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ABSTRACT 
 
This paper concentrates on the estimation of the state 
vector of a direct drive robotic manipulator having 
two degrees of freedom and four state variables. The 
method presented in the paper uses the Variable 
Structure Systems methodology in stabilizing the 
gradient descent based training dynamics of the 
identifier. Simulations have been carried out with the 
worst conditions, namely a considerable amount of 
observation noise and varying payload conditions. 
The results observed clearly recommend the use of 
the algorithm presented. 
 

1. INTRODUCTION 
 

During the last few decades, widespread 
innovations in the realm of Computational 
Intelligence have been witnessed, the approaches of 
which offer a practical framework for solving 
complex problems through the use of human 
expertise and a priori knowledge about the problem 
in hand. Artificial Neural Networks are one of the 
most popular members of the computational 
intelligence area because of their ability to represent 
mappings and internal relations between the data in 
hand with a number of processing elements, which 
are called neurons. Numerical data in the form of 
[Input State] ⇒ [Output] statements are learned in 
the massively interconnected structure of a neural 
network. Earlier works on the mapping properties of 
these architectures have shown that neural networks 
are universal approximators [1-2]. Various 
architectures of neural systems are studied in the 
literature. Feedforward and recurrent neural networks 
[3-4], Gaussian radial basis function neural networks 
[3-4], Runge-Kutta neural networks [5], and 
dynamical neural networks [6] constitute typical 
structurally different models. These models have 
successfully been applied to problems extending 
from control applications to image/pattern 
recognition problems. 

In the engineering practice, stability and 
robustness are of crucial importance. Because of this, 
the implementation-oriented engineering expert is 
always in pursuit of a design, which provide accuracy 

as well as insensitivity to environmental disturbances 
and structural uncertainties. A suitable way of 
tackling with uncertainties without the use of 
complicated models is to introduce Variable 
Structure Systems (VSS) theory based components 
into the system structure. The theory has first been 
introduced by Emelyanov [7] and numerous 
contributions to VSS theory have been made during 
the last decade. Some of them are as follows: Hung et 
al [8] have reviewed the control strategy for linear 
and nonlinear systems. In that study, the switching 
schemes, putting the differential equations into 
canonical forms and generating simple VSS based 
controls are considered in detail. Application of the 
Sliding Mode Control (SMC) scheme to robotic 
manipulators and discussion on the quality of the 
scheme are presented in another work [9]. One of the 
crucial points in SMC is the selection of the 
parameters of the sliding surface. Some studies 
devoted to the adaptive design of sliding surfaces 
have shown that the performance of control system 
can be refined by interfacing it with an adaptation 
mechanism, which regularly redesigns the sliding 
surface [10-11]. This eventually results in a robust 
control system. The performance of SMC scheme is 
proven to be satisfactory in the face of external 
disturbances and uncertainties in the system model 
representation. Another systematic examination of 
SMC approach is presented in [12]. In this reference, 
the practical aspects of SMC design are assessed for 
both continuous time and discrete time cases and a 
special consideration is given to the finite switching 
frequency, limited bandwidth actuators and parasitic 
dynamics. 

The objective of this paper is to develop a stable 
training procedure for artificial neural networks, 
which will enforce the adjustable parameters to settle 
down to a steady state solution while minimizing an 
cost function defined by the realization error. This is 
achieved by performing an appropriate mixture of 
gradient based parametric displacements [13] and 
VSS based stabilizing parametric displacements. The 
early applications of VSS theory in training of 
computationally intelligent systems have considered 
the adjustment of the parameters of simple models 
like Adaptive Linear Elements (ADALINE) [14]. 
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The method presented in [14] also presents the 
forward and inverse dynamics identification of a 
Kapitsa pendulum. The fundamental difference of the 
algorithm presented in this paper is the fact that, the 
derivation is based on the mixture of two different 
update values. Furthermore, the eventual form of the 
parameter update formula alleviates the handicaps of 
the gradient based training algorithms, which are 
widely used in most applications in the literature. 

This paper is organized as follows: The second 
section summarizes the conventional method 
followed in gradient based optimization technique 
and discusses the typical drawbacks of the approach. 
The third section presents the derivation of VSS 
based parameter stabilizing law. In the fourth section, 
neural network architecture is considered and the 
relevant formulation for the approach is given. Next 
section is devoted to the plant to be identified in this 
study. This is followed by the discussion of 
simulation studies. Conclusions constitute the last 
part of the paper. 
 
