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Abstract— Linear Quadratic (LQ) optimal boundary control
of a 2D heat flow is studied. The design is carried out on a
reduced order model of the Partial Differential Equation (PDE)
process. For this purpose, Proper Orthogonal Decomposition
(POD) technique is utilized and the Low Dimensional (LD)
model is derived. The boundary controller is developed using
the state information obtained via an observer. An infinite
dimensional version of the observer is developed first and its
finite dimensional counterpart is derived according to POD
procedure. Having obtained the states of the system, a LQ
optimal control approach is followed to demonstrate that the
entire design works satisfactorily under the presence of noise,
uncertainty and disturbances. The contribution of the paper is
to draw a clear path between a spatially continuous process
and an optimal boundary controller minimizing a quadratic
cost, and the emphasis on the merits of POD based designs.

I. INTRODUCTION

Many physical processes such as heat and fluid flows,

chemical processes and those involving mass and energy

flows over a spatial domain are characterized by PDEs. The

desire for maintaining a good level of a set of performance

measures motivates the design and implementation of a

feedback controller. Since the process is spatially contin-

uous (infinite dimensional) one might design an infinite

dimensional controller then reduce it, or one might reduce

the process then design a controller. This paper adopts the

latter, i.e. the process undergoes an order reduction procedure

called POD, a LD observer is designed then, and a feedback

controller based on a LD observer is derived utilizing the

standard tools of control theory.

In this paper the cost function is a quadratic one and is

defined over an infinite horizon. The difficulty that needs to

be alleviated is the noise corrupting the observations from

the infinite dimensional process. An observer is developed

to filter out the disturbances from process state, which is

once obtained, the designer can implement an appropriate

LQ optimal controller in finite dimensions.

Optimal control is one of the frequently used approaches

in boundary control applications of PDE systems. One work

focusing on 1D heat conduction problem reports the design

of time-optimal boundary control, [1], with the emphasis

that the time-optimal control has the bang-bang property,

and the solution has been postulated by the techniques of

Hilbert spaces. In [2], Rösch views the characterization of

boundary condition as an identification problem, and presents
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an iterative approach to meet the conditions of optimality.

Ravindran [3] and Singh et al [4] follow the optimal control

techniques on more complicated flow systems, namely a flow

past a step in [3] and flow past a cylinder in [4]. Both of these

works deal with Navier-Stokes equations. In [5], Rayleigh-

Bénard convection process for optimal control design on a

POD based dynamic model is considered. Practically, this

paper approaches the control problem from an observer based

state reconstruction and state feedback point of view and

the very role of the observer is the elimination of the noise

corrupting the snapshots read from the infinite dimensional

process.

This paper is organized as follows. In the second section,

we present the POD and related modeling strategy, following

this we focus on the design and analysis of the LD observer

and the feedback control design is explained in the fourth

section. The concluding remarks are given at the end of the

paper.

II. THE PROCESS AND LD MODELING BY POD

Consider the ensemble Ui(x, y), i = 1, 2, . . . , Ns, where

Ns is the number of elements. Every element of this set

corresponds to a snapshot observed from a process, say

for example the 2D heat flow with initial and boundary

conditions,

ut(x, y, t) = c2 (uxx(x, y, t) + uyy(x, y, t))

u(x, 0, t) = f1(x)γ1(t), u(1, y, t) = f2(y)γ2(t),

u(x, 1, t) = f3(x)γ3(t), u(0, y, t) = f4(y)γ4(t),

u(x, y, 0) = 0 ∀(x, y), (1)

where, c is the constant thermal diffusivity parameter that

is known, fi(·)s are the gains effective along the boundary

segments, and the subscripts x, y and t refer to the partial

differentiation with respect to x, y and time, respectively. The

continuous time process takes place over the physical domain

Ω := {(x, y)|(x, y) ∈ [0, 1] × [0, 1]} and the solution is

obtained on a spatial grid denoted by Ωd, which describes the

coordinates of the pixels of every snapshot in the ensemble.

