real time observations from the process. For systems having
two or more spatial dimensions, the POD technique has been
utilized with the aid of snapshots method, [1-2]. Alternatively,
for single dimensional processes, the same modeling procedure
can be followed by exploiting the SVD technique.

Procedurally, in both of them, if the numerical data contains
coherent modes, the expansion accurately describes the tem-
poral modes and the spatial components distributing them over
the physical domain of the process. Furthermore, the orthogo-
nality of the basis functions, which describe the spatial proper-
ties, helps in finding a set of ODEs synthesizing the temporal
modes. Although the algorithmic part seems straightforward,
the final form of the ODEs depicts an autonomous system
having no external input. At this point, several modifications
are needed to separate the effect of boundary conditions, which
constitute the inputs exciting the process. 2D heat transport
problem is therefore a good candidate to study how modeling
issues are addressed.

A number of variations of this problem has been taken
into consideration in former studies, [5-7]. Atwell et al [5-6],
have considered 2D heat transport problem with control input
explicitly available in the Partial Differential Equation (PDE).
The thermal diffusivity parameter has been taken as a known
constant and several control strategies have been assessed with
the modeling results of POD approach. In [6], the design has
been discussed from the computational point of view.

Another work focusing on 1D heat transport problem re-



ports the design of time-optimal boundary control, [7]. It is
emphasized in [7] that the time-optimal control has the bang-
bang property, and the solution has been postulated by the
techniques of Hilbert spaces. Rösch [8], views the character-
ization of boundary condition as an identification problem,
and presents an iterative approach to meet the conditions of
optimality.

Although the techniques of functional analysis suggest
several solutions to the problem at hand [9], the presented
technique here can be generalized to a variety of systems dis-
playing arbitrarily complicated behavior. This fact is intimately
related to the observation-based nature of the approach.

The way this paper differs from what have been appeared in
the literature is to demonstrate how a low-order model having
an external control input is derived. In the sequel, the details
will be presented in the following organization: The second
section presents the POD technique and its relevance to the
modeling strategy. In the third section, development of the
reduced order model for the 2D heat flow is analyzed. The
fourth section presents the results and the concluding remarks
are given at the end of the paper.

II. PROPERORTHOGONAL DECOMPOSITION

Consider the ensembleUi(x, y) i = 1, 2, . . . , N . Appar-
ently, every element of this set corresponds to a snapshot
observed from a process, say for example, the 2D heat
equationut(x, y, t) = c2 (uxx(x, y, t) + uyy(x, y, t)), where
c is constant.

The goal is to find an orthogonal basis set letting us to write
the solution as

u(x, y, t) ≈
N∑

i=1

αi(t)φi(x, y), (1)

whereαi(t) is the temporal part, andφi(x, y) is the spatial
part. It will later be clear that if the basis set{φi(x, y)}N

i=1 is
an orthogonal set, then the modeling task can exploit Galerkin
projection technique.

Let us summarize the POD procedure.
Step 1.Start calculating theN ×N correlation matrixL, the
(ij)th entry of which isLij := 〈Ui, Uj〉Ω, where〈., .〉Ω is the
inner product operator defined over the spatial domain (Ω) of
the process.
Step 2.Find the eigenvectors (denoted byvi) and the associ-
ated eigenvalues (λi). Sort them in a descending order in terms
of the magnitudes ofλi. Note that everyvi is anN×1 vector
satisfyingvTi vi = 1

λi
, here, for simplicity of the exposition we

assume that the eigenvalues are distinct.
Step 3.Construct the basis set by using

φi(x, y) =
N∑

j=1

vijUj(x, y), (2)

where vij is the jth entry of the eigenvectorvi, and i =
1, 2, ..., rank(L). It can be shown that〈φi(x, y), φj(x, y)〉Ω =
δij with δij being the Kronecker delta function.

Remark 1. Notice that the basis functions are admixtures
of the snapshots.
Step 4.Calculate the temporal coefficients. Taking the inner
product of both sides of (1) withφi(x, y), the orthogonality
lets us have

αi(t0) = 〈φi(x, y), u(x, y, t0)〉Ω
= 〈φi(x, y), Ut0〉Ω, (3)

Without loss of generality, an element of the ensemble
{Ui(x, y)}N

i=1 may beU(x, y, t0). Therefore, to generate the
temporal gain (αi(t)) of the spatial basisφi(x, y), one would
take the inner product with the elements of the ensemble with
sampled forms of the basis functions.

