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Abstract— Low Dimensional (LD) modeling of systems gov-
erned by Partial Differential Equations (PDE) has been studied
several times in the past. Various types of boundary excitations
have been considered. This paper demonstrates how the exter-
nal stimuli is made explicit in an autonomous set of ODEs
and how the excitations along nonpoint subdomains of the
boundaries are handled. Dirichlét type boundary excitations
are considered and 2D heat equation has been chosen as
the test bed. Linearity of the system makes it a good choice
for investigating the stability and performance issues. Proper
Orthogonal Decomposition (POD) is used in the modeling stage
and it is shown that the developed model reconstructs the
essential dynamics of the solution of the PDE successfully. The
contributions of the paper are on the effects of the number of
modes on the model performance, spectral dependence of LD
models to the initial and boundary conditions and the prime
importance of a fundamental assumption.

I. INTRODUCTION

Modeling and control of PDE processes is an interesting research
area and the outcomes of which address many physical phenomena
displaying spatial continuity, e.g. heat and fluid flows. It is a
well known fact that for linear PDEs, there are well established
alternatives other than POD, (Gügercin 2000), but POD is a widely
used method in modeling of more complicated systems. The goal
of this paper is to present a model reduction with a discussion on
the effect of parameters entering into the POD algorithm.

Proper Orthogonal Decomposition was proposed in the pioneer-
ing work of Lumley (1967) with the goal of unfolding the modal
nature of turbulent flows. Sirovich (1987) introduced the method of
snapshots for reducing the computational intensity of the original
POD algorithm. The POD method is widely accepted as a powerful
tool for decomposing the content of a time varying spatially
continuous process into the spatial and temporal constituents. The
spatial part is a set of basis functions while the temporal part is
a set of differential equations. The decomposition is accomplished
in the order of dominance, which is a significant property enabling
the designer truncate the expression at a particular mode number.
Modeling of flow problems governed by PDEs have therefore
enjoyed the POD method in obtaining the finite dimensional models
at the cost of giving concessions from the model performance,
see for example Rowley et al (2004, 2005), Ly and Tran (2001),
Caraballo et al (2004) and the references therein.

Procedurally, the PDE set is solved for the given initial and
boundary conditions. Several samples from the solution set are
selected and the POD method with Galerkin projection is applied.
As a result of this, a set of autonomous Ordinary Differential
Equations (ODEs) is obtained. The solution of the obtained ODEs
with the given initial conditions synthesize the temporal part of
the solution and the spatial basis functions obtained through the
POD method yields the approximate solution of the PDE. Unfortu-
nately, the set of ODEs are specific to the initial and boundary

This work was supported by TOBB Economics and Technology Univer-
sity, BAP Program, under contract no ETÜ-BAP-2006/04
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conditions used in the model derivation stage. In other words,
one needs to change the ODE model for every different instance
of boundary excitation regimes. This paper demonstrates how the
aforementioned autonomous set of ODEs are made non-autonomous
and external excitations are seen explicitly in the model. Aside
from making the boundary excitations explicit in the model, we
demonstrate that the validity of the developed model is extended to
a set of boundary conditions, which constitute the final stage of the
modeling effort. The prominent feature of the approach presented is
that the algorithm yields a model using some boundary excitations,
but the model maintains its validity for different but similar signals.
The modeling procedure is followed with pointwise boundary
excitations for 1D Burgers equation in Efe (2004) and 2D heat
equation in Efe (2003). This paper extends the boundary excitations
to nonpoint subdomains of the boundaries, which results in much
richer heat distributions in the snapshots than those obtained in Efe
(2003).

Another variation of the LD modeling of 2D heat flow problem
has been taken into consideration in Atwell and King (2001), which
consider a modified 2D heat transport problem with control input
explicitly available in the PDE. The thermal diffusivity parameter
has been taken as a known constant and several control strategies
have been assessed with the modeling results of POD approach.
Clearly, the availability of the control input in the PDE means that
the excitation is not only through the boundaries, and the obtained
low order model would have the excitation input(s) explicitly.

This paper is organized as follows. The second section summa-
rizes the POD algorithm specific to the modeling of 2D heat flow
problem. In the third section, development of the reduced order
model for the 2D heat flow is analyzed. The fourth section presents
the modeling results with an emphasis on the spectral dependence
of the model to the operating conditions initial and boundary. The
last section summarizes the contributions of the paper.

