
International Conference on Control, Automation and Systems 2008

Oct. 14-17, 2008 in COEX, Seoul, Korea

Prediction of Dynamical Properties of Flow Over a Three-element

Airfoil via Computationally Intelligent Architectures

Coşku Kasnakoğlu1,2 and Mehmet Önder Efe1

1Department of Electrical & Electronics Engineering, TOBB University of Economics and Technology, Ankara, Turkey.
2Corresponding author. Email: kasnakoglu@etu.edu.tr

Abstract: In this paper we study various computationally intelligent architectures for prediction of pressure values and

velocity components of flow past a three-element airfoil. Six sensor locations are selected around the airfoil and the goal

is to predict the flow behavior at the rear of the airfoil using pressure readings from the remaining five sensors. To make

the problem more interesting we require the predictor to estimate the flow twenty time steps ahead of current time. Data

is collected from CFD simulations of the flow and predictors are built using four different computationally intelligent

architectures: Multilayer Perceptron (MLP), Adaptive Neuro Fuzzy Inference System (ANFIS), Radial Basis Function

Neural Network (RBFNN), and Least Squares Support Vector Machine (LS-SVM). Levenberg-Marquardt optimization

technique is utilized for parameter tuning purposes. In addition, a simple linear predictor is built as a benchmark for com-

paring the MLP, ANFIS, RBFNN, and LS-SVM based predictors. It is observed that MLP and ANFIS based predictors

achieve the best prediction, and the performace of all predictors are superior to that of the simple linear predictor.

Keywords: computational intelligence, artificial neural networks, air flow, Navier-Stokes, NS, airfoil, pressure prediction,

velocity prediction, multilayer perceptron, MLP, adaptive neuro fuzzy inference system, ANFIS, radial Basis function

neural network, RBFNN, least squares support vector machine, LS-SVM

1. INTRODUCTION

Due to their ability to learn from observed data, Ar-

tificial Neural Networks (ANNs) have found extensive

fields of application, especially where the data contains

hidden implications which are impossible to model by

hand [1]. Several types of ANNs exist, each with its

own advantages and drawbacks peculiar to the chosen

structure. Among the most common type of ANNs one

can find the Multi Layer Perceptron (MLP) [2], the Ra-

dial Basis Function Neural Network (RBFNN) [3–5], the

Support Vector Machine (SVM) [7–9] and the Adaptive

Neuro Fuzzy Inference System (ANFIS) [10–13].

In this paper, we apply the methods mentioned above

to a problem regarding the prediction of pressure and ve-

locity fields on a three element airfoil. Airfoil analysis

and design is undoubtedly a major facet of aerodynam-

ics. The particular problem of predicting certain charac-

teristics of an airfoil from measurements at hand is also

an important problem to which considerable research ef-

fort has been devoted [14–18]. In this paper we attempt

to build a predictor based on MLP, RBFNN, LS-SVM

and ANFIS, which predicts the pressure and velocity at a

given point on the airfoil, from measurements taken from

certain other locations. Pressure is often the only quantity

that is feasible to measure and moreover, pressure sensors

can only be placed at a limited number of locations on the

airfoil. Therefore to obtain information on flow variables

other than pressure and at locations other than where the

sensors are installed, such a predictor is of potential ben-

efit.

2. PROBLEM DESCRIPTION

The problem we consider regards the airflow over a

three element airfoil, and our goal is to predict the pres-

sure and velocities at the rear of the airfoil using pres-

sure measurements at five other locations on the airfoil.

