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ABSTRACT 
This paper presents the low dimensional modeling 
and boundary feedback controller design for 2D heat 
flow. Proper Orthogonal Decomposition (POD) is 
used in model reduction phase and root locus 
technique is employed in the synthesis of the control 
system. The results have shown that the boundary 
controller can enforce a desired behavior at a chosen 
spatial location very successfully 
 

I. INTRODUCTION 
Control of processes governed by Partial Differential 
Equations (PDEs) is an interesting research topic. A 
widely followed method is to apply a model reduction 
scheme, [1-5] and then design a control system for the 
finite dimensional model. This paper follows the 
same reasoning and discusses the issues of modeling 
and controller design on 2D heat flow problem. 
Although some preliminary results have been 
presented in [1], this paper extends the way of 
excitation from Dirichlet type corner stimuli to 
excitations effective along the boundaries of a square 
domain. The second section summarizes the POD 
algorithm specific to the modeling of 2D heat flow 
problem. In the third section, development of the 
reduced order model for the 2D heat flow is analyzed. 
The fourth section presents the modeling results with 
an emphasis on the spectral dependence of the model 
to the operating conditions. In the fifth section, we 
focus on the design and analysis of the observer and 
the feedback control design is explained in the sixth 
section. The seventh section summarizes the 
contribution of the paper to the subject area and 
positions the paper within the cited references with 
emphasis on the introduced originality. The 
concluding remarks are given at the end of the paper. 
 

II. POD METHOD 
Consider the ensemble ),( yxUi , i = 1,2,...Ns, where 

Ns is the number of elements. Every element of this 
set corresponds to a snapshot observed from a 
process, say for example 2D heat flow with initial and 
boundary conditions, 
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where, c is the known constant thermal diffusivity 
parameter, and the subscripts x, y and t refer to the 
partial differentiation with respect to x, y and time, 
respectively. The continuous time process takes place 
over the domain Ω:={(x,y)|(x,y)∈[0,1]×[0,1] } and the 
solution is obtained on a spatial grid denoted by Ωd, 
which describes the coordinates of the pixels of every 
snapshot in the ensemble. The entities described over 
Ωd are matrices in ℜNy×Nx. Note that in (1), fi(.) for 
each i is a function that describes how γi(t) influences 
the behavior along the corresponding edge of Ω. fi(.)s 
can be selected arbitrarily yet for every i, fi(0)= 
fi(1)=0 so that the problem description is consistent at 
the corners of Ω, and γi(t) becomes independent from 
γi(t) for i≠j and the external excitations can be 
selected arbitrarily. With this problem description, the 
goal of applying POD is to find an orthonormal basis 
set letting us to write the solution as 
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where αi(t) is the i-th temporal mode, Φi(x,y) is the i-
th spatial function (basis function or the 
eigenfunction), RL is the number of independent basis 
functions that can be synthesized from the given 
ensemble, or equivalently that spans the space 
described by the ensemble. It will later be clear that if 
the basis set {Φi(x,y)}i=1

RL is an orthonormal set, 
Galerkin projection yields the autonomous set of 
ODEs directly, [2-4]. The modeling problem is 
considered under the assumption that the flow is 
dominated by coherent modes. The typical spread of 
the eigenvalues of the correlation matrix turns out to 
be logarithmic and the terms decay very rapidly in 
magnitude. This fact enables us to assume that a 
reduced order representation, say with M modes 
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(M<RL) can also be written as an equality in (3) or in 
discretized form in (4) 
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where φi∈ℜNy×Nx is a sampled form of the basis 
function Φi defined over Ω. The reduced order model 
is derived under the assumption that (3) satisfies the 
governing PDE in (1), [1-4]. Unsurprisingly, such an 
assumption results in a model having uncertainties, 
however, one should keep in mind that the goal is to 
find a model, which matches the infinite dimensional 
system in some sense of approximation with typically 
M<<RL≤Ns. The next section presents how the terms 
are manipulated to get a meaningful dynamical 
model. 
 

III. MODEL REDUCTION 
In the order reduction phase, we need to obtain the 
autonomous ODE model first. Towards this goal, if 
(3) is a solution to the PDE in (1), then it has to 
satisfy the PDE. Substituting (2) into (1) with the 
above assumption yields 
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where Ψi(x,y)=Φi xx+Φi yy. Taking the inner product of 
both sides with Φk(x,y) and remembering 
〈Φi(x,y),Φk(x,y)〉Ω=δik with δik being Kronecker delta 
results in 
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Defining ζk as the entity in Ωd corresponding to the 
entity Ψk in Ω, one could rewrite (1) as 
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The operator denoted by ⊕ computes a real number 
that is the sum of all elements of a matrix obtained 
through the elementwise multiplication of the two 
matrices that ⊕ lies in between. Notice that ⊕ 
operator can be applied individually over 
Ωd1, Ωd2,..., Ωdn which are n nonoverlapping 
subdomains of Ωd such that Ωd1∪ Ωd2∪...∪Ωdn = Ωd. 