II. PROPER ORTHOGONAL DECOMPOSITION

Consider the ensemble Ui(x, y), i = 1, 2, . . . , Ns, where Ns is
the number of elements. Every element of this set corresponds to
a snapshot observed from a process, say for example 2D heat flow
with initial and boundary conditions,

ut(x, y, t) = c2 (uxx(x, y, t) + uyy(x, y, t))

u(x, 0, t) = f1(x)γ1(t), u(1, y, t) = f2(y)γ2(t),

u(x, 1, t) = f3(x)γ3(t), u(0, y, t) = f4(y)γ4(t),

u(x, y, 0) = 0 ∀(x, y), (1)

where, c is the known constant thermal diffusivity parameter, and
the subscripts x, y and t refer to the partial differentiation with
respect to x, y and time, respectively. The continuous time process
takes place over the physical domain Ω := {(x, y)|(x, y) ∈ [0, 1]×
[0, 1]} and the solution is obtained on a spatial grid denoted by Ωd,
which describes the coordinates of the pixels of every snapshot
in the ensemble. The entities described over Ωd are matrices in
R

Ny×Nx . The goal is to find an orthonormal basis set letting us to
write the solution as
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u(x, y, t) =

RLX

i=1

αi(t)Φi(x, y), (2)

where αi(t) is the ith temporal mode, Φi(x, y) is the ith spatial
function (basis functions or the eigenfunctions), RL is the number
of independent basis functions that can be synthesized from the
given ensemble, or equivalently that spans the space described by
the ensemble. It will later be clear that if the basis set {Φi(x, y)}RL

i=1

is an orthonormal set, Galerkin projection yields the autonomous
ODEs directly. Let us summarize the POD procedure.

Step 1. Start calculating the Ns × Ns dimensional correlation
matrix L, the (ij)th entry of which is Lij := 〈Ui, Uj〉Ωd , where
〈., .〉Ωd is the inner product operator defined over R

Ny×Nx .

Step 2. Find the eigenvectors (denoted by vi) and the associated
eigenvalues (λi) of the matrix L. Sort them in a descending order
in terms of the magnitudes of λi. Note that every vi is an Ns × 1
dimensional vector satisfying vT

i vi = 1
λi

, here, for simplicity of the
exposition, we assume that the eigenvalues are distinct.

Step 3. Construct the basis set by using

Φi(x, y) =

NsX

j=1

vijUj(x, y), (3)

where vij is the jth entry of the eigenvector vi, and i =
1, 2, ..., RL, where RL = rank(L). It can be shown that
〈Φi(x, y), Φj(x, y)〉Ω = δij with δij being the Kronecker delta
function. Notice that the basis functions are admixtures of the
snapshots, (Ly and Tran 2001, Efe and Özbay 2003).

Step 4. Calculate the temporal coefficients. Taking the inner
product of both sides of (2) with Φi(x, y), the orthonormality
property leads to

αi(t0) = 〈Φi(x, y), u(x, y, t0)〉Ω
= 〈φi, Ut0〉Ωd

:=
1

Ns

NxX

l=1

NyX

j=1

φi(xl, yj)Ut0(xl, yj)

= φi � Ut0 , (4)

where φi ∈ R
Ny×Nx is a sampled form of the basis functions

Φi defined over Ω. The operator denoted by � computes a real
number that is the sum of all elements of a matrix obtained through
the elementwise multiplication of the two matrices that � lies in
between. Without loss of generality, an element of the ensemble
{Ui(x, y)}Ns

i=1 may be U(x, y, t0). Therefore, in order to generate
the temporal gain, αk(t), of the spatial eigenfunction φk, one would
take the inner product of φk with the elements of the ensemble as
given below,

〈U1, φk〉Ωd ≈ αk(t1)

〈U2, φk〉Ωd ≈ αk(t2)

...

〈UNs , φk〉Ωd ≈ αk(tNs). (5)

Note that the temporal coefficients satisfy orthogonality prop-
erties over the discrete set t ∈ {t1, t2, . . . , tNs} (See (6)). For a
more detailed discussion on the POD method, the reader is referred
to (Lumley 1967, Ly and Tran 2001, Efe and Özbay 2003-2004,
Caraballo et al 2004, Rowley et al 2004, Rowley 2005) and the
references therein,

NsX

i=1

〈Ui(x, y), Φk(x, y)〉2Ωd
≈

NsX

i=1

α2
i (ti) = λk. (6)