We study a cross section of the airfoil over the domain

Ω := Ω1 \ Ω2, where Ω1 ⊆ R
2 is the rectangle given by

[a, b] × [c, d], and Ω2 ⊆ Ω1 is the domain corresponding

to the interior of the airfoil. The flow over the airfoil is

governed by the 2D incompressible Navier-Stokes equa-

tions

∂q

∂t
+ q · ∇q = −

∇p

ρ
+ ν∇2q

∇ · q = 0 (1)

where t ∈ R+ is the temporal variable, (x, y) ∈ Ω are

the coordinates of a point in the flow domain, ν ∈ R+ is

the kinematic viscosity, q : Ω × R+ → R
2 is velocity of

the flow, p : Ω × R+ → R is the pressure, and ρ ∈ R+

is air density. Let u denote the horizontal component of

q, and let v denote the vertical component. The flow is

subject to the initial conditions

u(x, y, 0) = v(x, y, 0) = 0 for (x, y) ∈ Ω

and boundary conditions

u(a, y, t) = uin, v(a, y, t) = 0 for y ∈ [c, d], t ∈ R+

u(x, c, t) = uin, v(x, c, t) = 0 for x ∈ [a, b], t ∈ R+

u(x, d, t) = uin, v(x, d, t) = 0 for x ∈ [a, b], t ∈ R+

∂p

∂x
(b, y, t) = 0 for y ∈ [c, d], t ∈ R+

u(x, y, t) = v(x, y, t) = 0 for (x, y) ∈ ∂Ω2, t ∈ R+

381

Fig. 1 The airfoil geometry, sensor locations and the

mesh used for numerical simulations.

where ∂Ω2 is the surface of the airfoil. The initial and

boundary conditions represent a situation where the wing

is stationary in a wind tunnel, after which the air starts

flowing from the left to right at speed uin. Fig. 1 shows

the airfoil geometry and sensor locations, together with

the mesh used for numerical simulations. The numerical

simulations are performed using the Navier2d solver for

MATLAB [19]. The pressure sensors are located at the

front (S1) and rear (S2) of the first element, top (S3) and

bottom (S4) of the second element, and at the front (S5)

of the third element. The sensor measurements are takes

every ∆t seconds, where ∆t is the time step. The goal is

to predict the flow behavior at the rear of the airfoil (S6),

using measurements from sensors S1-S5. To make the

problem more interesting and challenging, we seek for a

predictor that will predict the flow behavior D time steps

ahead, where D ∈ N. More formally, we would like to

find functions fp, fu, fv : R
5 → R such that

p6(k + D) = fp(p1(k), p2(k), p3(k), p4(k), p5(k))

u6(k + D) = fu(p1(k), p2(k), p3(k), p4(k), p5(k))

v6(k + D) = fv(p1(k), p2(k), p3(k), p4(k), p5(k))

for k ∈ N where p1(k) is defined as p1(k) :=
p(xS1, yS1, tk), with tk = k∆t and (xS1, yS1) ∈ ∂Ω2

is the location of sensor S1. The definitions for p2(k),
p3(k) and so on follow similarly. As mentioned in the

introduction, the functions fp, fu and fv will be sought

using four different ANN architectures, which will be de-

scribed briefly in the section following.

3. MODELING STRATEGIES

This section introduces the MLP, RBFNN, ANFIS and

LS-SVM structures briefly.

3.1 Multilayer Perceptron

The structure of MLP with two hidden layers, m inputs

and single output is illustrated in Fig. 2. The motivation

of utilizing MLP structures for applications involved with

possibly large numerical data sets is the ability of discov-

ering hidden relations within a massively interconnected

network structure. Possibility of changing the configura-

um

...

u2

u1

f
...

...
...

...

Fig. 2 Structure of a MLP containing two hidden layers

and a single output

tion and the availability of very efficient learning mecha-

nisms make the MLP structure a good alternative to fol-

low in applications like the one considered in this paper.