2. AN OVERVIEW OF GRADIENT DESCENT 

 
In this section, a widely used technique of 

parameter adjustment, which is called Error 
Backpropagation (EBP), is briefly reviewed. The 
method has first been formulated by Rumelhart et al 
[13] in 1980s. The approach has successfully been 
applied to a wide variety of optimization problems. 
The algorithm can briefly be stated as follows. 
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As is clearly seen, the error in (1) is the 
discrepancy between the target signal d and the 
response of the neural network F.  The output F is a 
continuous function of the network parameters 
denoted generically by φ and inputs denoted by u. 
The approach defines the cost of realization and the 
rule of learning as below; 
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The observation error in (1) is used to minimize the 
cost function in (2) by utilizing the rule described by 
(3). 
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The minimization proceeds iteratively as given in 
(4), for which the sensitivity derivative with respect 
to the generic parameter φ is needed. It is apparent 
that the method is applicable to the architectures in 
which the outputs are differentiable with respect to 
the subject of optimization. 

An admissible generalization or learning is 
achieved in the regions of parameter space where the 
partial derivative in (4) is smoothly changing. If the 
system under investigation is a time varying one and 

if there exists strong environmental disturbances, 
minimizing the cost in (2) by tuning the adjustable 
parameters becomes a challenge. An appropriate 
solution to this problem could be to filter the noisy 
signal, then to identify the dynamics by using filtered 
observations. However, the adverse effect of this 
operation would be the occurrence of a time delay 
between the desired signal and the neural network 
response. Since the generalization property can be 
incorporated into the identification scheme, one 
would directly seek for alternative training 
methodologies leading to the reduction of the 
negative effects of noisy data and nonlinear behavior. 
In the next section, a method for improving the 
learning performance for artificial neural networks is 
presented. 
 

3. VSS FOR PARAMETRIC STABILITY 
 

A continuous-time dynamic model of the 
parameter update rule prescribed by the gradient 
descent technique can be written as in (5). 
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The above model is composed of the sampling time 
denoted by Ts, the gradient based non-scaled 
parameter change denoted by Nφ=e∂F(φ,u)/∂ φ and a 
scaling factor denoted by ηφ, for the selection of 
which, a detailed analysis is presented in the 
subsequent discussion. Using Euler’s first order 
approximation for the derivative term, one obtains 
the following relation, which obviously validates the 
constructed model in (5) and which leads to the 
representation in (7). 
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By comparing (4) and (7), the equivalency 
between the continuous and discrete forms of the 
update dynamics is thus clarified. The derivation of 
the parameter stabilizing component is based on the 
integration of the system in (5) with variable 
structure systems methodology. In the design of 
variable structure controllers, one method that can be 
followed is the reaching law approach [8]. For the 
use of this theory in the stabilization of the training 
dynamics, let us define the switching function as in 
(8) and its dynamics as in (9). 
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In above, Qφ and Kφ are the gains, and ε is the width 
of the boundary layer. Equating (9) and (5) and 
solving for ∆φ yields the following; 
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With the equality given in (10), the update 
dynamics is forced to behave as that defined by (9), 
which is actually a stable dynamics defined by the 
adopted switching function. In the derivations 
presented below, a key point is the fact that the 
system described by (5) is also driven by ηφ, which is 
known as learning rate in the related literature. Now 
we demonstrate that some special selection of this 
quantity leads to a rule that minimizes the magnitude 
of the parametric displacement. Let us define the 
following quantity for keeping analytic 
comprehensibility; 
 

φ
ε
φ

φφφ ∆+





 ∆

= KQA tanh  (11) 
 

Now we have a model described by (5), and an 
equality formulated by (10). If one chooses a positive 
definite Lyapunov function as given by (12), the time 
derivative of this function must be negative definite 
for stability of parameter change (∆φ) dynamics. 
Clearly the stability in parameter change space 
implies the convergence in system parameters. 
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If (5) and (10) are substituted into (13), the constraint 
stated in (14) is obtained for stability in the 
Lyapunov sense. 
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Equation (14) can be rewritten in a more tractable 
form as follows. 
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Since Aφ and ∆φ have the same signs, the roots of the 
expression (15) clearly have opposite signs. The 
expression on the left-hand side assumes negative 
values between the roots. Therefore, in order to 
satisfy the inequality in (15), the learning rate must 
satisfy the constraint given in (16). 
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In (16), the interval of learning rate is restricted to 
positive values. This is due to preserve the 
compatibility between the gradient based approaches 
and the proposed approach. An appropriate selection 
of ηφ could be as follows: 
 