Fundamental Assumption: The majority of works dealing with
POD and model reduction applications presume that the flow is
dominated by coherent modes. Because of the dominance of coher-
ent modes, the typical spread of the eigenvalues of the correlation
matrix turns out to be logarithmic and the terms decay very rapidly
in magnitude. This fact enables us to assume that a reduced order
representation, say with M modes (M < RL) can also be written
as an equality

u(x, y, t) =

MX

i=1

αi(t)Φi(x, y), (7)

and the reduced order model is derived under the assumption that
(7) satisfies the governing PDE in (1), (Ravindran 2000, Ly and
Tran 2001, Efe and Özbay 2003, Efe and Özbay 2004, Caraballo
et al 2004). Unsurprisingly, such an assumption results in a model
having uncertainties, however, one should keep in mind that the goal
is to find a model, which matches the infinite dimensional system
in some sense of approximation with typically M � RL ≤ Ns. To
represent how good such an expansion is, a percent energy measure
is defined as follows

E = 100

PM
i=1 λiPRL
i=1 λi

, (8)

where the tendency of E → 100% means that the model cap-
tures the dynamical information contained in the snapshots well.
Conversely, an insufficient model will be obtained if E is far
below 100%. In the next section, we demonstrate how the boundary
condition is transformed to an explicit control input in the ODEs.

III. REDUCED ORDER MODELING

In the order reduction phase, we need to obtain the autonomous
ODE model first. Towards this goal, if (7) is a solution to the PDE
in (1), then it has to satisfy the PDE. Substituting (2) into (1) with
the fundamental assumption yields

MX

i=1

α̇i(t)Φi(x, y) = c2
MX

i=1

αi(t)Ψi(x, y), (9)

where Ψi(x, y) = ∂2Φi(x,y)

∂x2 + ∂2Φi(x,y)

∂y2 . Taking the in-

ner product of both sides with Φk(x, y) and remembering
〈Φi(x, y), Φk(x, y)〉Ω = δik with δik being Kronecker delta yields

α̇k(t) = c2
MX

i=1

αi(t)〈Φk(x, y), Ψi(x, y)〉Ω, (10)

Defining ζk as the entity in Ωd corresponding to the entity Ψk in
Ω, one could rewrite (10) as

α̇k(t) = c2
MX

i=1

αi(t)〈φk, ζi〉Ωd . (11)

The equation in (11) can be written explicitly by using � operator
as

α̇k(t) = c2
MX

i=1

αi(t) (φk(x, y) � ζi(x, y)) (12)

Notice that � operator can be applied over nonoverlapping sub-
domains of Ωd. This lets us separate the entries corresponding to
boundaries without modifying the values of φk(x, y) � ζi(x, y) as
seen in (13),
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α̇k(t) = c2
MX

i=1

αi(t)(φk(x, 0) � ζi(x, 0) + φk(1, y) � ζi(1, y) +

φk(x, 1) � ζi(x, 1) + φk(0, y) � ζi(0, y)) +

c2
MX

i=1

αi(t) (φ◦
k(x, y) � ζ◦

i (x, y)) . (13)

In above, φ◦
k(x, y) denotes a matrix that is obtained when the

boundary elements of φk(x, y) are removed. The kth component
of the first summation above, which is obtained when i = k, can
be separated from the expression and we obtain (14), which let us
embed the boundary conditions into the expression,

α̇k(t) = c2αk(t)(φk(x, 0) � ζk(x, 0) + φk(1, y) � ζk(1, y) +

φk(x, 1) � ζk(x, 1) + φk(0, y) � ζk(0, y)) +

c2
MX

i=1

αi(t)(1 − δik)(φk(x, 0) � ζi(x, 0) +

φk(1, y) � ζi(1, y) + φk(x, 1) � ζi(x, 1) + (14)

φk(0, y) � ζi(0, y)) + c2
MX

i=1

αi(t) (φ◦
k(x, y) � ζ◦

i (x, y)) .

At this stage of the modeling, we need to paraphrase the boundary
conditions in such a way that the final expression above can
be incorporated with these conditions. The underlying idea is
straightforward: If (7) is a solution, then is must be satisfied at
the boundaries as well. This lets us write the following

MX

i=1

αi(t)φi(x, 0) = f1(x)γ1(t), (15)

which can be paraphrased as

αk(t)φk(x, 0) = f1(x)γ1(t) −
MX

i=1

(1 − δik) αi(t)φi(x, 0). (16)

The expression above can be inserted into the first line of (14) and
we explicitly see γ1(t) in our expression. Likewise, repeating the
same arrangements for the other three edges (the boundaries), we
end up with