For learning with the MLP structure, consider the regres-

sion problem over the pairs

T = {(u1,d1), . . . , (uNT
,dNT

,dNT
)}, ui ∈ R

m, di ∈ R
n

(2)

Compactly, denote the number of layers excluding the

input layer by H and the ith layer output vector by hi,

where hi = Φ(si) and si is the vector of net sums com-

puted as

si = wihi−1 + Bi, i = 1, 2, . . . ,H (3)

where wi and Bi correspond to the weight and bias terms

of the ith layer. It is clear that for a NN structure with two

hidden layers containing hyperbolic tangent type activa-

tion functions, and a linear output layer, the successive

computations through the network (one forward pass to

compute the output) would be

h0 = u (4a)

s1 = w1h0 + B1 and h1 = tanh(s1) (4b)

s2 = w2h1 + B2 and h2 = tanh(s2) (4c)

s3 = w3h2 + B3 and f = s3; (4d)

where the weight and bias terms seen above have ap-

propriate dimensions and the input-output relation would

simply be f = w3 tanh(w2 tanh(w1u+B1)+B2)+B3.

Once a structure is built, the next issue is to adopt a

suitable learning strategy. Although there are numer-

ous alternatives for tuning the MLP weights and biases,

Levenberg-Marquardt (LM) optimization technique is the

one that is frequently used for its rapid convergence.

The LM algorithm is an approximation to the Newton’s

method, and both of these methods have been designed to

solve the nonlinear least squares problem, (See [20, 21]).

Since the problem considered here is involved with of-

fline training of a MLP structure, LM algorithm fits our

problem setting well. We vectorize the set of all ad-

justable parameters and denote this vector by ω, which

is a P × 1 vector. At time k, a cost function, which is

an empirical risk function, qualifying the performance of

382

the interpolation can be given as

E(ωk) =
1

2

NT
∑

i=1

||di − f(ui, ωk)||2 (5)

and the LM update is formulated as

ωk+1 = ωk −
(

αI + ∇2
ωk

E(ωk)
)−1

∇ωk
E(ωk) (6)

where α > 0 is a user-defined scalar design parameter

and I is an identity matrix of appropriate dimensions. It is

important to note that, for small α, (6) becomes the stan-

dard Gauss-Newton method, and for large α, the tuning

law becomes the standard Error Backpropagation (EBP)

algorithm. Therefore, LM method establishes a good bal-

ance between EBP and Gauss-Newton strategies.

3.2 Radial Basis Function Neural Networks

RBFN structure is a special class of ANN that operate

on the basis of features. The regions of the input space are

partitioned by the basis functions that become active on

some subset of the input space and the input-output inter-

polation is carried out based on this locality based mech-

anism. Simply, the output of a RBFNN structure can be

computed via weighted sum of all activation degrees of

neurons containing the feature vectors. In summary, the

output of a neuron is given by

f =
H

∑

i=1

yihi (7)

where

hi =

m
∏

j=1

µij(uj , cij , σi, φij) . (8)

The adjustable parameters of the RBFNN structure are

the centers (cij), variances (σi) and other relevant shape

parameters (φij) for the basis functions in (8), and weight

parameters (yi) in (7). As the tuning strategy, we choose

the LM algorithm presented in the previous subsection.

3.3 Adaptive Neuro-Fuzzy Inference Systems

Fuzzy logic offers one natural way for representing

knowledge that is similar to human reasoning. Partition-

ing the input space by the use of fuzzy membership func-

tions, determining the local conclusions through rules

and utilizing a flexible method of combining the local-

ized information result in a highly interpretable and use-

ful model that acts globally. ANFIS, in this respect, is one

of the widely known architectures exploiting the power of

connectionist structures while maintaining the verbal na-

ture through membership functions and inference mech-

anisms, [10]. In the ANFIS structure illustrated in Fig.