The entities described over Ωd are matrices in R
Ny×Nx . The

cost function denoted by J is given by
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J =

∫

∞

0

(

rγ2
1(t) + w

∫ 1

0

∫ 1

0

(u − ud)
2
dxdy

)

dt, (2)

where ud(x, y, t) is the desired profile (thermal distribution)

for u(x, y, t) and r, w are positive weighting coefficients.

Note that the control problem studied here is to minimize

the above cost by altering the input γ1(t) appropriately. It

will later be clarified that the entries γ2(t), γ3(t) and γ4(t)
are utilized for the disturbance entries. The goal is to find

an orthonormal basis set letting us to write the solution as

u(x, y, t) =

RL
∑

i=1

αi(t)Φi(x, y), (3)

where αi(t) is the ith temporal mode, Φi(x, y) is the ith spa-

tial function (basis functions or the eigenfunctions) defined

over Ω, RL is the number of independent basis functions that

can be synthesized from the given ensemble, or equivalently

that spans the space described by the ensemble. If the basis

set {Φi(x, y)}RL

i=1 is an orthonormal set, Galerkin projec-

tion yields the autonomous Ordinary Differential Equations

(ODEs) directly. The POD procedure utilized in this study

is described in [5] in detail.

Fundamental Assumption: The majority of works deal-

ing with POD and model reduction applications presume

that the flow (the solution of the PDE process) is dominated

by coherent modes. Because of the dominance of coherent

modes, the typical spread of the eigenvalues of the correla-

tion matrix turns out to be logarithmic and the terms decay

very rapidly in magnitude. This fact enables us to assume that

a reduced order representation, say with M < RL modes can

also be written as an equality

u(x, y, t) =

M
∑

i=1

αi(t)Φi(x, y), (4)

and the reduced order model is derived under the assumption

that (4) satisfies the governing PDE in (1), (See [5], [3],

[6], [7]). Unsurprisingly, such an assumption results in a

model having uncertainties, however, one should keep in

mind that the goal is to find a model, which matches the

infinite dimensional system in some sense of approximation

with typically M ≪ RL ≤ Ns, where RL denotes the rank

of the correlation matrix L. To represent how good such an

expansion is, a percent energy measure is defined as follows

E =

∑M

i=1 λi
∑RL

i=1 λi

× 100%, (5)

where the tendency of E → 100% means that the model cap-

tures the dynamical information contained in the snapshots

well. Conversely, an insufficient model will be obtained if E

is far below 100%.

The second part of the fundamental assumption empha-

sizes the discretization of the PDE. Since the numerical

solver computes the behavior of the process over a grid

having finite number of pixels, we assume that the solution

obtained over the computational grid is descriptive enough

to admit the solution as a snapshot from the process.

In the next section, we demonstrate how the boundary

condition is transformed to an explicit control input in the

autonomous set of ODEs.

Theorem 2.1: The cost function in (2) is equivalent to (6)

under the fundamental assumption.

J =

∫

∞

0

(weTe + rγ2
1(t))dt, (6)

where e(t) := α(t) − αd(t) and the desired profile is

ud(x, y, t) =
∑M

i=1 αdi(t)Φi(x, y).

The proof of Theorem 2.1 is by direct substitution of (4) and

ud(x, y, t) =
∑M

i=1 αdi(t)Φi(x, y) into (6) and the utilization

of the orthonormality properties of the basis functions.

In the order reduction phase, we need to obtain the

autonomous ODE model first. Towards this goal, if (4) is

a solution to the PDE in (1), then it has to satisfy the PDE.

Substituting (3) into (1) with the fundamental assumption

yields

M
∑

i=1

α̇i(t)Φi(x, y) = c2
M
∑

i=1

αi(t)Ψi(x, y), (7)

where Ψi(x, y) = ∂2Φi(x,y)
∂x2 + ∂2Φi(x,y)

∂y2 . Taking the in-

ner product of both sides with Φk(x, y) and remembering

〈Φi(x, y), Φk(x, y)〉Ω = δik with δik being Kronecker delta

yields

α̇k(t) = c2
M
∑

i=1

αi(t)〈Φk(x, y), Ψi(x, y)〉Ω, (8)

