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Abstract-Influencing the behavior of a flow field is
a core issue as its improvement can yield significant
increase of the efficiency and performance of fluidic
systems. On the other hand, the tools of classical con-
trol systems theory are not directly applicable to pro-
cesses displaying spatial continuity as in fluid flows.
The cavity flow is a good example of this and a re-
cent research focus in aerospace science is its mod-
eling and control. The objective is to develop a fi-
nite dimensional representative model for the system
with appropriately defined inputs and outputs. To-
wards the goal of reconstructing the pressure fluctua-
tions measured at the cavity floor, this paper demon-
strates that given some history of inputs and outputs,
a neural network based feedforward model can be de-
veloped such that the response of the neural network
matches the measured response. The advantages of
using such a model are the representational simplic-
ity of the model, structural flexibility to enable con-
troller design and the ability to store information in
an interconnected structure.

1 Introduction

The fundamental objective of aerodynamic flow con-
trol is to develop strategies to excite the flow field
so that a desired behavior is observed or some unde-
sired phenomena are eliminated. Reducing the skin
friction on the body of an aircraft constitutes a good
example of control that results in reduced drag and
thus reduced fuel consumption. Another example is
the reduction of undesired high-level pressure fluctu-
ations in a modern aircraft weapon bay, which cause
material fatigue and damage to stores. The latter

∗This work was supported in part by AFRL/VA and
AFOSR under contract no F33615-01-2-3154.

†Corresponding Author, Atilim University, Department of
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phenomenon is known as cavity flow [1] and repre-
sents a good study benchmark due to the dynami-
cal richness of its flow physics while its relevance to
the above mentioned applications makes it an appeal-
ing subject for investigation. The challenges faced in
controlling these flow systems clearly stipulate the de-
velopment of well-interacting control media such that
the existing literature is expanded as well as new ap-
plication domains are initiated.

The control of aerodynamic flows has tradition-
ally been accomplished by using passive techniques,
and recently open loop strategies [2], which lack the
advantages of feedback control schemes. More re-
cents efforts have closed the loop based on ad hoc
and trial and error type schemes, [3, 4, 5, 6]. To make
the approach more general, the loop must be closed
based on flow models, which is a challenge due to the
flow systems’ infinite dimensionality, the complex-
ity introduced by Navier-Stokes equations, the mea-
surement difficulties and the dynamics introduced by
measurement and actuation devices. Extensive work
have been done in the modeling of aerodynamic flows,
[7, 8]. The Proper Orthogonal Decomposition (POD)
has constituted a widely used method for model de-
velopment yet the POD based models have revealed
convergence and/or drift problems in the behavior
of temporal variables. Another approach is to ex-
ploit the physics of the problem. Rowley et al. and
Williams et al. focused on this from a linear systems
point of view, [4, 9, 10]. The acoustic waves produced
by the shear-layer scattering at the downstream wall
of the cavity reach, after some propagation delay
time, the incoming flow in the receptivity region (i.e.
the cavity upstream wall) and a delay-based coupled
dynamics arise. The cited studies demonstrate that
the shear layer development, acoustic scattering, cav-
ity acoustics and receptivity can be represented dy-
namically as transfer functions. It must be noted that
the parameters of the devised transfer function are
tuned such that the frequency content of the experi-
mental data obtained matches the frequency response
of the model. For the model discussed in [4, 9, 10],
Yuan et al. [6] demonstrate the design and imple-
mentation of a H∞ controller. A very good review
of flow control literature is presented by Cattafesta
et al., [11], in which the techniques and the advances
are summarized from both a fluid mechanical point



of view and a control specialist’s point of view, and a
tabulated comparison of operating conditions and ob-
tained results is presented. A common starting point
in all flow control applications is to describe the dy-
namics in terms of the mathematical tools, i.e. to
devise a model capturing the essential dynamics. In
this paper, the emphasis is on the reconstruction of
the pressure measured from a particular location in
the cavity based on the past observations from the
same location and the excitation values.

The research carried out at Collaborative Center
of Control Science at The Ohio State University has
yielded a well-designed experimental facility, which
provides an excellent platform for data acquisition
and exploring the physics of flow phenomena and han-
dling the control problem. The experimental setup,
which is located at the Gas Dynamics and Turbulence
Laboratory, is a small wind tunnel that provides con-
tinuous subsonic flow from very low speed to Mach
1 with a rich parameter space suitable for feedback
control development. A shallow cavity with length to
depth aspect ratio L/D = 4 is recessed in the floor
of the test section. The control is provided by a syn-
thetic jet exhausting from a slot spanning the width
of the cavity upstream wall. For a detailed infor-
mation describing the simulations and experimental
work on the cavity setup, the reader is referred to the
past work of the authors in [12, 13].
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Figure 1: A general view of the experimental facility.