Remark 2. Notice that the following hold true:

〈U1(x, y), φk(x, y)〉Ω = αk(t1)
〈U2(x, y), φk(x, y)〉Ω = αk(t2)

...

〈UN (x, y), φk(x, y)〉Ω = αk(tN )

N∑

i=1

〈Ui(x, y), φk(x, y)〉2Ω =
N∑

i=1

α2
i (ti)

= λk

Apparently, the temporal coefficients satisfy orthogonality
properties overt ∈ {t1, t2, . . . , tN}

In the next section, we demonstrate how the boundary
condition is transformed to an explicit control input in the
ODEs.

III. R EDUCED ORDER MODELING

Consider the heat conduction problem over the spatial
domain Ω := (x, y) ∈ [0, 1] × [0, 1]. Truncate the sum in
(1) after some certain integer, sayM , and assume that the
modes fromM + 1 to ∞ are reasonably small in magnitude
such that we can write the following:

u(x, y, t) =
M∑

i=1

αi(t)φi(x, y). (4)

The solution above must satisfy the PDE, i.e. we get

M∑

i=1

α̇i(t)φi(x, y) = c2
M∑

i=1

αi(t)ζi(x, y) (5)

whereζi(x, y) = φi(x, y)xx + φi(x, y)yy. Clearly taking the
inner product of both sides withφk(x, y) yields

α̇k = c2
M∑

i=1

αi(t)〈φk(x, y), ζi(x, y)〉Ω, (6)

where k = 1, 2, . . . , M . Apparently no matter what the
boundary conditions, the above representation contains the



effect of them implicitly. To overcome this problem, denote the
set of points, at which boundary excitations are independently
specified, by∂Ω. The underlying idea in developing the
dynamic model is the following fact:

〈φk(x, y), ζi(x, y)〉Ω = 〈φk(x, y), ζi(x, y)〉∂Ω +
〈φk(x, y), ζi(x, y)〉Ω\∂Ω, (7)

which basically corresponds to the repartitioning of the domain
by changing limits of a Riemann integral computed over a non-
intersecting subdomains embodying the domain of the original
integral when they are united.

Define∂Ω := {(0, 0), (0, 1), (1, 0), (1, 1)}. This means that
the external stimuli enter from the corners of the domain. In
other words, the dynamic input will have four inputs denoted
by γ00, γ01, γ10 andγ11. Clearly, in this notation the first index
stands forx and the second stands fory.

Denote the solution observed whenγ00(t)=g00(t) with other
inputs are equal to zero asu00(x, y, t) with g00(t) being an
arbitrarily chosen test signal. Perform the POD procedure to
obtain a solution in the form of (4). Repeating the same
procedure till every element of the set∂Ω is contained, one
would end up with the following solution when each input
assumes arbitrarily chosen values,

u(x, y, t) =
1∑

p=0

1∑
q=0

M∑

i=1

αpq
i (t)φpq

i (x, y), (8)

which is the result of the superposition principle. Note that for
nonlinear PDEs, this expansion would not be valid.

Now assume that the system is excited only from(x, y) =
(0, 0) entry. Since the solution in (4) must be satisfied also on
∂Ω, this lets us write the following,

u(0, 0, t) = u00(0, 0, t)
= γ00(t)

=
M∑

i=1

α00
i (t)φ00

i (0, 0)

= α00
k (t)φ00

k (0, 0)

+
M∑

i=1

(1− δik)α00
i (t)φ00

i (0, 0), (9)

α00
k (t)φ00

k (0, 0)ζ00
k (0, 0) = γ00(t)ζ00

k (0, 0)

−
M∑

i=1

(1− δik)α00
i (t)φ00

i (0, 0)ζ00
k (0, 0) (10)

In a similar fashion, one should investigate the spa-
tial gain associated with other inputs, i.e.(x, y) ∈
{(0, 1), (1, 0), (1, 1)}. Performing this would simply let us
generalize (10) as follows:

α00
k (t)φ00

k (p, q)ζ00
k (p, q) = γpq(t)ζ00

k (p, q)

−
M∑

i=1

(1− δik)α00
i (t)φ00

i (p, q)ζ00
k (p, q), (11)

wherep and q assume values either zero or one. Notice that
the manipulations in (9)-(11) are for the single excitation from
(x, y) = (0, 0). Therefore ifp = 0, q = 0, the expressions
(10) and (11) become identical. However, other combinations
of p andq stipulate thatγpq(t) may have a nonzero spatial gain
(See (11)) although theγpq(t) is identically equal to zero.