Defining ζk as the entity in Ωd corresponding to the entity

Ψk in Ω, one could rewrite (8) as

α̇k(t) = c2
M
∑

i=1

αi(t)〈φk, ζi〉Ωd
. (9)

Let A,B ∈ R
Ny×Nx . Define the inner product seen in (9) as

A ⋆ B := 1
Ns

∑Ny

i=1

∑Nx
j=1 A(i, j)B(i, j) The equation in (9)

can be written explicitly by using ⋆ operator as

α̇k(t) = c2
M
∑

i=1

αi(t) (φk(x, y) ⋆ ζi(x, y)) . (10)

Notice that ⋆ operator can be applied over nonoverlapping

subdomains of Ωd. This lets us separate the entries cor-

responding to boundaries without modifying the values of

φk(x, y) ⋆ ζi(x, y) as seen in (11),

α̇k(t) = c2
M

X

i=1

αi(t)(φk(x, 0) ⋆ ζi(x, 0) + φk(1, y) ⋆ ζi(1, y) +

φk(x, 1) ⋆ ζi(x, 1) + φk(0, y) ⋆ ζi(0, y)) +

c2
M

X

i=1

αi(t) (φ◦

k
(x, y) ⋆ ζ◦i (x, y)) . (11)
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In above, φ◦

k(x, y) denotes a matrix that is obtained when

the boundary elements of φk(x, y) are removed. The kth

component of the first summation above, which is obtained

when i = k, can be separated from the expression and we

obtain (12), which let us embed the boundary conditions into

the expression,

α̇k(t) = c2αk(t)(φk(x, 0) ⋆ ζk(x, 0) + φk(1, y) ⋆ ζk(1, y) +

φk(x, 1) ⋆ ζk(x, 1) + φk(0, y) ⋆ ζk(0, y)) +

c2
M

X

i=1

αi(t)(1 − δik)(φk(x, 0) ⋆ ζi(x, 0) + (12)

φk(1, y) ⋆ ζi(1, y) + φk(x, 1) ⋆ ζi(x, 1) +

φk(0, y) ⋆ ζi(0, y)) + c2
M

X

i=1

αi(t) (φ◦

k
(x, y) ⋆ ζ◦i (x, y)) .

At this stage of the modeling, we need to paraphrase the

boundary conditions in such a way that the final expression

above can be incorporated with these conditions. The under-

lying idea is straightforward: If (4) is a solution, then is must

be satisfied at the boundaries as well. This lets us write the

following

M
∑

i=1

αi(t)φi(x, 0) = f1(x)γ1(t), (13)

which can be paraphrased as

αk(t)φk(x, 0) = f1(x)γ1(t) −

M
∑

i=1

(1 − δik)αi(t)φi(x, 0).

(14)

The expression above can be inserted into the first line of

(12) and we explicitly see γ1(t) in our expression. Likewise,

repeating the same arrangements for the other three edges

(the boundaries), we end up with

α̇k(t) = c2 (f1(x) ⋆ ζk(x, 0)) γ1(t) + c2 (f2(y) ⋆ ζk(1, y)) γ2(t) +

c2 (f3(x) ⋆ ζk(x, 1)) γ3(t) + c2 (f4(y) ⋆ ζk(0, y)) γ4(t) +

c2
M

X

i=1

αi(t)(φk ⋆ ζi

−φi(x, 0) ⋆ ζk(x, 0) − φi(1, y) ⋆ ζk(1, y)

−φi(x, 1) ⋆ ζk(x, 1) − φi(0, y) ⋆ ζk(0, y)), (15)

which can be written compactly as

α̇(t) = Aα(t) + BΓ(t) (16)

where α(t) = (α1(t) α2(t) . . . αM (t))T, Γ(t) =
(γ1(t) γ2(t) γ3(t) γ4(t))

T and

Aki = c2(φk(x, y) ⋆ ζi(x, y) − φi(x, 0) ⋆ ζk(x, 0)

−φi(1, y) ⋆ ζk(1, y) − φi(x, 1) ⋆ ζk(x, 1)

−φi(0, y) ⋆ ζk(0, y)), (17)

and the kth row of the input matrix is

Bk = c2(f1(x) ⋆ ζk(x, 0) | f2(y) ⋆ ζk(1, y)|

f3(x) ⋆ ζk(x, 1) | f4(y) ⋆ ζk(0, y)). (18)

This result practically lets us have a non-autonomous lin-

ear dynamical model for the infinite dimensional process in

(1), which is aimed to be controlled through the boundaries.