In Figure 1, the test section and its peripherals
are shown. The incoming flow is directed towards the
test section through a converging nozzle and leaves
the test section by passing through an exhaust tube.
A closer look at the test section setup is given in
Figure 2, in which the entry slot of the control jet
is visible at the receptivity region. The physics of
the process should now be more clear. The input
to the system is the signal applied to the actuator
(u(t)), and the output is the pressure measured at
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Figure 2: A closer look at the test section.

 Kulite transducer that
measures pressure x(k) 

Figure 3: A closer look at the cavity floor.

the bottom of the cavity (x(t)). The Kulite dynamic
pressure transducer located at the center of the cav-
ity floor and used to observe the system can be seen
in Figure 3. The same figure provides also a better
view of the entry slot of the control flow as well as an
appreciation of the cavity geometry. The cavity floor
Kulite, as well as others at selected locations of the
cavity domain, are connected to a Nationl Instrument
data acquisition system hosted in a computer. In Fig-
ure 4, we illustrate a complete view of the cavity flow
identification and control system. The contribution
of this paper is to emphasize that the use of neural
networks can offer promisingly flexible and accurate
solutions.

This paper is organized as follows. The second
section describes the neuroidentifier, the training al-
gorithm, and the motivating factors. The identifi-
cation results and specific implementation issues are



Figure 4: A complete view of the flow identification
and control loop.

discussed in the third section. The conclusions are
presented at the end of the paper.

2 Neural Model

In flow control applications, several factors encour-
age the use of neural networks. First of all, the
process dynamics are quite complicated. Strong in-
terdependencies between the variables involved make
it challenging to come up with a compact and use-
ful representative model as shown by Samimy et al.
[12, 13]. Secondly, the system and its peripherals
could be modeled individually, which is an inevitable
stage in [6, 4, 9]. Finally, the data contains measure-
ment noise. From this point of view, one sees that
the neurocomputing algorithms and their connection-
ist models are excellent candidates for building a dy-
namical model containing the effects of process sub-
systems, which are the process itself, sensors, actua-
tor and the filter(s) collectively. It is clear that the
conditions above force the use of a model structure
that is able to generalize the data while improving
the information content progressively. A good deal
of information about neural networks can be found
in [14, 15] and the references therein.

An important issue in using neural networks is
the parameter adjustment strategy. In the literature,
many alternatives are proposed but the Levenberg-
Marquartdt technique is widely accepted as one of
the most powerful ones. The algorithm is an ap-
proximation to the Newton’s method, and both of
them have been designed to solve the nonlinear least
squares problem [15, 16]. Consider a neural net-
work having single output, and N adjustable pa-
rameters (weights and biases) denoted by the vector
ωp := (ω1p, ω2p, . . . , ωNp), where a subscript p de-
notes the observation instant. If there are P patterns
in the ensemble, over which the interpolation is to
be performed, a cost function qualifying the perfor-
mance of the interpolation can be defined as

E :=
1
2

P∑
p=1

(dp − xp(ωp))
2, (1)

where dp and xp are the desired and observed re-
sponses at index p, respectively. It should be noted
that xp is a function of ωp. The parameter update
law based on Levenberg-Marquardt optimization is
performed as

ωk+1 = ωk −
(
µIN×N + J(ωk)TJ(ωk)

)−1 ×
J(ωk)Te(ωk), (2)

where J is the Jacobian, whose pth row is composed
of

(
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p
)
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p
)
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, . . . ,

∂ep(ω
p
)

∂ωNp

)
with ep(ωp) := dp−

xp(ωp). After a suitable implementation of the train-
ing algorithm, one can come up with a model having
the structure

xk+1 = f(xk, xk−1, . . . , xk−n,

uk, uk−1, . . . , uk−m), (3)

where the delay depths n and m are user specified
parameters. The process of learning refines the func-
tion f and the resulting connectionist structure can
rebuild the flow measurements so that the quantity
in (1) is minimized over the set of P training pairs.

3 Identification of the Flow

The identification mechanism of a flow system by a
neural network is depicted in Figure 5, where the neu-
ral network is forced to imitate the response of the
system under the same operating conditions. The
training algorithm refines the input-output descrip-
tion of the neural identifier so that the estimation
error is minimized over a set of representative input-
output data.

Figure 5: Identification of a system.