Considering (7) in (6) and using the above equation for
every p and q would result in the dynamical system corre-
sponding to the described excitation configuration.

α̇00
k (t) =

M∑

i=1

A00
kiα

00
i (t) + c2

1∑
p=0

1∑
q=0

γpq(t)ζ00
k (p, q), (12)

where

A00
ki = c2〈φ00

k (x, y), ζ00
i (x, y)〉Ω

−c2
1∑

p=0

1∑
q=0

φ00
i (p, q)ζ00

k (p, q).

The model above can be written in the well known state
space form,

α̇00(t) = A00α00(t) + B00γ(t)

u00(x, y, t) = C00(x, y)α00(t), (13)

whereγ =
(

γ00 γ01 γ10 γ11

)T
, andB00

ki = c2ζ00
k (p, q)

with i = 2p+ q +1. The row vectorC(x, y) is apparently the
vector of 2D basis functions calculated at given pointsx and
y and for given excitation conditions, i.e. 00 for this case.

Clearly, the above model hasM states and four inputs. In
order to obtain the full representation, the procedure described
in (9)-(13) must be repeated for everyγpq(t) to obtain the
individual components of (8).

Remark 3. Considering (12) and (13), it is apparent how
the dynamical model is affected from the uncertainties on the
thermal diffusivity parameterc.

Let U(x, y, s) := L {u(x, y, s)}, Upq(x, y, s) := L
{upq(x, y, s)} and Γpq(s) := L {γpq(s)} with L being
the Laplace transform operator. In the view of the analysis
presented, the total system can be expressed as follows

U(x, y, s) =
1∑

m=0

1∑
n=0

Umn(x, y, s), (14)

where

Umn(x, y, s) =
1∑

p=0

1∑
q=0

Gmn
pq (x, y, s)Γpq(s). (15)



IV. M ODELING RESULTS

According to the described procedure, several tests have
been done. The PDE has been solved by using Crank-
Nicholson method (See [10] for details), with a step size
of 5 msec. The initial thermal distribution is taken as zero
everywhere and the thermal diffusivity constant is set asc =
0.4. In order to form the solution, a linear grid havingNx =
Ny = 25 points in x-direction andy-direction respectively.
According to the above parameter values, a total of 201
snapshots embody the entire numerical solution, among which
a linearly sampledN = 21 snapshots have been used for
the POD scheme. Although one may use the entire set of
snapshots, it has been shown that a reasonably descriptive
subset of them can be used. In the literature, this approach
is calledmethod of snapshots, which significantly reduce the
computational intensity of the overall scheme, [1-2]. Once
the modes have been obtained, we truncated the solution at
M = 5, which represents (in average)

According to the above settings, the inner product seen in
(6) is calculated as follows:

〈φk(x, y), ζi(x, y)〉Ω =
1
N

Nx∑

l=1

Ny∑

j=1

φk(xl, yj)ζi(xl, yj) (16)

in which we calculate the derivatives numerically.
The system has been stimulated from every corner, with

one-at-a-time basis. For collecting data, we used several test
signals given as

gpq(t) = 0.1 + 2 exp(−6t) sin(8πt)
gpq(t) = sin(2πt)
gpq(t) = 1− exp(−6t)
gpq(t) = t, (17)

where subscriptpq indicates the chosen corner. For each case,
the basis surfaces change very slightly and this influences the
content of the matrices in (13). Checking the eigenvalues of
the matrix A is an indicator of the similarity between each
case. This is illustrated in Figure 1, in which the eigenvalues
form individual clusters.