10    ,1,1min <<












−∆= βφβη φ
φφ

φ A
NN

 (17) 

 

By substituting the learning rate formulated in (17) 
into the stabilizing solution given in (10), the 

stabilizing component ∆φVSS of the parameter change 
formula is obtained as; 
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where, ∆φ on the right-hand side is the final update 
value yet to be obtained. The law introduced in (18) 
minimizes the cost of stability, which is the 
Lyapunov function defined by (12). The question 
now reduces to the following; can this law minimize 
the cost defined by (2)? The answer is obviously not, 
because the stabilizing criteria in (18) is derived from 
the displacement of the parameter vector denoted by 
∆φ, whereas the minimization of (2) is achieved 
when φ tends to φ* regardless of what the 
displacement is. In order to minimize (2), the 
parameter change anticipated by gradient based 
optimization technique, which is reviewed in the 
second section, should somehow be integrated into 
the final form of parameter update mechanism. As 
introduced in the second section, error 
backpropagation algorithm (EBP) evaluates a 
parameter change as given in (20). 
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where, ζ is the constant learning rate in the 
conventional sense. Combining the laws formulated 
in (18) and (19) in a weighted average, the eventual 
parameter update law in (20) is obtained. 
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The parameter update formula given by (20) 
carries mixed information containing both the 
parametric convergence, which is introduced by VSS 
part, and the cost minimization, which is due to the 
error backpropagation technique. The balancing in 
this mixture is left to the designer by an appropriate 
selection of α1 and α2. 
 

4. TRAINING OF FEEDFORWARD NEURAL 
NETWORKS 

 
In this section, a multilayer perceptron is 

introduced as the intelligent identifier, the parameters 
of which are to be updated by using the technique 
presented. In [15], Narendra and Parthasarathy 
demonstrate that this structure can effectively be used 
for identification and control purposes. In the 
conventional error backpropagation technique, 
propagating the output error back through the neural 
network minimizes the cost function given in (2). 
Based on the derivation presented in detail in [13], 
the delta values for the output and hidden layer 
neurons are evaluated as given by (21) and (22) 
respectively. 
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Having evaluated the delta values during the 
backward pass, the weight update rule described by 
(23) is applied for each training pair. 
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The eventual form of the update formula can now be 
constructed by using the equations (18) through (20). 
 

5. NONLINEAR SYSTEM MODEL 
 

In this study, a two degrees of freedom direct 
drive SCARA robotic manipulator is used as the test 
bed. Since the dynamics of such a mechatronic 
system is modeled by nonlinear and coupled 
differential equations, identifying the dynamics 
becomes a difficult objective due to the strong 
interdependency between the variables involved, and 
the existence of abruptly changing payload 
conditions and noisy observations. Besides, the 
ambiguities on the friction related dynamics in the 
plant model make the design much more 
complicated. Therefore the methodology adopted 
must be intelligent in some sense. 

The general form of robot dynamics is described 
by (24) where Μ(θ), V( θθ , ), τ(t) and f stand for the 
state varying inertia matrix, vector of coriolis terms, 
applied torque inputs and friction terms respectively.  
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If the angular positions and angular velocities are 
described as the state variables of the system, four 
coupled and first order differential equations can 
define the model. In (25) and (26), the terms seen in 
(24) are given explicitly. 
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In above, p1 = 2.0857 + 0.0576 Mp, p2 = 0.1168 + 
0.0576 Mp and p3 = 0.1630 + 0.0862 Mp. Here Mp 
denotes the mass of the payload. The values of which 
are illustrated in Fig. 1. The details of the plant 
model are presented in [16]. 
 

6. SIMULATION STUDIES 
 

In the simulations, the dynamics of the system 
introduced in Sec. 5 is identified by the neural 
network model discussed in Sec. 4. During the 
simulations, the main objective is to keep the update 
dynamics in a stable region together with the 
clarification of the noise rejection capability of the 
update mechanism presented. This is achieved 
through a suitable combination of conventional 
gradient based learning strategy with that based on 
the variable structure systems methodology. 