The first stage of the identification process is to
collect the data. For this purpose, we initially fo-
cus our attention to a Mach 0.3 flow. We acquired
two extensive sets of data from the pressure transduc-
ers in the test section by sampling the corresponding
amplified and anti-aliasing filtered signals at a rate
of 200 kHz. The actuator excitation signal was high-
pass filtered to stop any spectral content below 1 kHz
which would damage the actuator. Of the two sets
of data collected, one is used for training while the
other is used to validate the model. For this pur-
pose, the training data set has been acquired when a
2 kHz sinusoidal excitation voltage of 4Vrms is sent
to the actuation device. The pressure is read from
the Kulite transducer seen in Figure 3. During the
modeling trials, we have chosen a feedforward neu-
ral network with a single hidden layer. The neurons
in the hidden layer contain the hyperbolic tangent
nonlinearity and the output neurons are chosen to
be linear. The input vector to the neuroidentifier
is composed of [uk, uk−1, xk, xk−1, xk−2], i.e. n = 2
and m = 1, and the response of the network to this
vector is xk+1. Furthermore, we have used 12 hid-
den neurons letting us end up with 5-12-1 configu-
ration. With the Levenberg-Marquardt scheme, the
entire data set, which contains 16381 pairs, passed
through the neural network 50 times (epoches) while
modifying the weights and biases according to (2).
At the end of this process, the Mean Squared Error
(MSE) has decreased below 8.85e-6.

The tests have been carried out with another
sinusoidal input signal with amplitude 4V and fre-
quency 3.25 kHz, and the output from the process
and the response of the neural network have been
recorded. According to the acquired data, the results
seen in Figure 6 and 7 have been obtained.

According to the results illustrated in the top
row of Figure 6, the two curves are almost indistin-
guishable. The discrepancy curve shown in the bot-
tom row confirms the accurate reconstruction claim
of the paper. The comparison in the frequency do-
main is presented in Figure 7, where the two curves
are similar enough to use the devised model as a dy-
namical representative. A look at the error magni-
tude in the bottom row of Figure 7 emphasizes the
reconstruction accuracy of the neuroidentifier. It is
visible that the error curve has a reasonably small
magnitude over a wide range of frequencies.

It should be noted that the topology of the neural
network and the type of nonlinearities absolutely de-
pend upon the designer’s perceptions, intuitions and
experience. There is not an analytical way to de-
termine the number of hidden layers as well as the
number of neurons. Based on our extensive work, the
simplest configuration yielding a satisfactorily precise
response is the one presented here.
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Figure 6: Top row: The data obtained from the
Kulite transducer (dk) and the response of the neu-
roidentifier (xk). Bottom row: The estimation error,
dk − xk. The plots on the left are for the entire test
set while the plots on the right are only for the first
1000 samples i.e. 5 ms time.

A last issue that should be discussed is a com-
parison of the findings with those appeared in the
literature before.

a) POD is computationally intensive, vulnera-
ble to small numerical imprecision and the models
may exhibit progressively increasing drift and/or in-
stability. Aside from all these, POD models for flow
problems are generally very complicated. Another
difficulty of POD based flow models is the process
of spatial separation of the control entry. The ad-
vantage, on the other hand, is that, once it works,
the model is global over the entire cavity domain and
the individual performance metrics can be distributed
over the physical geometry of the cavity.

b) Delay based models as studied in [8, 4, 9, 10]
are very useful in terms of designing controllers, [6],
yet it is difficult to inject the dynamical properties of
sensors, actuators, and filters in a collective manner.
The match in frequency domain can be achieved to
some extent but the time domain match is not as
good as the one we present here. The advantage of
using these models is the possibility of using the tools
of linear control systems theory.

c) Neural network based identification scheme is
superior to the ones mentioned above in the sense
that it is based on the data containing the effects
of system components collectively. The designer can
decide on the topology of the network as well as
the training scheme to update the parameters. The
trained network can be used for feedback controller
design, [17].
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Figure 7: Top row depicts the FFT magnitude pic-
tures of the desired (dk) and the estimated (xk)
signals. The bottom plot illustrates the quantity
|FFT(dk)− FFT(xk)|.

4 Conclusions

In this paper, identification of cavity flow system
is studied. A neural network is used to imitate the
behavior of the process under investigation. Several
past values of the output and the input are fed
to the neuroidentifier and the likely next output is
estimated accurately. This is done by suitably tuning
the adjustable parameters of the neural network
by utilizing the Levenberg-Marquardt optimization
technique. The results are quite promising for
devising a feedback control scheme to manage the
behavior of the flow field.
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H., Efe, M. Ö., Yuan, X., DeBonis, J., and My-
att, J.H., “Closed-Loop Active Flow Control - A



Collaborative Approach,” 41st AIAA Aerospace
Sciences Meeting and Exhibit, Jan. 6-9, Reno,
Nevada, U.S.A., 2003 (Paper: AIAA2003-0058).

[13] Samimy, M., Debiasi, M., Caraballo, E., Özbay,
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