This lets us separate the entries corresponding to 
boundaries without modifying the value of dik Ω〉〈 ζ,φ  

i.e. φk⊕ζi. Now we need to paraphrase the boundary 
conditions in such a way that the expression in (7) can 
be incorporated with these conditions. The underlying 
idea is straightforward: If (3) is a solution, then is 
must be satisfied at the boundaries as well, i.e. 
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which can be paraphrased as 
 

∑
=

−−=
M

i
iiikkk xttxfxt

1
11 )0,()()1()()()0,()( φαδγφα  (9) 

 
Expanding the boundary terms of (7), repeating the 
same reasoning for every boundary term and 
concatenating the obtained terms in one expression 
yield the state space model 
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Where α(t)=[α1(t) α2(t) ... αΜ(t)]T is the state vector, 
Γ(t)=[Γ1(t) Γ2(t) Γ3(t) Γ4(t)]

T is the input vector and 
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and the k-th row of the input matrix is 
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This result practically lets us have a representative 
linear dynamical model for the infinite dimensional 
process in (1), which is aimed to be controlled 
through the boundaries. The next section presents to 
what extent the modeling strategy discussed here 
could be successful. 
 

IV. JUSTIFICATION OF THE DYNAMIC 
MODEL 

According to the described procedure, several tests 
have been done. Due to the numerical advantages, the 
PDE has been solved by using Crank-Nicholson 
method (See [6] for details), with a step size of 1 
msec. The initial thermal distribution is taken zero 
everywhere and the thermal diffusivity constant is set 
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as c=2. In order to form the solution, a linear grid 
having Nx=Ny=25 points in x-direction and y-direction 
respectively. According to the above parameter 
values, a set of 501 snapshots embodies the entire 
numerical solution, among which a linearly sampled 
N=251 snapshots have been used for the POD 
scheme. Although one may use the entire set of 
snapshots, it was shown that a reasonably descriptive 
subset of them can be used for the same purpose. In 
the literature, this approach is called method of 
snapshots, which significantly reduces the 
computational intensity of the overall scheme, [2],[4]. 
Once the modes have been obtained, we truncate the 
solution at M=9, which represents 99.9704% of the 
total energy contained in the solution. 
 
In order to demonstrate the performance of the 
dynamic model, we choose the functions that are 
effective along the boundaries as f1(x)=sin(2πx), 
f2(y)=sin(2πy), f3(x)=-sin(2πx) and f4(y)=-sin(2πy). As 
the temporal excitations we chose the following input 
signals, 
 

))4/(50π2sin(5)(

))3/(56π2sin(5)(

))2/(55π2sin(5)(

))(70π2sin(5)(

4

3

2

1

tTtt

tTtt

tTtt

tTtt

−=
−=
−=

−=

γ
γ
γ
γ

 

(13) 
(14) 
(15) 
(16) 

 
where T=0.5 seconds. The choice of the above 
excitations signals is deliberate as they are spectrally 
rich enough. Under these conditions, the temporal 
variables obtained form the POD algorithm are 
observed to be very close to those obtained from the 
low dimensional (LD) model and this observation 
indicates that the LD model is a good representative 
for the chosen test conditions. Undoubtedly, one 
would expect a good match between the state 
variables obtained from the POD algorithm and the 
state variables obtained through the numerical 
solution of the ODE set in (10). One might question 
whether the model is specific to the boundary 
conditions above. Remedying this is accomplished by 
choosing another set of external excitations and 
obtaining the response of the model without 
modifying the model parameters. For this purpose, we 
set 
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and obtained the results illustrated in Figure 1. Every 
subplot of the figure depicts two curves, which are 
very close to each other. According to the figure, the 
state variables are obtained precisely when the 
relevant signal changes slowly. During the regions 
where the signals change quickly, there is some 
visible discrepancy due to the spectral dependence of 
the model properties to the signals used during the 
derivation of the model. This can be shown by taking 
the Laplace transform of the PDE in (1). 
 