A natural question is whether this model recovers the

unforced dynamics, which is obtained by setting γj(t) = 0
for all four edges, and the steady state dynamics obtained

when α̇(t) = 0. Straightforward manipulations will show

that the dynamics in (8) is recovered in both cases.

As seen clearly, once the finite dimensional model for an

infinite dimensional process is obtained, one might imple-

ment an observer to obtain a useful state information and a

boundary controller to minimize the cost in (2).

III. DESIGN AND ANALYSIS OF THE OBSERVER

First we demonstrate that a PDE observer can be proposed

and the stability is maintained. Consider the following pro-

cess

vt(x, y, t) = c2 (vxx(x, y, t) + vyy(x, y, t)) + K(u − v)

v(x, 0, t) = f1(x)γ1(t), v(1, y, t) = f2(y)γ2(t),

v(x, 1, t) = f3(x)γ3(t), v(0, y, t) = f4(y)γ4(t), (19)

where K > 0 stands for the observer gain and we choose the

following Lyapunov function candidate to study the stability

V =
1

2

∫ 1

0

∫ 1

0

(u − v)2dxdy, (20)

and evaluate its time derivative as seen below,

V̇ =

∫ 1

0

∫ 1

0

(u − v)(ut − vt)dxdy

= −2KV + c2

∫ 1

0

∫ 1

0

z(zxx + zyy)dxdy, (21)

where z := u − v. It is straightforward to show that
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∫ 1

0

∫ 1

0

zzxxdxdy =

∫ 1

0

(

zzx|
x=1
x=0 −

∫ 1

0

z2
xdx

)

dy

= −

∫ 1

0

∫ 1

0

z2
xdxdy, (22)

which is due to the fact that z(1, y, t)zx(1, y, t) −
z(0, y, t)zx(0, y, t) = 0 as z(1, y, t) = u(1, y, t) −
v(1, y, t) = f2(y)γ2(t) − f2(y)γ2(t) = 0 and z(0, y, t) =
u(0, y, t) − v(0, y, t) = f2(y)γ2(t) − f2(y)γ2(t) = 0.

Likewise we have

∫ 1

0

∫ 1

0

zzyydxdy = −

∫ 1

0

∫ 1

0

z2
ydxdy. (23)

Under these conditions, (21) becomes

V̇ = −2KV − c2

∫ 1

0

∫ 1

0

(

z2
x + z2

y

)

dxdy < 0. (24)

Since V̇ < 0 is guaranteed, v(x, y, t) → u(x, y, t) as

t → ∞, i.e. v(x, y, t) reconstructs u(x, y, t) in a globally

exponentially stable fashion. If the process state (u(x, y, t))
is noisy, the observer filters out the noise and enables us to

utilize the process state in the closed loop control system

design.

The question here is whether this observer is useful for

feedback control purposes. Towards this goal, recall the fun-

damental assumption, stating that the M -term summation can

be assumed as the true solution and the error is negligible.

This lets us write v(x, y, t) =
∑M

i=1 βi(t)Φi(x, y), i.e. the

dynamical constituents of the observer are projected onto the

spatial eigenfunctions derived in the modeling stage, and this

lets us have M dimensional observer state, β(t). Substituting

above expression of v(x, y, t) into the PDE in (19) yields

M
∑

i=1

β̇i(t)Φi(x, y) = c2
M
∑

i=1

βi(t)Ψi(x, y) +

Ku(x, y, t) −K

M
∑

i=1

βi(t)Φi(x, y), (25)

where βi(t) is the temporal part corresponding to spatial

eigenbasis Φi(x, y). Taking the inner product of both sides

with Φk(x, y) lets us obtain (26),

β̇k(t) = c2
M
∑

i=1

βi(t)〈Φk(x, y), Ψi(x, y)〉Ω + Kσ(t). (26)

where σ(t) = (σ1(t) σ2(t) . . . σM (t))
T

and

σk(t) = 〈u(x, y, t),Φk(x, y)〉Ω

−

M
∑

i=1

βi(t)〈Φk(x, y), Φi(x, y)〉Ω

= 〈Ut, φk〉Ωd
− βk(t), (27)

where Ut ∈ Ωd is the snapshot of the process at time t.