3, the crisp inputs are fuzzified through the computation

of membership functions. This practically maps the input

space to a feature space characterized by fuzzy sets. In

the inference engine, computed membership values for

each rule are converted into a firing strength that indi-

cates the activation level of the rule. The parameters of

 Rule Base Inference Normalization Defuzzification

 Engine

Ñ

Ñ

Ñ

m

m

R

Rm

u1 um

u1 um

u1 um

f

u

um

11
~

z

22
~

z

RR z
~

1
~

2
~

R
~

Fig. 3 Internal connectivity of ANFIS structure

the membership functions and auxiliary parameters are

stored in the knowledge base, and a defuzzifier maps the

output of the inference engine to a scalar output value,

which is crisp. As shown also on the figure, defining θi as

the firing strength and θ̃i as the normalized firing strength

of ith rule, the input output relation of the ANFIS struc-

ture with the rulebase structure containing R rules having

the structure IF u1 is Ur,1 AND u2 is Ur,2 AND . . . AND

um is Ur,m THEN yr = zr, product inference and first

order Sugeno type defuzzifier is as given in (9a)-(9d) (See

[22]). Note that Ur,i stands for the fuzzy set characterized

by the membership functions and yr in the rth rule is the

local conclusion suggested by the rule.

θi =
m
∏

j=1

µij(uj) (9a)

θ̃i =
θi

∑R
k=1

θk

(9b)

zi = ζi +
m

∑

j=1

φijuj (9c)

f =
R

∑

i=1

θ̃izi (9d)

In (9a) and (9c) uj corresponds to the jth entry of the

input vector u. According to (9d), it is seen that the AN-

FIS structure has single output. The training is achieved

by adopting a hybrid tuning mechanism. Specifically, ζi

and φij are adjusted by Least Mean Squares (LMS) al-

gorithm, while the other parameters are tuned by EBP

method. It is emphasized in [10] that such a tuning

scheme reduces the dimensionality of the search space

of EBP algorithm and speeds up convergence.

3.4 Least Squares Support Vector Machines

Support vector machine technique is an alternative ap-

proach that is based on the minimization of a structural

risk function instead of the empirical risk function. The

methods introduced above are based on the latter and

therefore, the performance of SVMs are much higher

383

than those structures, especially in classification prob-

lems. However, regression problems have a different na-

ture, so requiring the best fit to a set of data might result

in a situation recommending one of the strategies con-

sidered above. Least squares support vector machines,

as discussed in detail in [9], is a special class of SVMs

changing the inequality constraints to equality constraints

and resulting in the loss of sparseness properties. In this

paper we consider LS-SVM setting as our goal is to ap-

proach the target values as much as possible. Consider

the regression problem over the pairs

T = {(u1, d1), . . . , (uNT
, dNT

)}, ui ∈ R
m, di ∈ R

(10)

with a function

f(u) = wTϕ(u) + δ (11)

where w and δ denote the weight vector and the bias

value, respectively. ϕ stands for an implicitly defined,

possibly a nonlinear map allowing the application of ker-

nel trick wherever necessary. Defining the error ei :=
di − f(ui) and minimizing the structural risk given by

R =
1

2
||w||2 +

C

2

NT
∑

i=1

e2
i (12)

lets us obtain the best values of wis causing least com-

plexity represented by ||w||2, where C is the regulariza-

tion constant determining the relative importance of the

terms contributing to R, [23]. According to (12), large C
results in better fit to the given data. The primal form of

the optimization problem can be expressed compactly as

min
w,δ,e

1

2
||w||2 +

C

2

NT
∑

i=1

e2
i (13)

such that di = wTϕ(ui) + δ + ei, i = 1, 2, . . . , NT

The problem described above can be converted into an

optimization problem by exploiting the dual representa-

tion. Denoting the Lagrange multipliers by λ, the La-

grangian can be constructed as in

L(w, δ, e, λ) =
1

2
||w||2 +

C

2

NT
∑

i=1

e2
i

−

NT
∑

i=1

λi

(

wTϕ(ui) + δ + ei − di

)

(14)

and the solution to this optimization problem is ob-

tained at the saddle point of the Lagrangian, i.e.

max
λ

min
w,δ,e

L(w, δ, e, λ). The conditions of optimality are

given as

∂L

∂w
= 0 =⇒ w =

NT
∑

i=1

λiϕ(ui) (15)

∂L

∂δ
= 0 =⇒

NT
∑

i=1

λi = 0 (16)