In order to construct the dynamic model, the matrices
obtained for different test conditions at a chosen corner have
been averaged. To compare the overall solution with the
numerically obtained data, we choose the following boundary
excitations, which are applied simultaneously:

γ00(t) = sin(2πt)
γ01(t) = − sin(3πt)
γ10(t) = sgn(sin(2πt))
γ11(t) = 1− exp(−6t). (18)

The results for this case are depicted in Figure 2. Every pair
in this figure represent the numerical solution (on the left) and
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Fig. 1. Clusters of eigenvalues appear as the procedure is repeated for
different test conditions. A test signal is chosen and an input point is chosen
to complete one experiment. The figure depicts 16 experiments and 80 data
points.

the reconstructed solution (on the right). The pairs in the first
line stand fort = 0.1sec. (on the left) andt = 0.2sec. (on the
right) and the rest includes solutions sampled at the same rate
till t = 1sec.
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Fig. 2. A comparison of the solutions generated by the numerical solver and
the low-order dynamic model. The frequency ranges of the test conditions
and the validation are similar.

It is clear from Figure 2 that the surfaces at every cell
are reasonably similar to each other. This result confirms
the analytical claims and validates the method described to
separate the effect of control terms.

Remark 4. It should be noted that the modes of the
infinite dimensional system have been excited by a set of test
signals (17), and the result has been validated on a similar
set of boundary conditions (19). The answer to the immediate
question “why” is as follows: The model is valid dominantly
for the frequency range covered by the test signals. If one
wants to cover a wide range of frequency spectrum, then this
would first require smaller step size for the PDE solver and
much longer time to obtain a representative set of snapshots.



On the other hand, the POD procedure will filter out some
of the high frequency content. The reader should notice that
the underlying idea of the POD procedure is to reconstruct
the solution from its samples (snapshots), however, a good
reconstruction can be performed only when the solution is
dominated by coherent modes, which implies relatively low
frequency content of the entire solution. A good comparison
is presented in Figure 4 for the following boundary conditions:

γ00(t) = sin(20πt)
γ01(t) = sin(2πt)
γ10(t) = sgn(sin(14πt))
γ11(t) = − sin(30πt), (19)

in which the frequency range is increased approximately about
ten times for all corners exceptγ01(t), which is kept in the
frequency range of the modeling stage so that the difference
will be clear. Referring to Figure 3, it is apparent that the
evolution of the corner signals are so fast that the reduced order
model cannot reconstruct the solution around them, however
around the cornerγ10(t), the reconstruction is unsurprisingly
good. This result simply validates our remarks.
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Fig. 3. A comparison of the solutions generated by the numerical solver and
the low-order dynamic model. The frequency ranges of the test conditions
and the validation are not similar.

Remark 5. The dissimilarity observed in the second case
raises the following question: Does the percent energy de-
scribed earlier depend upon the frequency content of the test
signals? The answer is apparently yes. Basically, a model is
valid in the frequency range of data that leads to the model.
The degree of confidence decreases as the overlapping between
the model derivation conditions and the operating conditions
becomes dissimilar. Alternatively, one can interpret this as
follows: Fixing the number of modes (M ) (or equivalently
fixing the energy level) cannot lead to the reconstruction of
the information hidden in the modesM + 1 to N .

V. CONCLUSIONS

Many physical phenomena, such as areodynamic flows, flex-
ible object dynamics, and heat transport have infinitely many

dynamical modes describing the entire behavior when they are
considered collectively. In this paper, the reduced order mod-
eling of 2D heat equation is considered. The physical domain
is a square plate, and the excitation enters into the system from
the corners of the plate. The algorithmic approach has been
shown to be capable of capturing the dynamically significant
modes of the solution. Once the number of modes is decided,
the procedure yields a set of autonomous ODEs. We present
a method to separate the external stimuli from these ODEs.
The described approach has been shown to be successful in
terms of the similarity between the numerical solution and the
solution based on the low-dimensional model. We observed
that the widely accepted form of the realization performance,
which is the percent energy captured is a frequency-variable
quantity, and it does not constitute a globally valid measure of
realization performance. As long as the data is a representative
for the operating conditions, the results are highly promising in
the sense of extending the modeling and separation techniques
for more difficult and nonlinear cases, such as for aerodynamic
flows, which constitute the ultimate goal of this research.
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