Following the modeling procedure discussed before, we end

up with the LD observer given below

β̇(t) = Aβ(t) + BΓ(t) + Kσ(t), (28)

where A and B have been defined in (16)-(18). One should

note that the computation of the term σk(t) = 〈Ut, φk〉Ωd
−

βk(t) entails an infinite dimensional output feedback from

the process, Ut, which is projected onto the eigenbasis, φk,

thereby forming a finite dimensional state information that

is the counterpart of αk(t). Clearly, σ(t) can be interpreted

as an equivalent measure for the state error under the

fundamental assumption.

A last remark in this section is about meaning of the Lya-

punov function in (20). Under the presence of the fundamen-

tal assumption, one can write the equalities in (29), which

tells us that the infinite dimensional form of the Lyapunov

function is mapped to a well-known Lyapunov function in

R
M . Therefore the proof of negative definiteness of one

would clearly imply the other as long as the fundamental

assumption holds true. In the next section, we consider the

boundary control of the system by using the state information

from the LD observer.

Vo =
1

2

∫ 1

0

∫ 1

0

(u − v)
2
dxdy

=
1

2

∫ 1

0

∫ 1

0

(

M
∑

i=1

αiΦi −

M
∑

i=1

βiΦi)
2dxdy

=
1

2

∫ 1

0

∫ 1

0

(

M
∑

i=1

eiΦi)
2dxdy

=
1

2
eTe. (29)

IV. LINEAR QUADRATIC OPTIMAL BOUNDARY CONTROL

OF THE 2D HEAT FLOW

In this paper, we study the following scenario. As illus-

trated in Fig. 1, the inputs γ2, γ3 and γ4 are the entries

of external disturbances while γ1 is reserved for the control

signal. We partition the matrix B as B = (Bc Bd), where

Bc is M × 1 vector and Bd is an M × 3 matrix.

At this stage, one needs to know the structural properties

of the state space realization (A, Bc) at hand, e.g. we

need to know whether the states feel the control signal.

For this reason, we have checked the rank of the matrix

pencil (ξI − A|Bc), where ξ is an eigenvalue of A and
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have seen that for all eigenvalues of A, the rank of the

matrix pencil is equal to M = 8. Expectedly, the rank of

the controllability grammian
∫

∞

0
eAtBcB

∗

c eA∗tdt is equal

to M = 8 but the rank of the controllability matrix
(

Bc ABc A2Bc . . . AM−1Bc

)

is equal to 6. We attribute

this conflicting result to the numerical problems associated

to the POD algorithm. Furthermore, this emphasizes that not

all thermal profiles are realizable via feedback control. If we

remember the issues in choosing M , it becomes clear that

as M gets larger, the reconstruction gets better yet the POD

starts dealing with quickly changing signals with the same

∆x and ∆y. This inevitably introduces some uncertainty into

the numerical content on the matrices A and B. According

to the POD procedure, the modes are obtained in the order

of dominance and this order is typically a logarithmic one.

Therefore the modes having higher indices are less relevant

to the essential dynamics and the associated states, though

they may be uncontrollable, have negligibly small effects

on the overall performance of the LD model. Since all

potentially uncontrollable modes are stable, the system is

stabilizable and the possible uncontrollability of these weak

states is not an obstacle, which is the case we encounter in

this study. A natural consequence of this discussion is that

POD may not yield a useful model for every kind of PDE.