α̇k(t) = c2 (f1(x) � ζk(x, 0)) γ1(t) +

c2 (f2(y) � ζk(1, y)) γ2(t) +

c2 (f3(x) � ζk(x, 1)) γ3(t) +

c2 (f4(y) � ζk(0, y)) γ4(t) +

c2
MX

i=1

αi(t)(φk � ζi

−φi(x, 0) � ζk(x, 0) − φi(1, y) � ζk(1, y)

−φi(x, 1) � ζk(x, 1) − φi(0, y) � ζk(0, y)) (17)

which can be written compactly as

α̇(t) = Aα(t) + BΓ(t) (18)

where α(t) = (α1(t) α2(t) . . . αM (t))T, Γ(t) =
(γ1(t) γ2(t) γ3(t) γ4(t))

T and

Aki = c2(φk(x, y) � ζi(x, y) − φi(x, 0) � ζk(x, 0)

−φi(1, y) � ζk(1, y) − φi(x, 1) � ζk(x, 1)

−φi(0, y) � ζk(0, y)), (19)

and the kth row of the input matrix is

Bk = c2(f1(x) � ζk(x, 0) | f2(y) � ζk(1, y) | f3(x) � ζk(x, 1)|
f4(y) � ζk(0, y)) (20)

This result practically lets us have a linear dynamical model
for the infinite dimensional process in (1), which is aimed to be
controlled through the boundaries.

IV. MODELING RESULTS

According to the described procedure, several tests have been
done. Due to the numerical advantages, the PDE has been solved
by using Crank-Nicholson method (See Farlow (1993) for details),
with a step size of 1 msec. The initial thermal distribution is taken
zero everywhere and the thermal diffusivity constant is set as c = 1.
In order to form the solution, a linear grid having Nx = Ny = 25
points in x-direction and y-direction respectively. According to the
above parameter values, a total of 501 snapshots embody the entire
numerical solution, among which a linearly sampled N = 251
snapshots have been used for the POD scheme. Although one may
use the entire set of snapshots, it has been shown by Sirovich
(1987) that a reasonably descriptive subset of them can be used
for the same purpose. In the literature, this approach is called
method of snapshots, which significantly reduce the computational
intensity of the overall scheme, (See also Ravindran 2000 and Ly
and Tran 2001). Once the modes have been obtained, we truncated
the solution at M = 8, which represents %99.6563 of the total
energy described by (8).

In order to demonstrate the performance of the dynamic model,
we have set the functions that are effective along the boundaries as
f1(x) = f3(x) = sin(2πx) and f2(y) = f4(y) = sin(2πy). As
the temporal excitations we chose the following input signals,

γ1(t) = sin(2π80t(T/2 − t)), (21)

γ2(t) = sin(2π110t(T − t), (22)

γ3(t) = sin(2π100t(T/3 − t)), (23)

γ4(t) = sin(2π110t(T − t), (24)

where T = 0.5 seconds. The choice of the above excitations signals
is deliberate as they are spectrally rich. As can be seen from Figure
1, αk(t)’s will undergo regimes that change sometimes slowly
and sometimes fast depending on the spectral composition of the
external inputs. Under these conditions, the results obtained in time
domain are illustrated in Figure 2.

Undoubtedly, one would expect a good match between the state
variables obtained from the POD algorithm and the state variables
obtained through the numerical solution of the ODE set in (18).
One might question whether the model is specific to the boundary
conditions above. Remedying this is accomplished by choosing
another set of external inputs and obtaining the response of the
model without modifying the model parameters. For this purpose,
we set
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Fig. 1. Temporal and spectral views of the boundary excitations used in
the derivation of the low order model.
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Fig. 2. The state variables (αk(t)) obtained from POD and those from the
LD model in (18).

γ1(t) = sin(2π115t(T/2 − t)), (25)

γ2(t) = sin(2π100t(T/4 − t2)), (26)

γ3(t) = sin(2π160t(T/2 − t + t2)), (27)

γ4(t) = sin(2π90t(T/5 − t)), (28)

and obtained the results illustrated in Figure 5 and Figure 6. It
is seen that the state variables are obtained precisely when the
signal changes slowly. During the regions where the signals change
quickly, the performance is relatively poor due to the spectral
dependence of the model properties to the signals used during the
derivation of the model, which are illustrated in the right subplots
of Figure 1. To justify this claim, take the Laplace transform of the
PDE in (1) and write the general solution as below;

sU(x, y, s) − u(x, y, 0) = c2(Uxx(x, y, s) + Uyy(x, y, s)), (29)

where u(x, y, 0) had been specified to be zero over Ω. This would
let us have the following general solution

U(x, y, s) = C1 ex
√

s/c + C2 e−x
√

s/c + C3 ey
√

s/c + C4 e−y
√

s/c

(30)
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Fig. 3. Temporal and spectral views of the second set of boundary
excitations.
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Fig. 4. The state variables (αk(t)) obtained from POD and those from the
LD model in (18) for the second set of boundary excitations.