200 400 600 800 1000

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

t

p

Test data

MLP

RBFNN

ANFIS

LS−SVM

Linear

Fig. 4 Pressure prediction results

200 400 600 800 1000

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

t

u

Test data

MLP

RBFNN

ANFIS

LS−SVM

Linear

Fig. 5 Velocity (u component) prediction results

∂L

∂ei

= 0 =⇒ λi = Cei, i = 1, 2, . . . , NT (17)

∂L

∂λi

= 0 =⇒ wTϕ(ui)+δ+ei−di = 0, , i = 1, 2, . . . , NT

(18)

The solution can be obtained by solving the NT +1 equa-

tions simultaneously. These equations are

δ+
λk

C
−dk+

NT
∑

i=1

λiϕ(ui)
Tϕ(uk) = 0, k = 1, 2, . . . , NT

(19)

4. SIMULATION RESULTS

In this section, the comparison of the obtained re-

sults are discussed. The tests start with the generation

of the training, checking and testing data sets. The sys-

tem described in Section 2. and shown in Fig. 1 has

been simulated using Navier2d solver in MATLAB for

25.2 × 10−3s of time with ∆t = 1.5112 × 10−5 s cor-

responding to 1666 instants of time. The simulation pa-

rameters, described in Section 2., have been selected as fol-

lows: a = −0.75 m, b = 2.25 m, c = −1 m, d = 1 m,

384

200 400 600 800 1000

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

t

v

Test data

MLP

RBFNN

ANFIS

LS−SVM

Linear

Fig. 6 Velocity (v component) prediction results

ρ = 1 kg/m3, ν = 10−5 m2/s, uin = 68 m/s(≈
Mach 0.2). In generating the training data, we first scale

the simulation data for p by 1000, u by 65 and v by 30
so as bring the data into a range that is appropriate for the

computationally intelligent methods. We set the number

of training data NT = 400 and randomly select these

rows. The information coming from the sensors S1-S5

are the inputs to the predictor, whereas the desired output

is D = 20 steps ahead value of the information read at

S6. This is particularly important as the prediction hori-

zon is prolonged, the prediction performance of simpler

models degrade significantly. The pairs chosen for train-

ing set are marked and are excluded in further data se-

lection. Regarding the checking data, which enables the

designer to stop training at the best generalization level,

we set NC = 100 and consider the remaining data for

validating the models.

In MLP approach, the configuration of the model is

H1 = 15 and H2 = 8 for the number of hidden layer neu-

rons, with hyperbolic tangent type neurons, and a linear

output layer having a single neuron. The MLP structure

has 227 adjustable parameters. ANFIS approach consid-

ers two linguistic labels for each input leading to a total

of 32 rules pointing 222 adjustable parameters in total.

In the case of RBFNN, we choose Gaussian functions as

basis functions and consider H = 32 hidden neurons.

The number of adjustable parameters in this approach is

225. Regarding the LS-SVM approach, bspline kernel is

utilized with C = 10. In this approach, due to the loss

of sparseness properties, [9], all of the training pairs are

contained as support vectors. We have chosen the set-

tings for the approaches to result in a comparable number

of adjustable parameters so as to render the complexities

similar and thus making it fair to perform a comparison.

Three sets of experiments have been carried out. In

all cases, the predictions are based on the pressure values

read from sensors S1-S5, but in the first case the value to

be predicted is the pressure p at S6, in the second case is

it the u component of the flow velocity at S6, and in the

third case, it is v component of the flow velocity at S6.