Denote the interval for stable models by Ms min ≤ M ≤
Ms max and interval for satisfactorily state reconstructing

models by Mr min ≤ M ≤ Mr max. If the overlap of the

intervals max(Ms min, Mr min) ≤ M ≤ min(Ms max,Mr max)
is not empty and the dominant modes of the models are

controllable, then the model can be used for feedback control

system synthesis. The latter part of the statement contains

some degrees of vagueness as what degree of dominance of

an uncontrollable mode is absolutely a matter of the design

problem in hand. But this discussion empirically shows that

choosing the right number of modes depends upon many

parameters. For the problem considered in this paper, we

have Ms min = 5 and Ms max = rank(L) = 26, Mr min = 8
and Mr max = rank(L) = 26, therefore we have set M = 8
for the simplest possible LD model.

The next issue is the selection of the desired behavior,

which is expressed in terms of a set of temporal variables

(αd(t)) accompanied by the eigenbasis, which means that

the target values of the state variables are available and

accessible, i.e. ud(x, y, t) =
∑M

i=1 αdi(t)Φi(x, y). A block

diagram of the control system is depicted in Fig. 1, where

ni(t) is the noise corrupting the observer inputs while

no(x, y, t) is a spatially continuous noise signal corrupting

the process output, u(x, y, t). According to this scenario,

we would like to minimize the following cost function by

exploiting the state information obtained through the LD

observer;

J =

∫

∞

0

e(t)TWe(t) + rγ2
1(t) dt, (30)

where W = wI ∈ R
M×M is a positive definite weight

matrix and r ∈ R is a positive scalar. r and w are the design

parameters determining the relative importance between the

state tracking precision and control effort. In our case the

tracking precision is more important. The control law is given

by

γ1 = −r−1BT

c

(

AT − Y Bcr
−1BT

c

)

−1
Wαd − r−1BT

cY β,

(31)

where the matrix Y is the solution of following Riccatti

equation

−Y A − ATY − W + Y Bcr
−1BT

cY = 0M×M . (32)

Controller PDE Process 

LD Observer 

J2 J3 J4

u

noni

J2 J3 J4

J1

Dd(t)

E�(t)

Load Disturbances 

n2 n3 n4

Fig. 1. Block diagram of the feedback control system

In order to compute the state tracking error, we adopt the

following time varying reference model

α̇d(t) = c2
d(t)(Aαd(t) + BcR(t)) (33)

where the command signal for 0 ≤ t ≤ 1sec. is R(t) =
sign(sin(10πt)) and for 1sec. ≤ t ≤ T = 2sec. is R(t) =
sin(10πt), which lets us see the performance of the closed

loop control under different sorts of command signals. We

adopt a time varying thermal diffusivity parameter in the

reference model and incorporate this physical fact very easily

as the quantity affects the corresponding model matrices A

and B multiplicatively, and we set cd(t) = 1 + 1
2 sin(4πt).

One should note that the desired behavior is expressed in

terms of the LD model therefore we know that the process is

forced to follow the continuous-in-time snapshots implied by

the reference model, which physically corresponds to a 2D

heat flow with time varying thermal diffusivity parameter.

For the goal of this paper, the state tracking precision is

more important than the control effort. Therefore, in the

simulations, we have chosen the LQ controller weights W =
100IM×M , r = 1, and the observer gain K = 5. These

selections have let us obtain

Y = (−0.8 − 7.78 − 0.98 0.56 7.0 9.2 1.1 − 1.2 ) ,

(34)
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and in simulating the process, we have embedded

the PDE solver into the Matlab/Simulinkr environ-

ment. Two quantities have been investigated. First is
∑M

k=1 (〈Ut, φk〉Ωd
− βk(t))

2
= ||σ(t)||22. The reason why

we check this quantity is to figure out the observer’s perfor-

mance. The smaller the squared norm the closer the states

of the observer to the equivalent process states. The second

quantity is ||αd(t) − β(t)||22, which qualifies the controller

performance. The smaller the quantity the better the state

tracking in R
M and the better the tracking in Ω× t ∈ [0, T ].