In the simulations performed the system under 
investigation has been kept under an external control 

loop while the identifier is extracting the dynamical 
behavior. The state vector and the torque inputs are 
applied to the neural network. In response to this 
input, the identifier tries to match the next state 
vector to which is actually responded by the 
manipulator. During this process, the state vector is 
corrupted by a random noise, whose maximum value 
is restricted to the ±10% of the observed state value. 
The noise sequence has zero mean and has a 
uniformly distributed characteristic. Initially, the 
neural network weights and biases are set to small 
numbers. Next, the on-line training phase takes place. 
During this phase, the parameters of the network are 
adjusted such that the identifier best realizes the 
actual value of the state vector. For this purpose, a 
neural network, which has 6 inputs, 12 hidden 
neurons with hyperbolic tangent neuronal 
nonlinearities and 4 linear output neurons is 
employed. 

The reference velocity trajectory is a trapezoidal 
one, and in all simulations the system is started with 
zero initial state errors. 

In Fig. 2 the response of the manipulator under 
control is illustrated. In Fig. 3, the results observed 
with the use of only the gradient descent are 
depicted. If the magnitudes in Figs. 2 and 3 are 
considered, one can directly infer that the ordinary 
gradient descent algorithm fails under the conditions 
stated above. Fig. 4 depicts the realization errors for 
the mixed training algorithm. The improvement 
introduced by the method is clear from the 
magnitudes of the error profiles. The settings of both 
cases are tabulated in Table 2, where in the former 
α1=0, and in the latter α1=20. 

During the on-line training of the identifier, the 
squared sum of parametric changes is defined to be 
the cost of stability. The cost function is described by 
(27), in which the summation is over all adjustable 
parameters of the neural network. The time behavior 
of the cost of stability is illustrated in Figs. 5 and Fig. 
6 for α1=0 and α1=20 cases respectively. 
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As can be deduced from Figs. 5 and 6, the 
parametric stabilization performance of the proposed 
methodology is highly promising, which means that 
the introduced approach achieves the subject of 
optimization with less effort. 
 

7. CONCLUSIONS 
 

In this paper, a novel technique for improving the 
learning performance of artificial neural networks is 
presented. An approximate model of ordinary 
gradient based training procedure (EBP) is 
constructed and variable structure systems approach 
is incorporated into the proposed form of the 
parameter update law. In this procedure, error 
backpropagation rule is responsible for the 
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minimization of squared realization error while the 
variable structure systems based law is responsible 
for the stability in the parameter space. 

The conventional approaches suffer from some 
handicaps, such as imperfect modeling, noisy 
observations or time varying parameters. If the 
effects of these factors are transformed to the cost 
hypersurface, whose dimensionality is determined by 
the adjustable design parameters, it is evident that the 
surface may have directions along which the 
sensitivity derivatives can assume large values. In 
these cases, gradient based approaches evaluate large 
parametric displacements, which can eventually lead 
to a locally divergent behavior requiring an excessive 
tuning effort. In control engineering practice, such a 
behavior constitutes a potential danger from a safety 
point of view. The approach presented in this paper 
takes care of the instantaneous fluctuations in the 
parameter space. Since the variable structure systems 
approach is well known with its robustness property, 
an appropriate combination of gradient rule and 
variable structure systems can eliminate the 
handicaps stated above. The fluctuations that are 
most likely to occur in the parameter space during 
training are dampened out. The combination is 
therefore a good candidate for efficient parameter 
tuning. 

In the application example presented, feedforward 
neural network structure is utilized as the 
computationally intelligent architecture. It must be 
emphasized that the task is accomplished with 12 
hidden neurons in the FNN structure and the tuning 
of the parameters is performed on-line. The results 
presented confirm the prominent features of the 
approach, such as, high noise rejection capability, 
generalization of a complex system dynamics by 
input-output data, and capability of tolerating the 
adverse effects of varying payload mass. The 
algorithm is applicable to any neural network model 
provided that the model output is differentiable with 
respect to the parameter of interest. 
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Figure 2. Response of the Manipulator 
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Figure 3. Discrepancy Between the Response of the 

Manipulator and the Identifier Outputs with only 
Gradient Descent Based Tuning 
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Figure 3. Discrepancy Between the Response of the 

Manipulator and the Identifier Outputs with Proposed 
Mixed Tuning Algorithm 
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Figure 5. Cost of Stability with only Gradient 
Descent 
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Figure 6. Cost of Stability with Mixed Training 
Strategy 
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