Method p Prediction u Prediction v Prediction

MLP 1.4194e-007 1.6056e-007 1.928e-005

RBFNN 8.8575e-006 6.1744e-005 2.3624e-004

ANFIS 2.5051e-009 4.4698e-011 3.8114e-009

LS-SVM 1.2413e-005 1.5837e-005 3.9192e-004

Linear 4.0742e-005 6.9796e-003 1.5509e-002

Table 1 MSE Values for Training Data

Method p Prediction u Prediction v Prediction

MLP 3.1378e-007 7.7433e-007 3.2086e-005

RBFNN 8.8575e-006 6.1744e-005 2.3624e-004

ANFIS 3.5955e-007 6.1744e-005 3.1844e-005

LS-SVM 4.4334e-006 5.7278e-006 1.4110e-004

Linear 4.0742e-005 7.0000e-003 1.5500e-002

Table 2 MSE Values for Unseen Test Data

For every case, a separate training and testing has been

carried out. Based on these, in Table 1, the mean squared

error (MSE) levels obtained during the training phases

are tabulated. According to the table, smallest values

are obtained with the ANFIS based predictor yielding the

S6(k+20) based upon the observations at time k. A closer

look would choose MLP structure as the second method

that performs well. LS-SVM and RBFNN approaches are

seen to perform poorer than these two methods. A simple

linear estimator of the form S6(k + 20) =
∑5

i=1
ωiSi(k)

is also built for benchmark purposes. The error levels

seen in Table 1 are very small as these quantities are for

the data manipulated by the training algorithm. The per-

formances of the methods for unseen test data are given in

Table 2, where it is seen that the MLP and ANFIS based

predictors are the best performing two approaches that

yield accurate predictions for the target data. Clearly,

the linear predictor fails totally in providing the veloc-

ity predictions. RBFNN and LS-SVM approaches yield

poorer results that ANFIS and MLP. In Fig. 4, we il-

lustrate the pressure predictions based on pressure mea-

surements, whereas in Fig. 5 and in Fig. 6, the velocity

predictions along u and v directions based on pressure

measurements are illustrated. It is clear that all methods

except the linear predictor achieve the goal roughly, yet,

precise predictions are obtained from MLP and ANFIS

based structures.

At this stage, one can question whether these results

could be improved by altering the configuration parame-

ters. Based on the numerous experiments we have carried

out, the answer to this question is yes; however, main-

taining the number of adjustable parameters close to each

other, the order of best-performers will not change.

5. CONCLUSIONS

This paper considers the prediction performances of

computationally intelligent structures for predicting the

pressure and velocity components of a flow past a three-

element airfoil. We believe the problem to be of interest

because pressure is often the only flow variable that can

be measured and sensors can only be placed at a limited

number of locations on the airfoil. Hence there is poten-

385

tial benefit in being able to predict the flow information

other than pressure and at locations other than where one

has sensors. The challenging nature of the problem con-

sidered is the spatially distributed nature of the problem

and the unavailability of the past sensory information at

the point of interest. Towards the prediction goal, MLP,

ANFIS, LS-SVM, RBFNN approaches, as well as a sim-

ple linear estimator for benchmark are considered. It is

seen that the ANFIS structure results in a very small MSE

value between the training data and predictions. Yet, in

the test phase, MLP approach performs as well as the the

ANFIS structure. Regarding the LS-SVM and RBFNN

approaches, in spite of the similar complexities, the pre-

diction accuracies are seen to be poorer than the former

two, but still superior to that of the simple linear predic-

tor.

We believe that a main contribution of this paper is

unfolding the fact that distant predictions can be made

by utilizing computationally intelligent architectures, and

showing that ANFIS and MLP approaches are capable

of yielding the best predictions for velocity components

based on pressure measurements. One practical value

having this sort of a predictor is the possibility of devis-

ing feedback control systems to meet a predefined set of

performance criteria described over the spatial domain of

the process. The future work of the authors aim to realize

these structures in a predictive control application.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge the facilities of

TOBB ETÜ Library. The authors would also like to thank

Darren Engwirda for the Navier2d solver.

REFERENCES

[1] S. Haykin. Neural Networks: A Comprehensive

Foundation. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1994.

[2] K. Hornik, M. Stinchcombe, and H. White. Mul-

tilayer feedforward networks are universal approxi-

mators. Neural Networks, 2(5):359–366, 1989.

[3] J. Park and I. W. Sandberg. Universal approxima-

tion using radial-basis-function networks. Neural

Computing, 3(2):246–257, 1991.