The latter implies the desire u(x, y, t) tends to ud(x, y, t)
through boundary excitations. In Fig. 2, the signals exciting

the PDE process are illustrated. The signals shown in the

figure have further been perturbed additively by zero mean

Gaussian noise sequences having noise power 0.002 and the

observer receives the noisy information from the process.

This scenario is implemented to assess the performance of

the observer under realistic operating conditions.
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Fig. 2. Boundary signals exciting the PDE process

In Fig. 3, we illustrate how the designed observer captures

the equivalent process states and how the LQ controller

performs under the depicted simulation conditions. The

upper two subplots are for the first 40 milliseconds of

the simulation, where we see that the two performance

measures have highly desirable characteristics. The bottom

row of subplots depict the whole course of simulation in

a logarithmic vertical axis. According to the results, the

figure shows the fact that observer generates a useful state

information and maintains the accuracy and stability despite

very large initial errors between the α(t) and β(t). It should

be noted that parallel to the philosophy of POD, for dominant

modes both accuracy and stability are substantially important

while for the modes having high indices, the prime concern is

only the maintenance of the stability as they have negligible

effect on the overall behavior.

In Figs. 4 and 5, we illustrate several snapshots from the

system. In both figures, the left columns depict the numerical

solution from the process, the middle plots are the instanta-
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Fig. 3. Observer performance for reconstructing the equivalent process
states and controller performance for state tracking

neous noisy signals (snapshots) fed to the observer and the

right columns show the estimates obtained from the observer.

Clearly the observer functions well in reconstructing the

noiseless system response shown on the left column. since

T = 2 seconds, we sample the temporal evolution at integer

multiples of 0.4 seconds and form the rows in Figs. 4 and 5.

These results justify the claims of the paper. The next section

summarizes the contributions of the paper to the subject area.

V. CONCLUSIONS

This paper considers observer based LQ optimal boundary

control of a particular type of 2D heat flow described in

(1). The infinite dimensional process is approximated by

a reduced order model by utilizing the POD technique

with Galerkin projection. Having obtained the a model for

the PDE process, an infinite dimensional version of the

observer is proposed first and the necessary stability proof is

given, then the finite dimensional form is postulated and the

correspondence between them are investigated. The external

excitations stimulate the process through the 1D segments of

the physical domain Ω, and the cost function is a quadratic

one over an infinite time horizon. We therefore follow an

optimal controller design scheme with the LD model and

validate the controller with the PDE process. Quite rich ther-

mal distributions are obtained due to the excitation through

the boundary layer. According to the results obtained, we

observed the following: 1) The LD model with control

inputs separated appropriately functions well on some class

of boundary conditions conditions. 2) The entire procedure

of modeling and control system design is tightly dependent

upon the fundamental assumption which is assumed to hold

true for the considered process. 3) The simulation results

have justified the claims and have shown that the selection of

the mode number and the associated tradeoff emphasizes the

case specificity. 4) The designed controller is able to reject

the known load disturbances to an admissible extent. 5) The

observer is able to alleviate initial errors, ni(t), no(x, y, t),
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Fig. 4. Left: The snapshots from the process (u(x, y, t)), Middle: The
noisy snapshots (u(x, y, t) + no(x, y, t)) and Right: The response of the
LD observer. The plots are for 0 ≤ t ≤ 1 sec.

and provide a reasonably clear state information that is to be

used by the controller (See Figs. 4-5).

The results presented advance the subject area to the

fact that POD based LD models can guide designing LD

observers, and Lyapunov stability analysis help significantly

in investigating the closed loop stability and classical tools

can be used in the controller design. One fact needs em-

phasis, the fundamental assumption, i.e. the interchange-

ability of v(x, y, t) =
∑RL

i=1 βi(t)Φi(x, y) and v(x, y, t) =
∑M

i=1 βi(t)Φi(x, y) with M < RL indicate the information

loss due to the negligence of the modes M+1,M+2, . . . , RL

is tolerable. This clearly highlights the case specificity in

POD based modeling and control system synthesis works.

The future work in this field aims at implementing the

modeling and control strategy for more demanding PDE

processes.
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Fig. 5. Left: The snapshots from the process (u(x, y, t)), Middle: The
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