Having postulated the solution, we obtain the following expression
with irrational transfer functions

U(x, y, s) =
N1(x, y, s)

D(s)
Γ1(s) +

N2(x, y, s)

D(s)
Γ2(s) +

N3(x, y, s)

D(s)
Γ3(s) +

N4(x, y, s)

D(s)
Γ4(s), (31)

where the details of the functions seen above are skipped due to
the space limit.
Substitute s = jω into (31). It becomes clear that once the external
excitations are specified, the response (U(x, y, jω)) is determined
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Fig. 5. Temporal and spectral views of the second set of boundary
excitations.
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Fig. 6. The state variables (αk(t)) obtained from POD and those from the
LD model in (18) for the second set of boundary excitations.

by the transfer functions
Ni(x,y,jω)

D(jω)
and the external excitations.

The representation in (31) explains the conclusion on the spectral
dependence of the LD model to the signals used during the model
derivation stage. Nevertheless, one should keep in mind that the
linearity of the PDE under investigation has facilitated achieving
this conclusion. The next issue is to explain the nature of the
mentioned dependence. A quick look at the spectral behaviors

of the transfer functions
Ni(x,y,jω)

D(jω)
stipulate that the magnitudes

of these expressions has a lowpass characteristic with a cutoff
frequency determined according to the value of x and y. This
tells us that for every (x, y) ∈ Ω, the boundary excitations beyond
the corresponding cutoff frequency will not affect the behavior at
the point (x, y), and the effect of such excitations are filtered out,
i.e. their effect cannot be detected from the snapshots. A natural
consequence is that those effects cannot be captured through the
use of the snapshots in POD algorithm. On the other hand, the
excitations below the cutoff frequency will be effective at the
point (x, y) and the snapshots will contain their effects as much

as the
Ni(x,y,jω)

D(jω)
’s permit. If the boundary signals are spectrally

rich enough, then their effects will be reflected to the snapshots.

g g
M = 1 M = 2 M = 3 M = 4
19.31 17.92 + j4.96 19.72 -61.59 + j247.96

- 17.92 - j4.96 21.92 + j14.69 -61.59 - j247.96
- - 21.92 - j14.69 22.07 + j13.19
- - - 22.07 - j13.19
- - - -
- - - -
- - - -
- - - -

M=5 M=6 (Stable) M=7 (Stable) M=8 (Stable)
-61.43 + j244.47 -59.78 + j224.47 -148.51 + j491.47 -197.44 + j616.26
-61.43 - j244.47 -59.78 - j224.47 -148.51 - j491.47 -197.44 - j616.26
-66.60 + j275.43 -61.62 + j257.24 -77.12 -148.37 + j491.18
-66.60 - j275.43 -61.62 - j257.24 -75.26 + j311.68 -148.37 - j491.18

20.98 -75.24 + j311.78 -75.26 - j311.68 -59.65 + j236.47
- -75.24 - j311.78 -59.60 + j233.07 -59.65 - j236.47
- - -59.60 - j233.07 -76.88
- - - -93.21

Fig. 7. Table of the eigenvalues of matrix A as M changes

Unsurprisingly the properties specified indirectly by the snapshots
will be inherited by the LD model. As a result, the richer the
boundary excitations spectrally the better the snapshots contain
the spectral properties of the system dynamics. To sum up, the
signals used in the modeling stage have significant effects on the
performance of the LD model and those signals have to excite the
system persistently in order to obtain a reasonably good model.
This is one important contribution of this paper.

A final remark in this section is on the number of modes used.
In this study, we have set M = 8 modes in the model. The reason
why we set such a value is related to the stability of the system
in (18) as well as the reconstruction performance. In Figure 7 and
Figure 8, we summarize the results obtained when M starts from
one and increases.