[4] M. J. D. Powell. Radial basis functions for mul-

tivariable interpolation: a review, pages 143–167.

Clarendon Press, New York, NY, USA, 1987.

[5] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris,

and D. M. Hummels. On the training of radial ba-

sis function classifiers. Neural Netw., 5(4):595–603,

1992.

[6] B. Scholkopf and A.J. Smola. Learning with Ker-

nels: Support Vector Machines, Regularization, Op-

timization, and Beyond. MIT Press, Cambridge,

MA, USA, 2001.

[7] N. Cristianini and J. Shawe-Taylor. An Introduction

to Support Vector Machines. Cambridge University

Press, Cambridge, UK, 2000.

[8] B. Schölkopf, C.J. C . Burges, and A.J. Smola. Ad-

vances in Kernel Methods: Support Vector Learn-

ing. MIT Press, 1999.

[9] J.A.K. Suykens, T. Van Gestel, J. De Brabanter,

B. De Moor, and J. Vandewalle. Least Squares Sup-

port Vector Machines. World Scientific, Singapore,

2002.

[10] J.S.R. Jang. ANFIS: Adaptive-network-based fuzzy

inference system. IEEE Transactions on Systems,

Man, and Cybernetics, 23(3):665–685, 1993.

[11] J.S.R. Jang and C.T. Sun. Functional equivalence

between radial basis function networks and fuzzy

inference systems. IEEE Transactions on Neural

Networks, 4(1):156–159, 1993.

[12] J.S.R. Jang and C.T. Sun. Neuro-fuzzy modeling

and control. Proceedings of the IEEE, 83(3):378–

406, 2002.

[13] S.-P. Lo. The application of an ANFIS and grey

system method in turning tool-failure detection. The

International Journal of Advanced Manufacturing

Technology, 19(8):564–572, 2002.

[14] J.A. Ekaterinaris and M.F. Platzer. Computational

prediction of airfoil dynamic stall. Progress in

aerospace sciences, 33(11-12):759–846, 1997.

[15] L. Davidson. Prediction of the flow around an airfoil

using a reynolds stress transport model. Journal of

fluids engineering, 117(1):50–57, 1995.

[16] Eric Manoha, Catherine Herrero, Pierre Sagau, and

Stephane Redonne. Numerical prediction of airfoil

aerodynamic noise. In 8th AIAA/CEAS Aeroacous-

tics Conference and Exhibit, Breckenridge, CO,

2002.

[17] C. Hah and B. Lakshminarayana. Measurement and

prediction of mean velocity and turbulence structure

in the near wake of an airfoil. Journal of Fluid Me-

chanics, 115:251–282, 1982.

[18] Jiunn-Chi Wu, L. N. Sankar, and K. R. V. Kaza. A

technique for the prediction of airfoil flutter charac-

teristics in separated flow. In 28th Structures, Struc-

tural Dynamics and Materials Conference, pages

664–673, Monterey, CA, 1987.

[19] Darren Engwirda. Navier-Stokes solver (Navier2d).

MATLAB Central File Exchange, 2006.

[20] R. Battiti. First- and second-order methods for

learning: between steepest descent and newton’s

method. Neural Computation, 4(2):141–166, 1992.

[21] M.T. Hagan and M.B. Menhaj. Training feed-

forward networks with the marquardt algorithm.

IEEE Transactions on Neural Networks, 5:989–

993, 1994.

[22] T. Takagi and M. Sugeno. Fuzzy identification of

systems and its applications to modeling and con-

trol. IEEE Transactions on Systems, Man, and Cy-

bernetics, SMC-15:116–132, 1985.

[23] S.R. Gunn. Support vector machines for classifica-

tion and regression. Technical report, ISIS Tech-

nical Report, University of Southampton, United

Kingdom, 1998.

386

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	Text1: 978-89-93215-01-4-98560/08/$15 ⓒICROS