If the boundary signals are spectrally rich enough, 
then their effects are reflected to the snapshots as 
much as the system dynamics in (1) permits. 
Unsurprisingly, the properties specified indirectly by 
the snapshots will be inherited by the LD model. As a 
result, the richer the boundary excitations spectrally 
the better the snapshots contain the spectral properties 
of the system dynamics. To sum up, the signals used 
in the modeling stage have significant effects on the 
performance of the LD model and those signals have 
to excite the system persistently in order to obtain a 
reasonably descriptive model. 
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Figure 1: αk(t) from POD and those from the LD 
model in (10) for the test boundary excitations. 

 
V. ROOT LOCUS BASED BOUNDARY 
CONTROL OF THE 2D HEAT FLOW 

Root locus is a very powerful technique in designing 
feedback controllers. Since the representative model 
of the process is a finite dimensional linear plant, we 
can utilize the technique for designing a simple yet 
effective feedback controller. In this paper, we study 
the following scenario. As illustrated in Figure 2, the 
inputs γ2, γ3 and γ4 are the entries of external 
disturbances while γ1 is reserved for the control 
signal. We partition the matrix B as B = [Bc Bd], 
where Bc is M×1 vector and Bd is M×3 matrix. 
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Figure 2: Block diagram of the feedback control 

system. 
 
The control problem is to force the behavior at a 
measurement point towards a desired profile by 
altering γ1(t) appropriately. The process output, 
u(x,y,t), is corrupted by a spatially continuous noise 
signal, no(x,y,t) whose power is 0.002 and u(x,y,0) is 
randomly set. The other disturbance signals are γ2(t) = 
0.1sin(40πt), γ3(t) = 0.1sgn(sin(50πt)) and γ4(t) = 
0.1sin(90πt). Such disturbance entries excite the PDE 
process both abruptly and smoothly thereby letting us 
see the disturbance rejection capability of the closed 
loop control system. As the reference signal, we 
choose 
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which lets us see the performance under smooth and 
sharp command signals. To achieve the goal, we first 
notice that the open loop system is Type-0 and we 
introduce a pole at s=0 to make the open loop transfer 
function Type-I. Although this is sufficient to track 
very slowly changing command signals for the 
problem at hand, we further add a real pole at $s=-
1000$ to modify the root locus letting us more 
comfortably place the closed loop poles so that rise 
time is reduced significantly. Utilizing the graphical 
tools of Matlab®, the gain of the controller is adjusted 
so that no overshoot in the step response is observed. 
The global and zoomed root locus plots taking the 
poles introduced by the controller into account are 
illustrated in Figure 3, from which one can see the 
locations the closed loop poles too. 
 
According to the above discussion and the design 
efforts, we come up with the controller given as 
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The results of the simulations are shown in Figure 4, 
where the top subplot depicts the command signal and 
the measurement from the PDE process, u(xm,ym,t) 
with xm = 5∆x and ym = 5∆y, where ∆x=1/(Nx−1) and 

∆y = 1/(Ny-1). The process output closely follows the 
reference signal and this observation enables us to 
conclude with the usefulness of the POD based LD 
model. The middle subplot of Figure 4 shows the 
difference ud(t)−u(xm,ym,t). The trend seen emphasizes 
that the error is suppressed successfully by the 
controller. The bottom subplot of the figure 
demonstrates the applied control signal, γ1(t). The 
control signal is reasonably smooth and the controller 
is successful in rejecting the disturbances admissibly, 
which are two prominent features of the controller. 
 
The results justify the following claim: The design of 
a feedback boundary controller can be based upon a 
reduced order model that can be obtained through the 
POD algorithm. The next section summarizes the 
contributions of the paper to the subject area. 
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Figure 3: Root locus plots with the contribution of 
the controller (a) global view (top); (b) near origin 

view (bottom) 
 

VI. CONCLUSIONS 
This paper considers POD based LD modeling of 2D 
heat flow and its control through boundaries. The 
paper validates the model and emphasizes that the 
model is useful over a set of operating conditions. 
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The boundary control is achieved by a simple 
controller obtained through the use of root locus 
technique. One of the contributions is the extension of 
a previously proposed approach from pointwise 
excitation to excitations along nonpoint subdomains, 
i.e. the excitation along the boundaries. The 
separation scheme lets us use the model not only for a 
predetermined boundary control regimes, but also for 
a set of boundary excitations. The paper also 
emphasizes the spectral dependence, which is 
substantial for determining snapshot collection 
conditions. This paper advances the subject area to 
the clarification of the following fact: POD is a 
powerful technique but its usefulness depends upon 
the PDE in hand, problem settings and the associated 
operating conditions. In other words, the technique 
presented here can be applied to flows governed by 
more complicated PDEs, e.g. those we encounter in 
fluid dynamics or aerospace applications, together 
with the presence of stringent considerations that are 
highlighted above. 
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Figure 4: Simulation results 
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