1 5 8 10 15 20 25 26

45.7099

69.5747

89.0871

94.0915
96.5749

100

Number of Modes

E

Percent Energy (E) Captured

Fig. 8. The evolution of the percent energy captured with respect to the
number of modes included

Figure 7 lists the eigenvalues of the matrix A in (18) for 1 ≤
M ≤ 8. As seen from Figure 8, even though the captured energy
level (E) increases as M is increased, the resulting system turns out
to be unstable for M ≤ 5, i.e. E ≤ 96.5749%. A stable system
with smallest number of modes is obtained for M = 6 but the
model performance is still not satisfactory and we need to increase
M further. When M = 8, the percent energy measure indicate that
the %99.6563 of the total energy is captured and the reconstruction
performance of the model is good. This discussion stipulates two
facts: first the stability of the reduced order model is not guaranteed
for all values of M , second the concept of captured energy level
is meaningful only in the close neighborhood of E ≈ %100. In
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Figure 9, we illustrate the cases for every possible M value. As
seen clearly, the maximum of the real part of the eigenvalues of A
indicate stability for M ≥ 6 and a convergence after M = 13. Note
that the observation of the convergence seen in Figure 9 further
indicates the appropriateness of the numerical solver parameters
such as Δx, Δy and Δt. In what follows, we demonstrate the
design of an observer for the PDE in (1).

1 5 8 12 16 20 24 26

−75

−59.651

−50

−25

0

25

M

Largest Real Part of Eigenvalues of A

m
ax

(r
ea

l(ξ
))

Fig. 9. Maximum of the real part of eigenvalues of matrix A for every
possible M value.

V. CONCLUSIONS

This paper considers POD based LD modeling of 2D heat flow
excited continuously along the boundaries. The paper validates
the model and emphasizes that the model is useful over a set of
operating conditions. The simulation results have shown that the
selection of mode number and the associated tradeoff emphasizes
the case specificity. Because of the linearity of the PDE process,
the modal composition of the reduced order model could have
been scrutinized and the weaknesses and strengths of the modeling
strategy have been discussed in detail.

This paper has three major and two minor contributions to the
subject area. One of the major contributions is on the choice of
the mode number (M ) and its potential effects in control system
design. The desire for obtaining a good match between the temporal
variables from POD and those from the LD model, if it exists,
may require utilizing more than a few modes. However, due to
the associated numerical problems of POD, enriching the modal
content can make the LD model vulnerable in terms of the structural
properties such as stability and state controllability.

The second remarkable contribution is the demonstration of the
spectral dependence of the LD model on the initial and boundary in
the model derivation stage. If the design procedure entails a model
that is to be used over a limited range of frequencies, then the
PDE can be solved for boundary conditions which have dominant
components in the range of interest. The paper unfolds that the
choice of the external excitations are substantially important in
terms of the LD model performance and this has a guiding nature
in the implementation of POD since a very high level of captured
energy does not imply a satisfactory performance by itself.

The last major contribution is the assessment of the importance
of the fundamental assumption. The bottom-up design is strongly
based on to what extent this assumption holds true. The facts
stipulated in this paper show that as the number of modes in the
model increases, more energy is captured and better approximation
is obtained. Consequently, the confidence of the designer on the
fundamental assumption gets increased and the model uncertainty
becomes negligible, yet the model starts losing its usefulness in

the increasing direction of M , which is a significant parameter in
modeling studies exploiting the POD approach. Likewise, in (9),
we substitute u(x, y, t) =

PM
i=1 αi(t)Φi(x, y) into the governing

PDE. Such a substitution is allowed if and only if the fundamental
assumption is satisfied. This emphasizes that if the eigenvalues of
the correlation matrix L do not decay logarithmically, then one
cannot truncate the expression comfortably as the total contribution
of the remaining terms on the overall behavior is not negligible.
This discussion demonstrates how critical the hold of fundamental
assumption is.

Aside from the major results above, one of the minor contri-
butions is the extension of a previously proposed approach from
pointwise excitation to excitations along nonpoint subdomains, i.e.
along the boundaries. The separation scheme lets us use the model
not only for a predetermined boundary control regimes, (Efe 2003,
Efe 2004), but also for a set of boundary excitations. The second
minor contribution is on the better understanding of POD, which is
achieved by choosing a linear system.

Needless to say, the linearity of the PDE has been exploited
in drawing the above conclusions. These conclusions and
the modeling strategy investigated in this paper advances the
subject area to the clarification of the following fact: POD is a
powerful technique but its usefulness depends upon the PDE in
hand, problem settings and the associated operating conditions.

Acknowledgments
The author would like to thank Prof. Hitay Özbay, Prof. Mo
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